December 7, 2020

Sent via email

Mr. Andrew R. Wheeler EPA Administrator Environmental Protection Agency 1200 Pennsylvania Avenue, N.W. Mail Code 5304-P Washington, DC 20460

Application for Alternate Liner Demonstration (Revision No. 1) Coal Combustion Residuals Rule Compliance Ash Filter Ponds A, B, C, and D Conemaugh Generating Station West Wheatfield Township, Indiana County, Pennsylvania

Dear Administrator Wheeler:

Conemaugh Generating Station (Station) and our engineering firm, GAI Consultants, Inc., are pleased to submit this electronic application to the U.S. Environmental Protection Agency (EPA) for consideration and hopeful approval. This application for an Alternate Liner Demonstration (Revision No. 1) was prepared pursuant to 40 C.F.R. § 257.71(d)(1)(i) for Ash Filter Ponds (AFPs) A, B, C, and D located at the Station in Indiana County, Pennsylvania (PA) and in response to comments received from the EPA on November 25, 2020 to the previously-submitted application (which is now superseded by the Revision No. 1 application). If approved, the Station intends to submit an Alternate Liner Demonstration package pursuant to § 257.71(d)(1)(ii) for AFPs A, B, C, and D. The entire application package will be forwarded to designated EPA staff copied below.

The AFPs comprise a multi-unit facility of coal combustion residuals (CCR) surface impoundments. The existing AFPs were designed and constructed with engineered clay liners under the guidance of a registered professional engineer in the mid-1980s. The engineered clay liner was designed and constructed to meet the performance requirements of the PA code and the PA Department of Environmental Protection (PaDEP), known at that time as the PA Department of Environmental Resources.

Included as attachments to this letter are documents supporting the lines of evidence designated by EPA to demonstrate the AFPs meet the requirements to submit an Alternate Liner Demonstration package. Attachment 1 contains an executive summary and narrative description of the rest of the Application contents (Attachments 2 through 7) and is included to provide ease of review for EPA.

As stated at § 257.73(b), periodic structural stability assessments and periodic safety factor assessments shall only be required for existing CCR surface impoundments that either: (1) have a height of five feet or more and a storage volume of 20 acre-feet or more; or (2) have a height of 20 feet or more. The AFPs are less than 20 feet in height and impound less than 20 acre-feet of CCRs and/or water; therefore, the Station is not required to complete periodic structural stability assessments or periodic safety factor assessments. As such, these items are not included herein.

The AFPs remain in the detection monitoring program. The Station successfully completed an Alternate Source Demonstration (ASD) for sulfate and calcium, as presented in the 2019 and 2018 annual groundwater reports included in Attachment 4. In addition to this effort, the Station has begun proactively investigating the AFPs and surrounding area for potential causes of a select Appendix IV constituent (cobalt) that was identified as part of the initial background sampling program for the AFPs. The results of this investigation indicate that this Appendix IV constituent occurs naturally in the on-site soils. Additionally, the Station has determined there is no correlation between concentration of the subject Appendix IV constituent in the monitoring wells and the water contained in the AFPs. A summary report of this investigation is included as Attachment 4G. The Station plans to expand upon this investigation to further document that the AFPs are not causing adverse impacts to the groundwater as part of the full Alternate Liner Demonstration.

Closing

Conemaugh Station and GAI Consultants, Inc. are grateful to EPA for their attention to this submittal. To aid your review, any interim requests for additional information or comments will be appreciated and addressed immediately. If you have any questions or concerns regarding this application, then please contact either Mr. Joseph G. Kushner, P.E., Strategy & Compliance Manager at (724) 235-4529 or jkushner@keyconops.com or me at (724) 235-4596 or jshimshock@keyconops.com.

Respectfully submitted,

John P. Shimshock

Environmental Specialist, Conemaugh Generating Station

John P. Thurslook

Attachments:

- 1 Executive Summary of Application Contents
- 2 Certification of CCR Rule Compliance per § 257.71(d)(1)(i)(A)
- 3 Documentation of Groundwater Monitoring Network per §§ 257.71(d)(1)(i)(B)(1)(i) through (iv)
- 4 Documentation that AFPs Remain in Detection Monitoring per §257.71(d)(1)(i)(B)(2)
- 5 Documentation that AFPs Meet Location Restrictions per § 257.71(d)(1)(i)(B)(3)
- 6 Documentation of Design Specifications, Material Suitability, and Construction Quality for Engineered Clay Liner per § 257.71(d)(1)(i)(C)
- 7 Demonstration of No Reasonable Probability of Complete and Direct Transport Pathway per § 257.71(d)(1)(i)(D)

cc: Mr. Richard Huggins, Huggins.Richard@epa.gov

Ms. Michelle Long, Long.Michelle@epa.gov

Ms. Mary Jackson, Jackson.Mary@epa.gov

Mr. Jason Mills, Mills.Jason@epa.gov

Mr. Joseph Kushner, Conemaugh Generating Station

Mr. Patrick Brosnan, CAMS eSPARC, LLC

Mr. Adam B. Scheller, GAI Consultants, Inc.

All listed above with the entire application package

ATTACHMENT 1 Executive Summary of Application Contents

Attachment 1 Summary of Application Contents

Attachment 2 – Certification of CCR Rule Compliance

The Station's General Manager certifies that the AFPs are in compliance with the requirements of 40 C.F.R. Part 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments, except for those requirements related to liner construction, as presented under 257.71(a)(1), for which this application for alternate liner approval is being submitted.

A signed and dated certification statement is provided in Attachment 2.

Attachment 3 – Documentation of Groundwater Monitoring Network

The groundwater monitoring network for the AFPs consists of five wells (MW-1B, MW-2, MW-3, MW-4, and MW-23). MW-1B and MW-2 are located upgradient of the AFPs, and MW-3, MW-4, and MW-23 are located downgradient of the AFPs. The locations of the wells, along with groundwater elevations, contours, and estimated direction of groundwater flow are provided in Attachment 3A. All five wells communicate with the alluvium, which is the uppermost aquifer.

Well construction diagrams and drilling logs for the monitoring wells are provided in Attachment 3B. The screened depth of the wells are 40 feet (MW-1B), 43 feet (MW-2), and 30 feet (MW-3, MW-4, and MW-23). MW-1B, MW-2, MW-3 and MW-4 are constructed with two-inch PVC screens, while MW-23 is constructed with a 4-inch PVC screen. Well MW-1B and MW-2 have 30 feet of screen, and MW-3, MW-4, and MW-23 have 20-feet of screen. The annular materials surrounding the PVC screen and riser for all five monitoring wells, in ascending order, consist of coarse sand and gravel, a bentonite pellet seal, and cement grout or concrete to the surface. The wells are completed with an aboveground locking steel protective casing.

The original monitoring well network consisted of four wells, two upgradient (MW-1 and MW-2) and two downgradient (MW-3 and MW-4). The well locations were selected as part of the 1984 application for a Water Quality Management (WQM) Permit from the Pennsylvania (PA) Department of Environmental Resources (PaDER) for construction of the AFPs. The well locations were established based on the assumed direction of groundwater flow considering the original site topography and assuming that groundwater will flow from higher elevations toward the Conemaugh River. The wells were installed in 1986 (installation specifications included as Attachment 3C). Subsequent monitoring of the water level elevation in the groundwater monitoring network confirmed that the placement of the wells was appropriate for detecting upgradient and downgradient constituents.

In 1998, MW-2 was removed from the state monitoring program at the request of the permitting agency, although the well remained on-site and is currently utilized as part of the CCR Rule monitoring network. In 1998, a third downgradient well, MW-23 was added, such that the network would be compliant with the requirements of the updated PA residual waste regulations (minimum 1 upgradient well and 3 downgradient wells). This monitoring well network, and associated Groundwater Monitoring Plan, was approved by the PA Department of Environmental Protection (PaDEP) on July 22, 1998. In 2003, MW-1 was replaced by MW-1B. The groundwater contour maps included in Attachment 3A further establish the sufficiency of the groundwater monitoring network. The existing groundwater network meets the PaDEP requirements that the monitoring wells be sufficient in number, location, and depth to be representative of the facility, located so that they do not interfere with routine facility operations, and located within 200 feet of the permitted storage area.

In 2017, APTIM Environmental and Infrastructure, Inc. (APTIM) certified that the groundwater monitoring system for the AFPs was adequate and appropriate to monitor groundwater conditions (Attachment 3D). This certification stated that the system utilized more than the required minimum number of monitoring wells (minimum requirement per the CCR Rule is 1 upgradient, 3 downgradient; Conemaugh Station has two upgradient and three downgradient) and that the construction and orientation of the wells was sufficient to satisfy the performance standards outlined in Section 257.91(a)(1-2) of the CCR Rule.

Attachment 4 - Documentation that the AFPs Remain in Detection Monitoring

The Station is compliant with the groundwater monitoring and reporting requirements of the CCR Rule. Based on the data that has been collected, analyzed, and reported (as summarized below and included herein), and in accordance with the procedures presented in the CCR Rule, the AFPs remain in detection monitoring.

In 2017, APTIM completed the Statistical Method for Groundwater Data Evaluation (Attachment 4A), which presented the statistical method selected for use in groundwater monitoring network. As described in Attachment 4A, an interwell prediction limit approach was selected. This method is among those recommended in the Environmental Protection Agency's (EPA's) Unified Guidance document ("Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities", March 2009). This approach has been used to analyze the results of all subsequent sampling events and is further described in the Statement of Recent Statistical Methods Conducted (Attachment 4B).

The Station's first Groundwater Monitoring and Corrective Action Annual Report (2017 Report, Attachment 4C) was completed in January 2018 by APTIM. This report describes the efforts to obtain the minimum of eight independent samples from each of the monitoring wells associated with the AFPs. This report also includes the results of a ninth round of samples that were collected in the fourth quarter of 2017 that would serve as the first data to be compared against the calculated background values from upgradient wells.

In the 2018 Groundwater Monitoring and Corrective Action Annual Report (2018 Report, Attachment 4D), which was the first year where monitoring data was compared against background values, a Statistically Significant Increase (SSI) was identified for sulfate at downgradient monitoring well MW-4. Pursuant to the SSI, and in accordance with the CCR Rule, the Station chose to conduct an Alternate Source Demonstration (ASD). The ASD, which is included as an Attachment to the 2018 Report, identified that the source of the elevated sulfate was incidental gypsum accumulation around MW-4. This was observed visually, and the chemical composition of the groundwater was consistent with the "fingerprint" of gypsum in the form of elevated calcium and sulfate. The ASD also utilized Piper diagrams to show differences in the chemical composition of the groundwater sampled at MW-4 and the liquid contents of the AFPs and identified that Boron, a very mobile constituent, was not elevated in the downgradient wells, even though significant levels of boron were present in the liquid contained in the AFPs. Based on this information, the ASD was deemed to be successful, therefore resolving the observed SSI for sulfate in MW-4 and confirming that the AFPs were not causing unacceptable impacts to groundwater. As such, per 257.94(e)(2) of the Rule, the AFPs remained in Detection Monitoring.

The findings of the 2018 Report and associated ASD have been consistent with the groundwater data collected to-date, including the information presented in the 2019 Groundwater Monitoring and

Corrective Action Annual Report (Attachment 4E) and the data that has been collected throughout the 2020 (Attachment 4F). As such, the ASD remains effective at identifying the source of elevated sulfate and calcium levels at downgradient well MW-4, and no new constituents have been identified that would require additional measures to be taken.

Recently, the Station contracted with APTIM to develop and implement a site investigation at the Station to evaluate groundwater in areas approximate to the AFPs. This work was initiated as part of a proactive measure to investigate the presence of cobalt, which was detected at elevated levels in downgradient monitoring wells during background sampling events conducted from 2015 to 2017. A summary of this investigation is included as Attachment 4G. This investigation concluded that the cause of the elevated cobalt concentrations is due to the presence of cobalt in the native soil, and not due to the AFPs. This finding is supported by several lines of evidence, including the absence of cobalt in the AFP surface water, non-detect levels of cobalt found to leach from the AFP solids, and the pervasive presence of cobalt in naturally occurring soils.

Attachment 5 – Documentation that the AFPs Meet Location Restrictions

In 2018, APTIM certified that the AFPs met the location restrictions presented in Sections 257.60(a), 257.61(a), 257.62(a), 257.63(a), and 257.64(a) of the CCR Rule. This certification statement is included in the Location Restriction Demonstration Report, prepared in October 2018 and included as Attachment 5 to this application. Specifically, the report demonstrated that:

- There is not an intermittent, recurring, or sustained hydraulic connection between any portion of the base of the AFPs and the uppermost aquifer due to normal fluctuations in groundwater elevations (including the seasonal high-water table).
- Wetlands are not present in the location of the AFPs.
- No known faults were identified within 200 feet of the AFPs.
- The AFPs are not located within a seismic impact zone.
- The AFPs are not located within an unstable area.

Attachment 6 - Documentation of Design and Construction Quality

The original AFPs (Ponds A, B, and C) were constructed in the early 1970s as part of the construction for the Station. In 1986 the ponds were reconstructed and a fourth pond (Pond D) was added to address operational and regulatory requirements at that time. This reconstruction established the ponds as they exist today, as presented on the drawings in Attachment 6A. As shown on the drawings, and in subsequent references, the AFPs were constructed with engineered clay liners having a minimum thickness of two feet. The construction specifications for the 1985-1986 Reconstruction Project (Attachment 6B) provided specific requirements for the engineered liner, including material properties of impervious fill, bentonite, protective cover, and filter media. Conformance with the design drawings and specifications was enforced through a testing and inspection program, as presented in Attachment 6C. The inspection program was carried out by a third-party firm.

Reconstruction of the AFPs included significant input from the state permitting authority, which at the time was the PaDER. The PaDER enforced specific requirements regarding the liner material and required that the permeability be no greater than $1x10^{-7}$ centimeters per second (cm/sec). Refer to Attachment 6D for a letter from the PaDER (January 1984) identifying this requirement in association

with the WQM Permit required to obtain approval for the Reconstruction Project. Pursuant to these requirements, the Station designed the proposed liner system, as summarized in a Preliminary Engineering Report, dated March 1984 (Attachment 6E). The WQM Permit Application (April 1984, Attachment 5F) was then submitted, which presented the proposed design to the PaDER for review and approval. The WQM Permit was granted on November 5, 1984.

To provide further information supporting the Station's engineering design and construction quality assurance related to the AFP Reconstruction Project, copies of the engineering scope of services and purchase requisitions for the lab and field testing to support construction have also been included (Attachments 6G and 6H, respectively).

In 2015, CB&I Environmental and Infrastructure Inc. (now APTIM) was retained by the Station to evaluate and certify the existing AFP liners under the requirements of the original CCR Rule. As part of this effort, APTIM reviewed the reference information for the design and construction of the AFPs. APTIM also performed a field investigation in August 2015 which included taking borings at six locations across the bottom and side slopes of the dewatered AFP B. This information was used to confirm that the liner section in the ponds matched that which was presented on the design drawings and specifications, both in material composition and thickness. The sampled material was also tested for hydraulic conductivity, which ranged from 1.6 x 10⁻⁸ to 4.1 x 10⁻⁸ cm/sec, exceeding the requirements of both the original CCR Rule and the requirement imposed by the PaDER at the time of construction. Pursuant to these findings, APTIM certified that the liner system was compliant with the design criteria outlined in 257.71(a)(1)(i). The certification statement was included in the Liner Certification Report, prepared in August 2016 and included as Attachment 6I to this application.

Attachment 7 - Demonstration of No Reasonable Probability of Transport Pathway

The Conemaugh Generating Station property is located adjacent to the Conemaugh River. The Ash Filter Ponds (AFPs) are set back from the river by approximately 0.2 – 0.3 miles. Based on the design and location of the AFPs, there is no reasonable probability that a complete and direct transport pathway (i.e., not mediated by groundwater) could exist between the AFPs and the nearby Conemaugh River. The following list of items provides evidence for this statement, in accordance with § 257.71(d)(1)(i)(4).

- The AFPs are located approximately 0.2 0.3 miles from the Conemaugh River.
- The AFPs are located outside of the 100-year and 500-year floodplain boundaries, as established by the Federal Emergency Management Agency (FEMA), as shown in Figure A7-1.
- Surface drainage downstream of the AFP embankments is topographically separated
 from the river by a railroad embankment, and the area between the AFPs and the river
 is well vegetated (Figure A7-1). Additionally, the drainage features downgradient of the
 AFPs do not discharge to the river. As such, potential discharge to surface water would
 be impeded by site topography and existing drainage features and be required to reenter the groundwater prior to discharge to the Conemaugh River.
- No seeps have been observed emanating from the embankments of the AFPs.
- Low conductivity soil is not present between the AFP liners and the uppermost aquifer (refer to boring logs included in Attachment 3B). As such, the soil conditions beneath the pond liners are not anticipated to prevent AFP water from entering the monitored

aquifer or direct AFP water laterally towards the Conemaugh River in a pathway not mediated by groundwater.

ATTACHMENT 2

Certification of CCR Rule Compliance per § 257.71(d)(1)(i)(A)

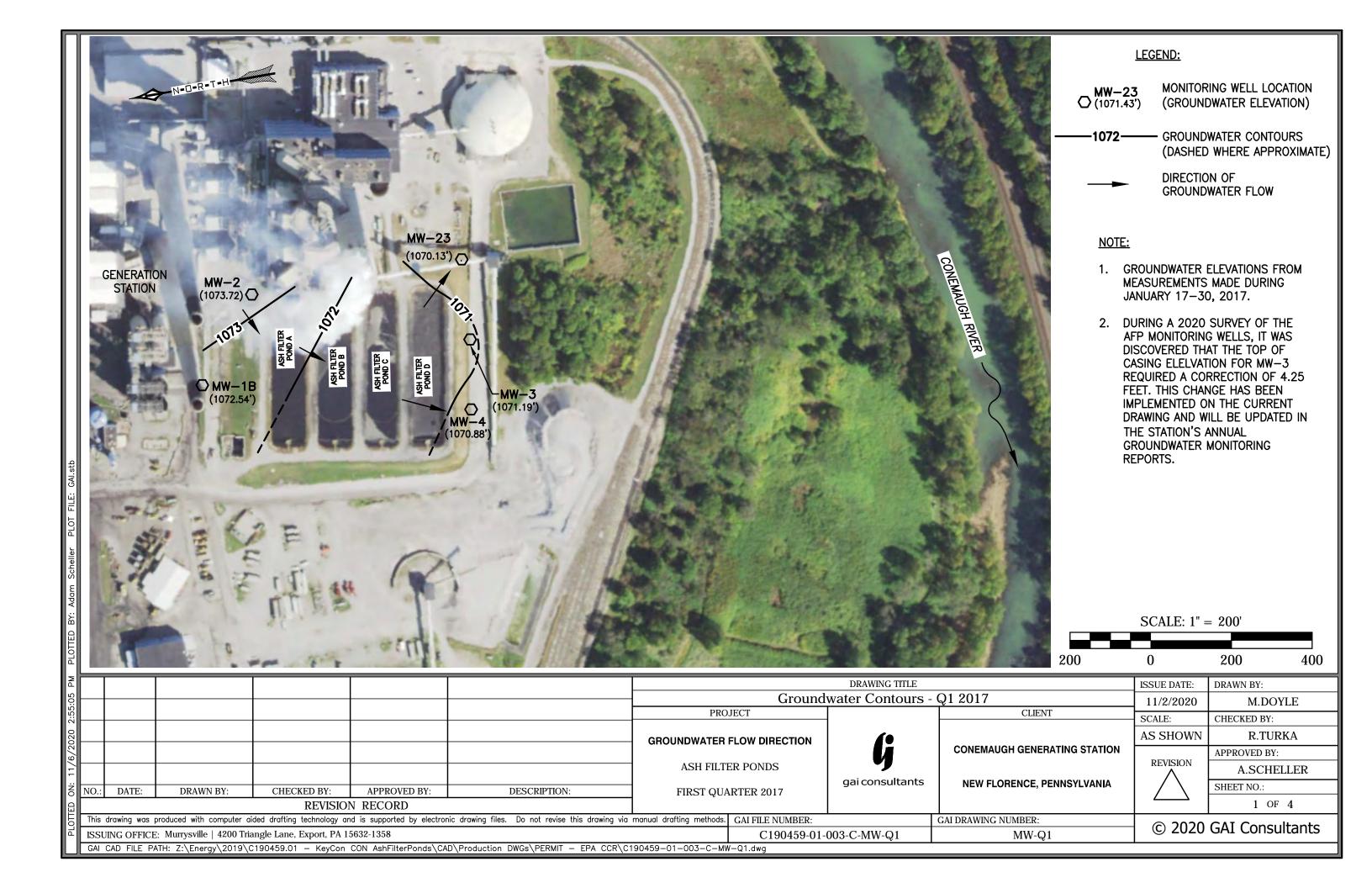
Owner's Certification of Compliance - § 257.71(d)(1)(i)(A)

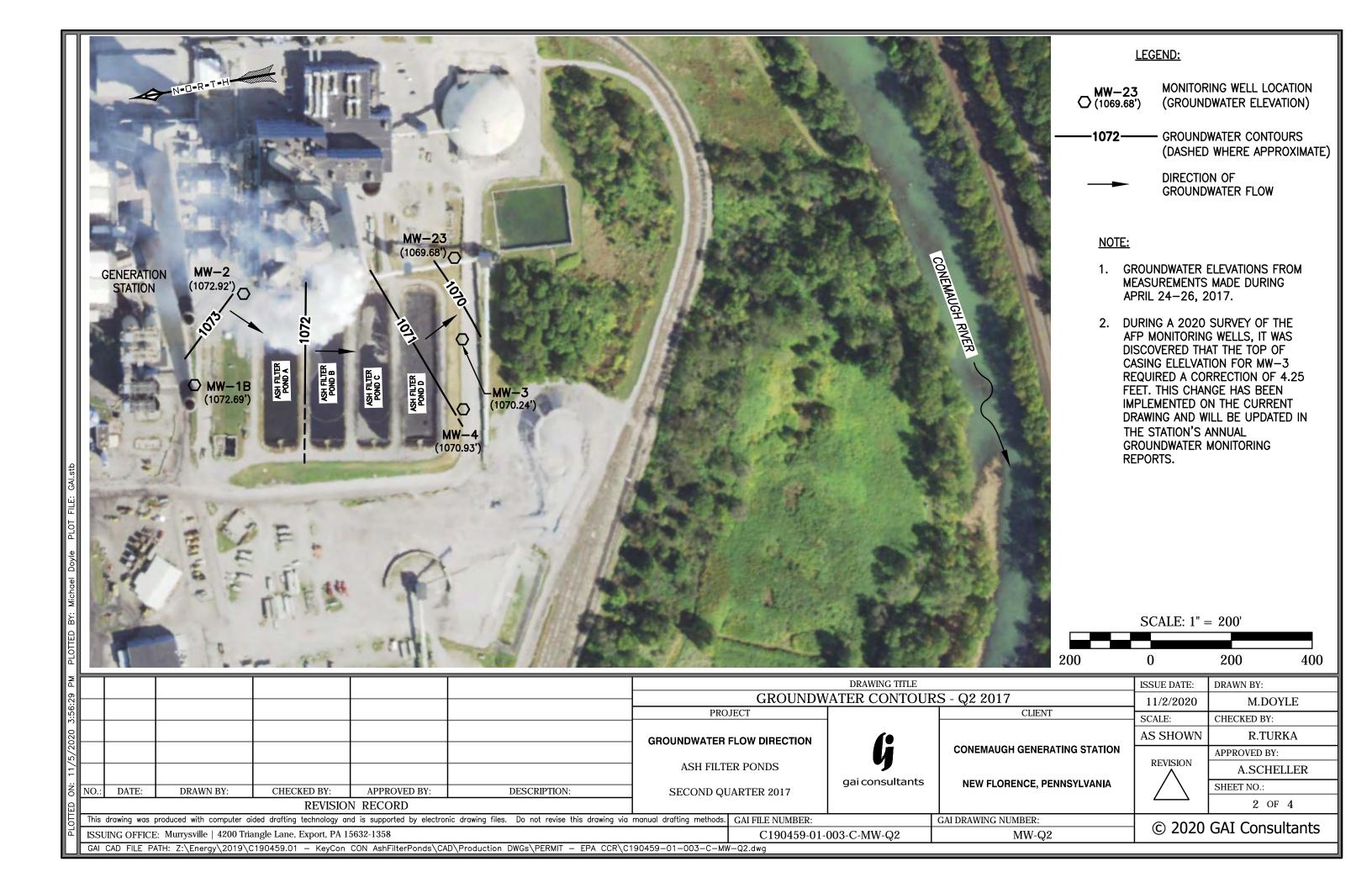
In accordance with 40 C.F.R. § 257.71(d)(1)(i)(A), I hereby certify that, based on my inquiry of those persons who are immediately responsible for compliance with environmental regulations for the Ash Filter Ponds at Conemaugh Generating Station, the facilities are in compliance with all of the requirements contained in 40 C.F.R. Part 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments except for those requirements under § 257.71(a)(1) [related to existing CCR surface impoundments with a composite liner or alternate composite liner]. Conemaugh's CCR compliance website is up-to-date and contains all the necessary documentation and notification postings.

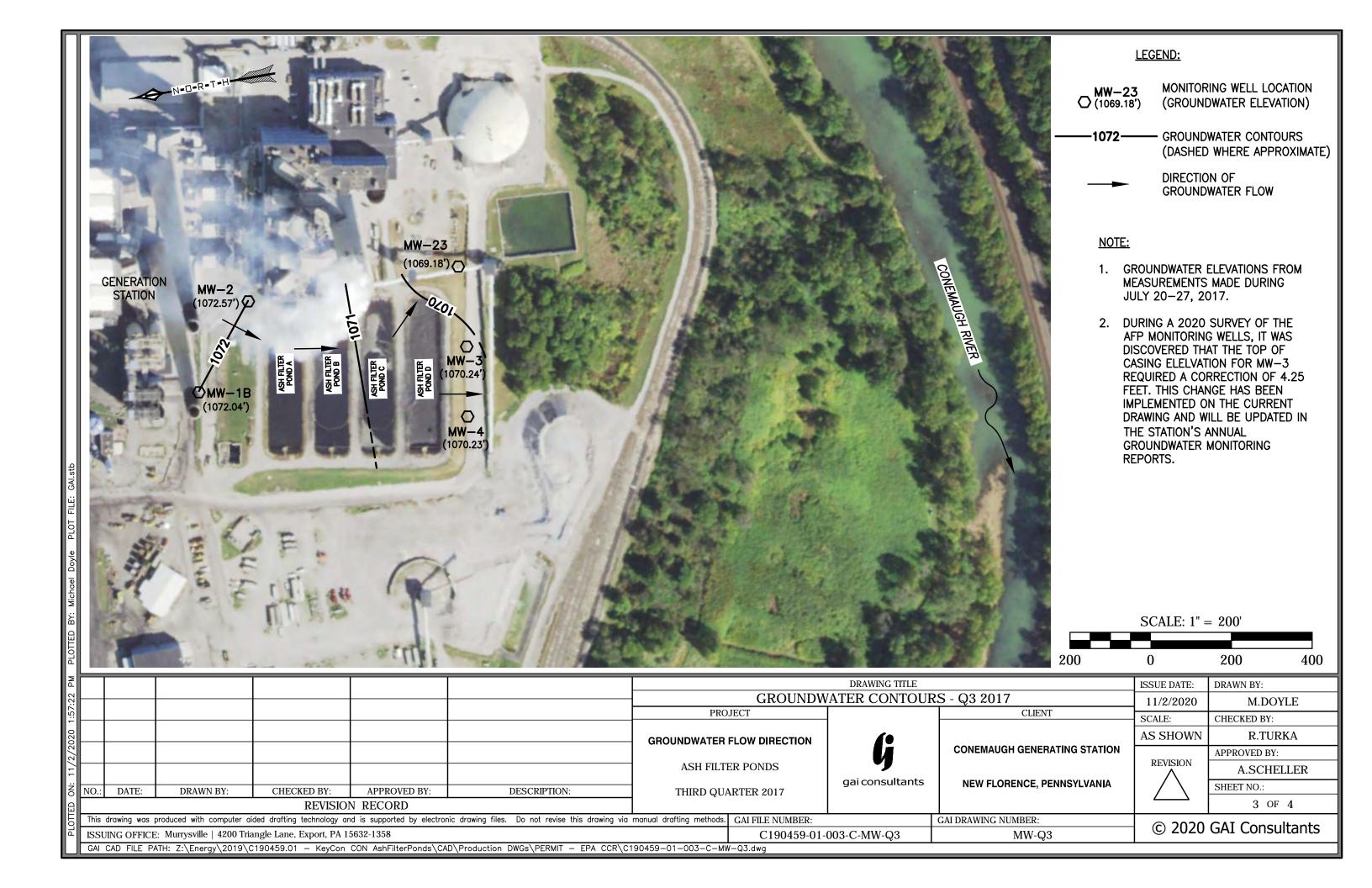
Keystone - Conemaugh Projects, LLC

2 Hunt

Barry J. Hunt


General Manager, Conemaugh Generating Station


12-7-20


December 7, 2020

ATTACHMENT 3	<u>Documentation of Groundwater Monitoring Network per</u> §§ 257.71(d)(1)(i)(B)(1)(i) through (iv)
Attachment 3A	Groundwater Well Location and Contour Maps
Attachment 3B	Well Construction Diagrams and Drilling Logs for Monitoring Network
Attachment 3C	Monitoring Well Installation Specifications, March 1986
Attachment 3D	CCR Groundwater Monitoring System Design Report, October 2017

ATTACHMENT 3A Groundwater Well Location and Contour Maps

ATTACHMENT 3B

Well Construction Diagrams and Drilling Logs for Monitoring Network

Note: MW-1 was replaced by MW-1B in 2003.

GILBERT ASSOCIATES, INC. SOIL AND ROCK CLASSIFICATION SHEET

		SHEET_1 OF4
PROJECT: Ash Filter Ponds	N.O. 04-4479-158 SITE AREA Conemaugh Station	DRILL HOLE NO. MW-1
CONTRACTOR: Penn. Drilling	Co. COORDINATES	ELEVATION
DRILLER: <u>Tom Stewart</u>	·	GWL 0 HRS
CLASSIFIED BY: Yogesh Shah	DATE: <u>5/28,29/</u> 86	24 HRS 15'-7" (6/12/

							DATE: <u>57203251</u> 00					24 HRS 11 -7 107.64
+	No.	į .	PT	1	٠ ن		DESCRIPTION	.S.		Soil O	r Rock	REMARKS Chemical Comp,
Depth Ft.	ple		6 In.	1	Rec.	Profile	Density (or Consistency), Color	U.S.C.	0.D.	Range	Grain	Geologic Data,
Dep	Sample				Ft.	٣	Rock Or Soil Type - Accessories	j	œ	Şize Core	Shape Rec.	Ground Water, Construction Problems,
		6	12	18			" · · · · · · · · · · · · · · · · · · ·	l		Run	Core	etc.
							Gr., clayey silty sand, trace Clay, little gravel (fill)					
_						2'	little gravel (fill)	}				
		3					Red.br., silty sand, trace clay,					
							- IICLIE GLAVEI					1. Augered
							<u>-</u>] :	to 29½'.
<u> </u>							_				١.	2. Airdrilled
10'							_					below 29½'.
							Trace silt below 10'	•		,		3. Used 6" dia
-		١					_ More gravel below 15'	1			}	continuous
							-					flight auger and 5" dia.
-											:	air hammer.
							<u>,</u>					
20'		İ					-		ŀ			
						23']
							-					•
							- Weathered sandstone				!	
							- (brown)					
						}	Ţ ,]	
30'						29½	<u> </u>			İ		
30												
							Gr., silty fine sandy shale					
							or fine grained sandstone				•	
_										→ -		
												4 to 1991 = 1
40							<u>-</u>					
Ĭ							*]
												-
							Hole terminated @ 42½'					
							·					
\vdash							-					
口							-		1]
$\vdash \vdash$							- -	1				
			L			L			<u></u>	<u> </u>	<u></u>	1

SOIL AND ROCK CLASSIFICATION SHEET

PROJECT: Ash Filter Ponds w.o. 04-4479-158 SITE AREA Conemaugh Station

CONTRACTOR: Penn. Drilling Co.

DRILLER: Tom Stewart

CLASSIFIED BY: Yogesh Shah

DATE: 6/11/86

SHEET 2 OF 2

DRILL HOLE NO. MW-1

ELEVATION 1086.7 (GS)

GWL 0 HRS

24 HRS

CLASSIFIE	D BY: Y	oges	sh S	hah DATE: 6/11/86					24 HRS
Depth Ft. Sample No.	S P T Blows/ 6 (n.	Ft. Rec.	Profile	DESCRIPTION Density (or Consistency), Color Rock Or Soil Type - Accessories	u.s.c.ś.	R.Q.D.	Soil On Range Size Core	Grain Shape Rec.	REMARKS Chemical Comp, Geologic Data, Ground Water, Construction Problems, etc.
1 - 1 - 1	5 12 18			Monitoring Well Data: Steel Cover with Lock & Cover El.1089.14 2'-9" 0			Core Run	Rec.	1
				42'-6" Hole					

PROJECT NO. 92-280-71 TASK 8

BORING NO. MW-1B

ELEVATI	ON <u>San</u>		VL 0			<u> </u>	MG STATION MW-1 REPLACEMENT PROJEC		
				HRS		, C. WI			
	" Z						DESCRIPTION		
DEPTH FEET	BLOWS PER SIX INCHES OR CORE RECOVERY/RUN SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY ROD (%)				SOIL DENSITY— CONSISTENCY OR POCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8	9	10
				. . .		GRY/BRN	GRAVEL/LIMESTANE/CINDERS/TOPSOIL		START 9-3-03
						BRN	SAND SILT, AND CLAY (FILL)		
						ļ			
5.υ									WET 05.0FT
-									
			-		- `		Amoust and the sales a project		
							VERY LETTLE REPURN OF CUSTOMS		
10.0			_	l					•
						<u> </u>		 	
				1					
				1					
							LARGE BOULDER (>1 FT. B) TEAR OROP SHAPED		
15.0							WEDGED TWO HOLLOWSTEM AUGERS MAKTNE	1.1	
			_				ORZLLING IMPOSSIBLE, PULL AUGERS OUT OF this		
			<u> </u>			ļ	and using a siedce Drive Rickout of Bit		
			-			 	The boulder is allurial material		· · · · · · · · · · · · · · · · · · ·
	**		<u> </u>	\	<u> </u>		- BOULDERS 14PT to 22 FT.	ļ	- currents ARE A NOS
20.0			├	ł		 			DESATURATED COLOR COLOR
		 -	╁			 		 	+e,xxx 01 4 (180)
			<u> </u>						
			1	1		-	VERY LITTLE REIVEN OF CUTTICNES	 	
ಂಸಧ			\vdash	1			יייייייייייייייייייייייייייייייייייייי	 	
								 	
				1				1	
								<u> </u>	
30.0	L			<u>L</u>	<u> </u>				

*POCKET PENETROMETER READINGS

Bit with AIR.

^{**}METHOD OF ADVANCING AND CLEANING BORING

PROJEC	OT RELI	ANT ENER	GY.	CON	EMAUGH GENE	rating S	STATION MW-I REPLACEMENT P	BOJEC	T NO. 98	-220-71 TASK &
		GV								Mw-1B
				HRS		. WI678				
	7				···		DESCRIPTION	1		
DEPTH FEET	FEET BLOWS PER SIX INCHES OR CORE RECOVERY/RUN SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY ROD (%)				SOIL DENSITY— CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	N	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8		9	10
						BRN	CLAY SOME SFLT AND SAND			
				33.0 [15][E						
<u> </u>	. 550 ps	<u> </u>		71211.8		GRY	SILTSTONE			
35.0			 	1						
720				1						
				1						
				1						
				1						
40.0										
			Ĺ				BOTTOM OF BORING 40.0 FEET			
ļ	<u> </u>		ļ	ł						
<u> </u>			├	-						
<u> </u>	ļ		├-	ł						
45.0	4		├-	1	110 -10 5-	Salla	WELL CONSTRUCTION			715 046505 1465
			 	ł	10-+2.5		PYC 10 SLOT 4"D SCREEN PYC 4"B PERE			AS THE AUGERS WERE WITH DRAWN AND THE JUST
			一	<u> </u>	ANNULUS		SILILA SAND (430 BEST STIZEA)			PACK WAS PLACES TO
				1	(1011-000	8-5	BENTONITE PELLETS (1-BUETET)			RUMPIENG SED ENGINEER THE
	for \$100 and the					5-1	BENTONITE CHIPS			SQUEEZEDINTO THE AMERICO!
]		1-0	CONCRETE			MAKENG PLACEMENT OF
							2 FT x2FT X O.5FT FORM AROUND 6"	Ø		THE FILTER PAde Prefrails
	_	2	L				6'LONG STEEL PROTECTIVE COVER			
ļ			<u> </u>				- Lock FROM MW-1 WILLBE USED AGA	AIN		
	-		 	ļ		ļ				
	 		<u> </u>			ļ			ļ	·
	 		┞	4		 				
			 	1					<u> </u>	
 	1.79		 	1						
L		<u> </u>	<u> </u>	1	<u> </u>	L	<u> </u>		<u> </u>	

*POCKET	PENETROMETER	READINGS

REMARKS SEE SHEET LOF 2

__ PROJECT NO. <u>92-320-3/ Task it</u> BORING NO. ___/1W-1B

^{**}METHOD OF ADVANCING AND CLEANING BORING

SOIL AND ROCK CLASSIFICATION SHEET

SHEET $\frac{1}{}$ OF $\frac{2}{}$ PROJECT: Ash Filter Ponds W.O. 04-4479-158 SITE AREA Conemaugh Station DRILL HOLE NO. ___MW-2 CONTRACTOR: Penn. Drilling Co. COORDINATES ____ DRILLER: Tom Stewart GWL 0 HRS _____ CLASSIFIED BY: Yogesh Shah DATE: 5/29/86 thru 6/9/86

	No.	1	P T		·	6	DESCRIPTION	S.		Soil O	r Rock	REMARKS Chemical Comp.
Depth Ft.	Sample No.		6 In.		Ft. Rec.	Profile	Density (or Consistency), Color	U.S.C.S.	R.Q.D.	Range Size	Grain Shape	Geologic Data, Ground Water,
Dep	San				Ē	ο.	Rock Or Soil Type - Accessories	Ü.	BZ.	Core	Rec.	Construction Problems,
		6	12	18						Run	Core	etc.
10'						12'13'	Brown, clayey silty sand, little to some gravel (v. compact), probably residual. Boulder Same as above 12'.					1. Augered from 0'-12' 2. Airdrilled & augered from 12' to 24'. 3. Airdrilled below 24'.
20' 30'						24!	Highly weathered, brown, shale or sandstone					below 24.
40'						32	Grey, silty fine sandy shale <u>or</u> fine grained sandstone Hole terminated @ 46'	1		-		1

SOIL AND ROCK CLASSIFICATION SHEET

PROJECT: Ash Filter Ponds w.o. 04-4479-158 SITE AREA Conemaugh Station

CONTRACTOR: Penn.Drilling Co. COORDINATES DATE: 6/11/86

CLASSIFIED BY: Yogesh Shah

DATE: 6/11/86

SHEET 2 OF 2

DRILL HOLE NO. MW-2

ELEVATION 1088.9 (GS)

CLASSIF	FIED BY: Yo	oges	sh S	<u>Chah</u> DATE: 6/11/86	:	24 HRS			
Depth Ft. Sample No.	S P T Blows/ 6 In.	Ft. Rec.	Profile	DESCRIPTION Density (or Consistency), Color Rock Or Soil Type - Accessories	R.Q.D.	Soil Or Range Size Core	Grain Shape Rec.	REMARKS Chemical Comp, Geologic Data, Ground Water, Construction Problems, etc.	
	6 12 18			Steel Cover With Lock & Cover El.1091.57 3'-3/4" 2'-8" G-S Fell Grout 5' Bentonite 7' 13' Coarse Sand & Gravel 2" OD PVO Pipe Drill Hole			Run	Core	1. Developed for 1½ hours on 6/11/86. 2. Pump test for 1 hour on 6/12/86.

SOIL AND ROCK CLASSIFICATION SHEET

SHEET $\frac{1}{}$ OF $\frac{2}{}$ PROJECT: Ash Filter Ponds w.o. 04-4479-158 SITE AREA Conemaugh Station ELEVATION 1076.4' CONTRACTOR: Penn. Drilling Co. COORDINATES ____ DRILLER: Tom Stewart

DATE: 6/9, 10/86 CLASSIFIED BY: Yogesh Shah

DRILL HOLE NO. _MW-3_ GWL 0 HRS _____ 24 HRS 5'-8"(6/12/8

												24 nko
t.	No.	F	P T		ڕ٠	6	DESCRIPTION	.5.	٥.	Soil Or		REMARKS Chemical Comp.
Depth Ft.	Sample	l	6 In.		Ft. Rec.	Profile	Density (or Consistency), Color	U.S.C.S.	R.Q.D.	Range Size	Grain Shape	Geologic Data, Ground Water,
De	San				Ü.	д	Rock Or Soil Type - Accessories]	14	Core	Rec.	Construction Problems,
		6	12	18						Run	Core	etc.
10'						9'	Dark brown silty fine to medium sand, trace clay, trace coarse sand & gravel Decomposed, brown sandstone Weathered, brown sandstone Grey shale Hole terminated @ 33'					 Augered to 14'. Airdrilled below 14'.

SOIL AND ROCK CLASSIFICATION SHEET

SHEET__2_ OF __2_ PROJECT: Ash Filter Ponds w.o. 04-4479-158 SITE AREA Conemaugh Station DRILL HOLE NO. MV-3 ELEVATION 1076.4 (GS) CONTRACTOR: Penn. Drilling Co. COORDINATES ____ DRILLER: Tom Stewart GWL 0 HRS

DATE: 6/12/86 CLASSIFIED BY: Yogesh Shah

									·	·····	·	
] ;	Sample No.	1	PT		c.	6	DESCRIPTION	s.		Soil O		REMARKS Chemical Comp,
Depth Ft.	<u>e</u>	i .	6 In.		Ft. Rec.	Profile	Density (or Consistency), Color	U.S.C.S.	R.Q.D.	Range	Grain	Geologic Data,
a.	am		o in.		F.	٦] Si	~:	Size	Shape	Ground Water, Construction Problems,
	ا ~ ا	١.					Rock Or Soil Type - Accessories	l		Core	Rec.	etc.
		6	12	18						Run	Core	eic.
							Steel Cover With Lock & Cover El. 1079.26 3' Cement Grout 5' Bentonite 7' 10' Coarse Sand & Gravel 2" OD PVC Pipe Drill Hole					1. Developed for 2 hours on 6/12/86. 2. Pump test for ½ hour on 6/12/86.

24 HRS _____

SOIL AND ROCK CLASSIFICATION SHEET

SHEET 1 OF 2 PROJECT: Ash Filter Ponds W.O. 04-4479-158 SITE AREA Conemaugh Station DRILL HOLE NO. MW-4 COORDINATES ____ CONTRACTOR: Penn. Drilling Co. DRILLER: Tom Stewart GWL 0 HRS _____ CLASSIFIED BY: Yogesh Shah 24 HRS 4'-73/4" (6/12/ DATE: 6/10, 11/86

							<u> </u>				24 HRS <u>1 7 37 7 1 07 15 -</u>
Depth Ft.	Sample No.	SPT Blows 6 In. 6 12		/	Ft. Rec.	Profile	DESCRIPTION Density (or Consistency), Color Rock Or Soil Type - Accessories	U.S.C.S.	R.Q.D.	Grain Shape Rec.	REMARKS Chemical Comp, Geologic Data, Ground Water, Construction Problems, etc.
30'						23'	Dark brown silty fine to medium sand, trace to little clay, trace coarse sand & gravel Decomposed, brown sandstone Weathered, brown sandstone Grey shale Hole terminated @ 33'				

SOIL AND ROCK CLASSIFICATION SHEET

PROJECT: Ash Filter Ponds w.o. 04-4479-158 SITE AREA Conemaugh Station

CONTRACTOR: Penn. Drilling Co. COORDINATES DRILL HOLE NO. My-4

CLASSIFIED BY: Yogesh Shah

DATE: 6/11/86

SHEET 2 OF 2

DRILL HOLE NO. My-4

ELEVATION 1075.6 (GS)

CWL 0 HRS

24 HRS

CLA	CLASSIFIED BY: Yogesh Shah DATE: 6/11/86								24 HRS				
Depth Ft.	Sample No.	S P T Blows 6 In.		Ft. Rec.	Profile	DESCRIPTION Density (or Consistency), Color Rock Or Soil Type - Accessories			Soil Or Range Size Core	Grain Shape Rec.	REMARKS Chemical Comp, Geologic Data, Ground Water, Construction Problems, etc.		
						Monitoring Well Data: Steel Cover with Lock & Cover El. 1078.21 3'-2" 2'-7%" G-S) Tell Cement Grout 5' Bentonite 7' 10' Coarse Sand & Gravel 2" OD PVC Pipe Drill Hole 33'					 Devleoped for 1½ hours on 6/11/86. Pump test for ½ hour on 6/12/86. 		

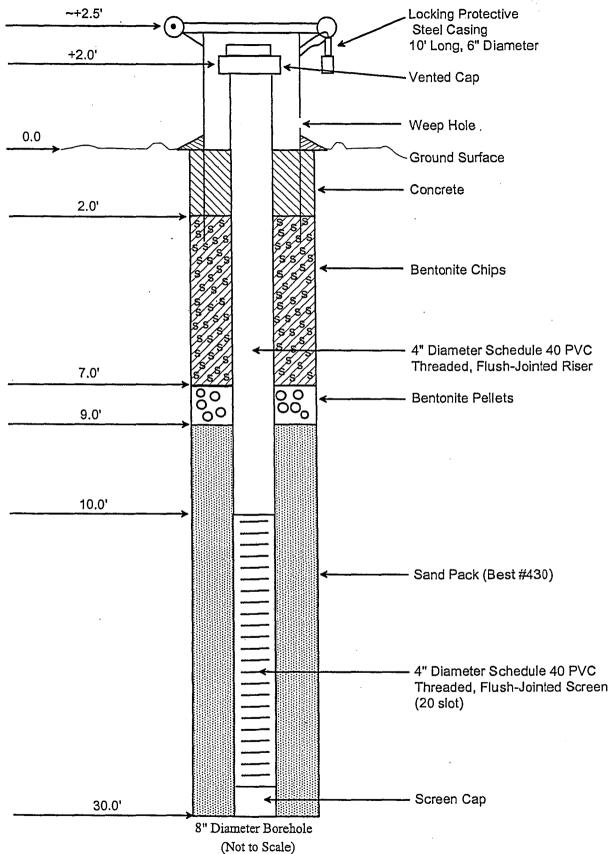
(n	
U	
	CONSULTANTS, INC.

PROJECT GPU CONEMAUGH IMPOUNDMENTS WaMP	22-224 71 19
Thousand the second sec	PROJECT NO. <u>92-220-71-18</u>
ELEVATION GWL 0 HRS	BORING NO
HRS DATE 10-1-98 FIELD ENGINEER S. C. WIGTON	PAGE NO 1 OF 2
	PAGE NO UF 51

	ω _N						DESCRIPTION		
OEPTH .	BLOWS PER SIX INCHES OR CORE RECOVERYRUN	SAMPLE NO., TYPE & RECOVERY/R SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY OR SOIL DENSITY—CONSISTENCY OR OR ROCK HARDNESS COLOR		MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*			
1	2	3	4	5	6	7	8	9	10
						ERN	SAND AND GRAVEL SOME BOULDERS (Fill)		BOULDERS 3"-1"
2.0			Ü				g Deargages (way		BURENG LOCATED IN BACKHO
									TEST + OLE O US TO - G FT
4.0									THEREFORE WILL AUGERA
							(4.5-5.1 Concrete [A.E.[1])		NON-SOMPLED HOLE TO 10"
6.0									
8.0									
10.0									
	33 ₃₃	Os-I			V.STF	GRY/BRN	SANDY CLAY SOME SS FRAGS	CL	55 FRAGS 18 - 314" 0
12.0	3.4	0.6/2.0	-				Traces of ORGANIC MATERIAL (ROOTS ETC.)		Probable original Ground level
14.0				6-7					
	17	05-2			DENSE	ERN	ICLAYEY SAND AND SS FRAGS	SC	SAMPLE MOIST TO WET
160	17 38 39 29	1.0/2.0							
18.0				ł					
- 1	16 27	OS-3							SAMPLE WET
20.0	16 37 24 42	19/2,0							SHALL WEI
22.0			_	1					
F-51.0	32 42	05-4	-	1	DENSE	0041			
24.0	50/5	1,5/2.0		1	NEWSE	Ben.	CLAYFY SAND AND GRAVEL	SC/CL	SAMPLE SATURATED
26.0				•			BOULDER 25- 26 FT)		AUGER REFUGAL 25.0 ROLLEBET PUTIN HOLE.
74			_	-					ADVANCE AUGGET TO 28 FT
28.6			-	28.1 गराह		GRY	SHALE (TOP OF ROCK 38.1)		
30.0				-		(5KT	BUTTON OF BARING 30 FT		

REMARKS"_L.G. HETAGER DRILLING CO	Driller Jim HUPKINS	DRILLTECH	DYOK RIG.	0-25'841	D 14-INCH OD HSA
25-30' 7%" ROLLER BIT					92-220-71-18
*POCKET PENETROMETER READINGS	3			BORING NO	mw-23

[&]quot;METHOD OF ADVANCING AND CLEANING BORING



PROJECT GPA CONEMANCH IMPSUNDMENTS WOMP	PROJECT NO. 92-232-41-18
ELEVATION GWL 0 HRS	BORING NO. mw-23
HRS	50.111/G (10.
DATE 10-2-98 FIELD ENGINEER S. C. WIGTON	PAGE NO2 OF _2

	S NO						DESCRIPTION		
DEPTH + FEET	BLOWS PER SIX INCHES OR CORE RECOVERYRUN	SAMPLE NO., TYPE & RECOVERY OR '% ROCK RECOVERY	RQD (%)	PROFILE	SOIL DENSITY— CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8	9	10
) Al			WELL CONSTRUCTION		
					- 5 ET 20	FT 205	OT SCH 40 PUC SCREEN 30-10		
							10 → +2 FT		
					- 430 BI	57 SIL	CA SAMO 30 FT - 9.0 FT		
	_						LETS 9-7FT		
			_	-			05 7-2 FT		
			_	-	- CONCRE				
				-	- SET 10	FT LONG	Steel Protective Cover IN CONCRETE THE	LER PUTS	30 SAND between fix and Steel
				ŀ	- roved	2×2 -	Yinch trick fal around well		
							LIEU DE DE LE		
-				ŀ	-		WELL DEVELOPMENT		V
				1			- SURGE AND PUMP FOR 2 HOURS		
				ŀ			WATER VERY MUDDY		
				-			- PUMP GETS STUCK IN WELL FOR		
				t			CHOURS HAVE TO GET UPSY-ONISY		
	77			1			- GET PUMP OUT THEN CONFERN THE		
				1			FINISHED DEPTH WITH PLOBE AND		18
				1					
				1	1		- THERE IS SOME 430 PLEST SILLICA		
	1			-			INSILE THE CASING BUT IT CAME FROM	-	
				.			THE SPACE BETWEEN THE STEEL PRITECTIVE		
							AND PVC DURING DEVELOPMENT		
				-			- WELL Affects to BE O.K.		- 1
							MERCHINENS TO KEUIN	-	

REMARKS**	
	PROJECT NO. <u>92-220-71-18</u>
*POCKET PENETROMETER READINGS	BORING NOMW-23

[&]quot;METHOD OF ADVANCING AND CLEANING BORING

MW 23 CONEMAUGH RESIDUAL WASTE IMPOUNDMENTS MONITORING WELL CONSTRUCTION DIAGRAM

ATTACHMENT 3C

Monitoring Well Installation Specifications, March 1986

Note: This document provides record of the specifications for monitoring well installations.

Gilbert/Commonwealth engineers and consultants

GILBERT/COMMONWEALTH, INC., P.O. Box 1498, Reading, PA 19603 / Tel. 215-775-2600 / Cable Gilasoc / Telex 836-431

March 11, 1986

Pennsylvania Electric Company 1001 Broad Street Johnstown, Pennsylvania 15907 MAR 19 REC'D

Attention: J. R. King

Re: Conemaugh Station
Ash Filter Ponds New Monitoring Wells
G/C, Inc. W.O. 04-4479-158
GDE Project No. C0094
Penelec W.O. C344

Dear Jim:

Attached is a sketch and specifications for the installation of four new monitoring wells at Conemaugh Station for the Ash Filter Ponds. It is presently planned to install the wells in late spring or early summer. Based on our telephone conversation in February, it is my understanding that PaDER does not have to preapprove the well installation details. A price for installation of the wells is being obtained from Pennsylvania Drilling Company.

If you have any questions or comments, please contact me.

Very truly yours,

F. G. Nadeau

Project Civil Engineer

H! Augory Nadian

FGN:bmb Attachment

cc: J. L. Greco

F. L. Straw

T. J. Simunich, Jr.

K. W. Eshbaugh (Letter Only)

R. T. Gallus

S. G. Poje

S. T. Worthington (2)

T. P. Wolff

B. L. Dore

J. E. Gritzer (Letter Only)

E. J. Zinn, Jr.

J. F. Wagner

P. K. Shewchuk (Letter Only)

O. G. Boarder (Letter Only)

D. R. Erali/F. G. Nadeau

CONEMAUGH STATION NEW MONITORING WELLS FOR ASH FILTER PONDS

Technical Requirements

- 1. Four new monitoring wells shall be installed at the locations indicated on Drawing No. D-782-023. The two upgradient wells will be approximately 45 feet deep and the two downgradient wells will be approximately 35 feet deep. The exact depth will be determined in the field.
- 2. The wells shall be drilled with air rotary or other approved means. Drilling fluids with Bentonite or "Revert" shall not be used. The wells shall not be contaminated with grease or other deleterious materials.
- 3. Pea gravel for backfill shall be non-calcareous; composed of hard, tough, durable, and uncoated particles; thoroughly cleaned by washing; and be free from clay, silt, vegetation, or other substances determined to be deleterious. It shall meet the following gradation requirements:

Sieve Size <u>U.S. Standard</u>	Percent Passing By Dry Weight
1/2 inch	100
No. 8	0-10

- 4. Bentonite tablets shall be Volclay Tablets as manufactured by American Colloid Company of Skokie, Ilinois or approved equal.
- 5. The riser pipe and screen shall be Schedule 40 PVC pipe flush threaded joints. No glue shall be used to join the sections together.
- 6. The grout mix shall consist of Portland Cement, pulverized Bentonite, and water. Portland Cement shall conform to the requirements of ASTM C150 for Type I Cement. Bentonite shall be equivalent to naturally ocurring Wyoming Bentonite, ground to pass a 200-mesh screen. Water shall be clean and free from oil, acid, organic matter, or other deleterious substances. The water/cement ratio shall be approximately 1:1. All grout shall contain a proportion of pulverized Bentonite equal to four to five percent of the weight of the cement. A smooth slurry shall first be prepared by adding and mixing Bentonite to water. Then the cement shall be added to the slurry. The grout shall be thoroughly mixed to produce a uniform, highly plastic mixture. Grout shall be placed with a hose placed sufficiently down the drill hole so that no segregation of the grout occurs and no voids are left in the space to be grouted. Grout shall be pumped down the hole until it appears at the ground surface.
- 7. The well shall be developed by such methods as will effectively extract from the water bearing formation the maximum practical quantity of sand and other fine materials in order to bring the well to the maximum yield per foot of drawdown and to a clear condition. Compressed air, surge plungers, high velocity setting equipment, and pumps may be used for the development work. This work shall be done in a manner that does not cause undue

settlement and disturbances of the strata above the water bearing formation or disturb the seal around the well casing. Development of the well shall be continued until water pumped from the well at maximum possible rate is clear and free from sand or silt.

- 8. The area shall be cleaned of debris from the drilling operations.
- 9. After well development, a pump test will be performed for each well. A metering device shall be provided to measure the total volume of water evacuated from the well. The pump test will take approximately one to two hours. A bailer may be used instead of a pump.
- 10. The Contractor shall provide the pump or bailer for the tests.
- 11. All drilling and pump tests shall be done under the direction of a G/C, Inc. Engineer or Geologist.

	MADE F. G. NAdeau	GILBERT ASSOCIATES, INC.					
	CHK'D.	ENGINEERS AND CONSULTANTS					
CONEMAUGH - ASH PONDS	BQ. CF.			ING, PENNA.			
TYPICAL DETAIL FOR	CF. DFN,		-				
	ENG.	04-4479-158	and the same		0		
INSTALLATION OF MONITORING WELLS	ENO.	WORK ORDER	DIZE	DRAWING	REV		
	12 3-84	No SCALE			-		

ATTACHMENT 3D

CCR Groundwater Monitoring Network Design Report, October 2017

CCR COMPLIANCE GROUNDWATER MONITORING SYSTEM DESIGN ASH FILTER PONDS AND ASH/REFUSE DISPOSAL SITE

Prepared for:

GenOn Northeast Management Company Conemaugh Generating Station New Florence, Pennsylvania

Prepared by:

Aptim Environmental & Infrastructure, Inc. Pittsburgh, Pennsylvania

October 2017

Table of Contents_____

List of	Tables	iii
List of	Figures	iii
	Appendices	
	sional Engineer's Certification	
1.0	Introduction	1
2.0	CCR Unit Descriptions 2.1 General Descriptions 2.2 Site Geology and Hydrogeology	2
3.0	Groundwater Monitoring Well Systems 3.1 Ash Filter Ponds 3.2 Ash Disposal Site	5 5
4.0	Purging and Sampling Equipment	7
Figures	S	

Appendices

List of Tab	les
Table 1 Table 2 Table 3	Ash Filter Ponds Groundwater Monitoring Well System Ash Disposal Site Groundwater Monitoring Well System Well Depths and Sampling Pump Settings
List of Figu	ıres
3	
Figure 1 Figure 2	Ash Filter Ponds—Location and Groundwater Monitoring System Map Ash/Refuse Disposal Site—Location and Groundwater Monitoring System Map
list of Ann	andiaca
LIST OF APP	pendices
Appendix A Appendix B	Boring Logs and Construction Details—Ash Filter Ponds Groundwater Monitoring Wells Boring Logs and Construction Details—Ash Disposal Site Groundwater Monitoring Wells

Professional Engineer's Certification

In accordance with §257.91(f) of the Rule, I hereby certify, based on a review of the information contained in the "Conemaugh CCR Groundwater Monitoring Network Design Report" (APTIM, October 2017) and other information made available to me, and my knowledge and understanding of accepted hydrogeological principles, that the groundwater monitoring systems associated with the Conemaugh CCR Units are adequate and appropriate. This certification further acknowledges the utilization of the required minimum number of monitoring wells as appropriate for the Conemaugh Ash Disposal Site, and also the adoption of a multiunit monitoring system (per §257.91[d]) for the Ash Filter Ponds. The construction and orientation of the respective groundwater monitoring systems is sufficient to satisfy the performance standards outlined in §257.91(a)(1-2) of the Rule.

Certified by: __

Richard Southorn, P.E., P.G., CPSWQ

Professional Engineer Registration No. PE 085411 Aptim Environmental & Infrastructure, Inc.

Date: <u>10/9/17</u>

1.0 Introduction

Title 40 Code of Federal Regulations §257.91 requires owners or operators of Coal Combustion Residuals (CCR) landfills and surface impoundments, also known as CCR units, to implement a groundwater monitoring system. These requirements are part of the overall CCR Rule (or Rule) which was published in the Federal Register on April 17, 2015 and which became effective on October 19, 2015. The referenced groundwater monitoring system for each defined CCR unit must consist of a sufficient number of wells (minimum of one upgradient and three downgradient per §257.91[c][1]). Moreover, and per the performance standards outlined in §257.91(a)(1-2), these wells must be installed at appropriate locations to provide an accurate characterization of background groundwater quality and to be capable of accurately representing the quality of groundwater passing the downgradient boundary of the CCR unit. The overall groundwater monitoring system's ability to satisfy these elements of the Rule must be documented and certified by a registered professional engineer in accordance with §257.91(f).

The Conemaugh Generating Station (Station), operated by GenOn Northeast Management Company, is a coal-fired power plant located in New Florence, Pennsylvania. The Rule applies to this facility due to the management/disposal of CCR materials that are generated from the combustion of coal. CCR units associated with Station operations include the Conemaugh Ash/Refuse Disposal Site and four Ash Filter Ponds (Ponds "A," "B," "C," and "D") used for the management of bottom ash. Each of these CCR units has a dedicated groundwater monitoring system that was originally installed to comply with Commonwealth of Pennsylvania Residual Waste Regulations, and was subsequently evaluated and modified (as needed) for use under the CCR program. Additionally, in accordance with the provisions of §257.91(d) of the Rule, the groundwater monitoring system for the Ash Filter Ponds has been designated to provide coverage in the context of a multiunit system encompassing all four ponds collectively.

This certification has been prepared to comply with the requirements of §257.91(f), addressing the adequacy and ability of the groundwater monitoring systems to satisfy the performance standards mandated by §257.91(a)(1-2) of the Rule. This Certification will be placed in the Station's operating record per §257.105(h)(3), noticed to the State Director per §257.106(h)(2), and posted to the publicly accessible internet site per §257.107(h)(2).

2.0 CCR Unit Descriptions

2.1 General Descriptions

Ash Filter Ponds

As noted above, four ash filter ponds are utilized to manage bottom ash at the Station. These four ponds are located within the Station proper, are situated immediately adjacent to one another, and are designated from north to south as Bottom Ash Filter Recycle Pond "A" and Bottom Ash Filter Ponds "B," "C," and "D" (see attached Figure 1). Each pond is approximately 405 feet long by 90 feet wide as measured at the crest and has an average depth of approximately 11 feet as measured from the crest to the top of the protective bottom ash layer. The crest elevation is approximately 1,092.0 feet above mean sea level (msl) and the elevation of the top of the protective bottom ash layer ranges from approximately 1,084.6 feet msl on the eastern end of each pond to approximately 1,083.0 feet msl on the western end.

Conemaugh Station Ash/Refuse Disposal Site

The Conemaugh Station Ash/Refuse Disposal Site (Ash Disposal Site) is a valley fill located north of the Station proper. The Ash Disposal Site consists of three stages, including Stage I (closed), Stage II (currently active), and Stage III (permitted expansion currently under construction). The location of the Ash Disposal Site is shown on Figure 2. Stage I occupies approximately 160 acres within the northernmost reaches of the valley and was brought online in 1970. Stage I was constructed as an unlined facility and was subsequently closed in 1987. Stage II (brought online in 1985) is presently maintained as the active disposal area and utilizes a single liner comprised of a 50-mil polyvinyl chloride (PVC) geomembrane with an accompanying leachate collection and detection system. Stage II occupies approximately 120 acres, and its northern side overlies the outslope of the Stage I disposal area (piggy-backs over Stage I); it extends approximately 2,000 feet southward into the valley from its interface with Stage I. Stage III will occupy an area of approximately 110 acres, will piggy-back over the Stage II disposal area, and will extend southward 2,100 feet where its outslope will terminate approximately 600 feet north of the existing Ash Disposal Site Surge Pond. The permit modification for Stage III was issued by the Pennsylvania Department of Environmental Protection on August 26, 2015.

2.2 Site Geology and Hydrogeology

Ash Filter Ponds

The ponds are underlain by recent alluvium that was deposited by the Conemaugh River. The alluvium typically ranges from 20 to 25 feet thick but can extend to depths as great as 32 feet below ground surface (bgs). The alluvium directly overlies shale and siltstone bedrock and is comprised of clayey sand to sandy clay that extends from the ground surface to depths ranging from 12 to 18 feet bgs. The alluvial materials become coarser grained with increasing depth and

grade into silty sand and sand and gravel near the upper bedrock surface. Groundwater beneath the Ash Filter Ponds resides within the alluvium. This water-bearing zone further represents the uppermost aquifer in this area and exists in an unconfined condition. Groundwater flow is topographically controlled and flows toward the Conemaugh River which is the naturally occurring groundwater discharge zone in the area of the Ash Filter Ponds. Groundwater flowing from upgradient of the Ash Filter Ponds will pass beneath the CCR unit and through the areas in which the downgradient monitoring wells are located.

Ash Disposal Site

The Ash Disposal Site is underlain by rocks of the lower part of the Casselman Formation and the entire Glenshaw Formation, both of which comprise the Conemaugh Group of the Pennsylvanian System. The Conemaugh Group is typically in the range of 650 to 700 feet thick in the area of New Florence, Pennsylvania, and is comprised of interbedded sandstone, siltstone, shale, and claystone. The Casselman Formation, which is the uppermost formation in the Conemaugh Group, is approximately 350 feet thick and extends from the top of the Pittsburgh Limestone member (at the top of the formation) to the top of the Ames Limestone (at the bottom of the formation). In the area of the Ash Disposal Site, the hilltops are underlain by the Birmingham Shale, which lies near the bottom of the Casselman Formation. The Glenshaw Formation underlies the Casselman Formation and is approximately 300 to 350 feet thick. It is comprised of interbedded sandstone, siltstone, shale, and claystone. Claystone beds occurring in the Glenshaw Formation are important units because they commonly act as aquitards and aquicludes between groundwater-bearing units in sandstone and siltstone beds.

Four thin marine limestone beds are present in the Glenshaw Formation including Ames, Woods Run, Pine Creek, and Brush Creek. The Ames Limestone is the stratigraphically highest limestone bed in the Glenshaw Formation, while the Brush Creek Limestone is the stratigraphically lowest marine limestone bed in the Glenshaw Group. The importance of the marine limestone beds is that they are key marker beds that allow for determining stratigraphic position within the Glenshaw Formation. Economically unimportant coal beds, typically only a few inches thick, are also present within the Glenshaw Formation.

The only significant groundwater-bearing unit within the Casselman Formation in the area of the Ash Disposal Site is likely the Birmingham Shale, which underlies the hilltops to the east, south, and west of the Ash Disposal Site. In the Glenshaw Formation, significant groundwater-bearing units commonly include the Saltsburg Sandstone, Buffalo Sandstone, and Mahoning Sandstone. The Mahoning Sandstone is the basal member of the Glenshaw Formation. Minimal amounts of groundwater can also exist within the limestone, shale, siltstone, and thin coal beds.

The Allegheny Group underlies the Conemaugh Group. It is approximately 350 feet thick and is comprised largely of interbedded sandstone, siltstone, and claystone with some minor limestone beds. The Allegheny Group contains several economically important coal seams, including the Upper Freeport Coal (uppermost unit of the Allegheny Group), the Lower Freeport Coal, and the Lower Kittanning Coal. Portions of these seams have been mined in the area of the Ash Disposal Site. The Upper Kittanning and Middle Kittanning Coal seams are also present but are not considered to be important economic resources in the area of the Ash Disposal Site. Prominent near-surface hydrostratigraphic units in the Allegheny Group include the Butler Sandstone (located between the Upper and Lower Freeport coal seams) and the Freeport Sandstone (located between the Lower Freeport and Upper Kittanning coal seams).

The uppermost aquifer unit underlying the Ash Disposal Site exists in an unconfined condition near the soil/bedrock interface or in bedrock where the soil has been removed by past earthmoving activities at the site. Groundwater flow is topographically controlled and flows from north to south in the area of the Ash Disposal Site. Groundwater flowing from upgradient of the Ash Disposal Site will pass beneath the CCR unit and through the areas in which the downgradient monitoring wells are located.

3.0 Groundwater Monitoring Well Systems

The groundwater monitoring well systems for the Ash Filter Ponds and the Ash Disposal Site meet the requirements of §257.91 with respect to number and locations of wells and with respect to monitoring the same hydrostratigraphic interval. Provided below are tables showing details for the groundwater monitoring well systems for each of these CCR units.

3.1 Ash Filter Ponds

The groundwater monitoring system for the Ash Filter Ponds is comprised of five wells, including Wells MW-1B and MW-2 (upgradient), and Wells MW-3, MW-4, and MW-23 (downgradient). All five wells communicate with the alluvium, which is the uppermost aquifer. The locations of the groundwater monitoring wells are shown on Figure 1, along with depiction of the generalized groundwater flow direction in the area of the ponds. Installation details and boring logs for the wells are contained in Appendix A of this document, with pertinent information summarized in Table 1.

Monitoring Well No.	Hydraulic Position	Casing Diameter (inches/material)	Ground Surface Elevation (feet msl)	Top of PVC Casing Elevation (feet msl)	Well Depth (feet bgs)	Top/Bottom Elevations of Screened Interval (feet msl)
MW-1B	Upgradient	2-inch PVC	1,086.89	1,089.49	39.5	1,077.39 / 1,047.39
MW-2	Upgradient	2-inch PVC	1,088.90	1091.57	46.0	1,075.90/1,045.90
MW-3	Downgradient	2-inch PVC	1,079.05	1,079.39	30.0	1,069.05 / 1,049.05
MW-4	Downgradient	2-inch PVC	1,077.18	1,080.03	30.0	1,067.16 / 1,047.16
MW-23	Downgradient	4-inch PVC	1,084.51	1,085.93	30.0	1,074.51 / 1,054.51

Table 1: Ash Filter Ponds Groundwater Monitoring Well System

3.2 Ash Disposal Site

The groundwater monitoring system for the Ash Disposal Site is comprised of four wells, including Well MW-31 (upgradient) and Wells MW-9, MW-10, and MW-11 (downgradient). Monitoring Wells MW-9 and MW-11 communicate with the shallow unconfined groundwater in bedrock and Monitoring Wells MW-10 and MW-31 communicate with shallow groundwater across the soil/bedrock interface. Hence, all four wells monitor the uppermost aquifer in the area of the Ash Disposal Site. The locations of the groundwater monitoring wells are shown on Figure 2, along with depiction of the generalized groundwater flow direction in the area of the landfill. Boring logs and installation details for the wells are contained in Appendix B of this document, with pertinent information summarized in Table 2.

Table 2: Ash Disposal Site Groundwater Monitoring Well System

Monitoring Well No.	Hydraulic Position	Casing Diameter (inches/ material)	Ground Surface Elevation (feet msl)	Top of PVC Casing Elevation (feet msl)	Well Depth (feet bgs)	Top/Bottom Elevations of Screened Interval (feet msl)
MW-31	Upgradient	4-inch PVC	1,475.96	1,477.94	57.8	1,443.46 / 1,418.46
MW-9	Downgradient	4-inch PVC	1,140.73	1,142.87	110	1,080.73 / 1,030.73
MW-10	Downgradient	4-inch PVC	1,128.24	1,129.76	50.2	1,123.04 / 1,078.04
MW-11	Downgradient	4-inch PVC	1,126.21	1,128.18	110	1,111.21 / 1,016.21

4.0 Purging and Sampling Equipment

To support the collection of representative groundwater samples from each of the monitoring wells, the low-flow method has been adopted and utilized for sampling at both of the Conemaugh CCR units, and will remain in place for all subsequent Detection Monitoring activities, and Assessment Monitoring activities (if necessary). The low-flow method is documented and accepted by the U.S. Environmental Protection Agency, and allows for purging/sampling of groundwater such that laminar flow (non-turbulent) conditions are maintained with corresponding minimal or no drawdown in the well. This, in turn, promotes continuous or near-continuous groundwater recharge of the well from the surrounding formation, and ensures that the subsequently collected samples are representative of fresh formation waters. Low-flow sampling can be performed using either dedicated or portable sampling equipment.

For the Ash Filter Ponds, a combination of dedicated pumps and portable equipment is employed to conduct the CCR sampling efforts. For Wells MW-1B, MW-3, and MW-23, dedicated air-operated bladder pumps (manufactured by Geotech Environmental Equipment, Inc.) have been installed. Due to slight deformation in the near-surface casing of Wells MW-2 and MW-4 (which does not affect the integrity of the wells), a portable peristaltic pump is used for sample collection. For the Ash Disposal Site, all four wells have been equipped with dedicated air-operated bladder pumps. Each of the dedicated pump intakes is set so that sediment from the bottom of the wells or stagnant water from the tops of the water columns is not drawn in during the groundwater purging/sampling. Table 3 provides a summary of the monitoring wells depths, the depths to the dedicated pump intakes, and the heights of the water column above the pump intakes (this information is based on actual field measurements).

Table 3: Well Depths and Sampling Pump Settings

Monitoring Well	Location	Measured Total Depth (feet below top of casing)	Depth to Pump Intake (feet below top of casing)	Nominal Height of Water Column above Pump Intake (feet)
MW-1B	Ash Filter Ponds	41.95	38	19.2
MW-2	Ash Filter Ponds	44.63	N/A	N/A
MW-3	Ash Filter Ponds	27.50	24	9.2
MW-4	Ash Filter Ponds	32.65	N/A	N/A
MW-23	Ash Filter Ponds	32.03	29	10.4
MW-9	Ash Disposal Site	116.17	108	67.9
MW-10	Ash Disposal Site	50.10	47	19.2
MW-11	Ash Disposal Site	110.6	106	79.7
MW-31	Ash Disposal Site	59.85	55	12.2

MW-1B UPGRADIENT (1072.69) MW-2 UPGRADIENT ASH FILTER POND A ASH FILTER POND B ASH FILTER POND C ASH FILTER POND D MW-4
DOWNGRADIENT
(1070.93) MW-3
DOWNGRADIENT
(1067.09) MW-23 DOWNGRADIENT 222

LEGEND:

MW-3 (1067.09 CCR GROUNDWATER
MONITORING WELL WITH
GROUNDWATER ELEVATION
MEASURED ON APRIL 25, 2017

GROUNDWATER FLOW DIRECTION

REFERENCE:

GOOGLE AERIAL PHOTOGRAPH, DATED 10/2015.

500 Penn Center Boulevard, Suite 1000 Pittsburgh, Pennsylvania 15235

FIGURE 1 CCR COMPLIANCE GROUNDWATER MONITORING WELL LOCATION MAP ASH FILTER PONDS

CONEMAUGH GENERATING STATION INDIANA COUNTY, PENNSYLVANIA

O:\PROJECT\1009144003_Conemaugh\1009144003-B5.dwg Date/Time: Sep 13, 2017 - 6:24am ed By: greg.jones

File: Plot

1009144003-B5

LEGEND:

♦ MW-9 **CCR GROUNDWATER** MONITORING WELL WITH **GROUNDWATER ELEVATION MEASURED ON APRIL 12 AND**

13, 2017

GROUNDWATER FLOW DIRECTION

500 Penn Center Boulevard, Suite 1000 Pittsburgh, Pennsylvania 15235

FIGURE 2
CCR COMPLIANCE GROUNDWATER
MONITORING WELL LOCATION MAP
ASH/REFUSE DISPOSAL SITE CONEMAUGH GENERATING STATION INDIANA COUNTY, PENNSYLVANIA

File:

REFERENCE:

GOOGLE AERIAL PHOTOGRAPH, DATED 10/2015.

Appendix A

Boring Logs and Construction Details— Ash Filter Ponds Groundwater Monitoring Wells

PROJECT RELIANT	ENERGY CONEMAY	64 GENERALING STATION	MW-1 REFLICENCE PROJECT NO.	12-22-717	71 X2 PY
ELEVATION SAME AT	GWL 0 HRS		BORING NO.	MW-1B	
DATE 9-43-43	HRS	S. C. WIGHA	PAGE NO.	OF 6	2

	ωŠ						DESCRIPTION	1 - 1	
DEPTH FEET	BLOWS PER SIX INCHES OR CORE RECOVERY/RUN SAMPLE NO., TYPE & RECOVERY OR		RQD (%)	PROFILE	SOIL DENSITY— CONSISTENCY OR POCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8	9	10
						GRY/BEN	GRAVEL/LIMESTINE/ CINDERS/ TOPSALL		START 9-3-03
				1.4		BRN	SAND SILT, AND CLAY (FILL)		Cimir Pist
		200 10 34						1	
								74	10.8
5.0									WET @ 5.0FT
			2					-	
							Amari — Of subsequence		
				1			VERY LETTLE REGIEN OF CUSTINSS	-	
10.0				1					
									L harden
- 4								-	
							LARGE BOWLDER (>1 PT. 0) TEAR OR OF SHAPER		
15.0	_		_	1			WEDGED TWO HOLLOWSTEM AUGERS MAKENE	191	
			_				DAZLITHE IMPOSSIBLE, PULL MUGERS OUT OF this		
	_		-	1			AND USING A SLEDGE DRIVE RICK OUT OF BET	-	4.
	-		_	1			The bauller is alluvial material		
	11.1	1000	-	1		-	- BOULDERS 14PT to AN FT.		- CUTTENES ARE A NYSTY
20.0			-	1		-		+	OF Smuleten
			-					-	terminal distant
-			-						· ·
				1			VERY LATTLE RETVEN OF CHITENES	1	
02C				1			The second of carpage		
				1					
				1					
				1					(
30.0							8		

REMARKS**	DRILLTECH	DHOK	L.G. HETAGER	DRILLENG GMAANY	0-32 Fee	CY I.D. HOLLING	STEM QUEERS.	32-401	the G"TREGON	E Frank
Bit with Arg.							PROJEC	T NO	92-220-7	1 TASK 1
							BODING			

^{*}POCKET PENETROMETER READINGS

^{**}METHOD OF ADVANCING AND CLEANING BORING

PROJECT RELIANT	ENERGY CONEMAUGH	GENERATING STATION	MW-1 REPLACEMENT	PROJECT NO. 94-	3 12117 1F- OCC
ELEVATION	GWL 0 HRS		29	BORING NO/	nw-1B
DATE <u>9-3-03</u>	HRS _ CLASSIFIED BY _	S.C. WIGTON		PAGE NO.	_OF_2

	ω N						DESCRIPTION		
PEPTH FEET BLOWS PER SIX INCHE	BLOWS PER SIX INCHES OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	ROD (%)	PROFILE	SOIL DENSITY— CONSISTENCY OR POCK HARDNESS	согов	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8	9	10
						BRN	CLAY SOME, SELT AND SAND		
	M			20.0 750k		GRY	SILTSTONE		
35.0									
40.0									
							BOTTOM OF BURING YOU FEET		
45.0							WELL CONSTRUCTION		
45.0				1	40-10 Fr	Sch 40	PVC 10 SLOT 4"P SCREEN		AS THE AWGEES WETE
			-	1	10-+2.5	Sch 40	Pre 4"B Pale		WITH DAWN AND THE JUST
			-	1	ANNULUS	40-8	SELICA SAND (430 BEST STECA)	1	PACK WAS PLACE THE
				1	1	8-5	BENTONITE PELLETS (1-Busker)		RUMPIENS STEP SPECIAL THE
	(except)	1. 0			V	5-1	BENTONITE CHIPS		SQUEEZEDT NTO THE ANNIVER!
						1-0	Carclete		MAKENE PLACEMEN OF
	10						- 2 Ft 13Ft XO.5FT FORM AROUND 6"B		THE FALTER PARE POSTLAN
		7					6' Lang Steel Protective Carel		
							- Lock FR.m MW-1 WILLBE USED AGAIN		
			E						
	0.00		E	-					

REMARKS** SEE SHEET LOF J	
	PROJECT NO. 93-320-7

PROJECT NO. <u>98-320-31 Task in</u> BORING NO. <u>AW-1B</u>

^{*}POCKET PENETROMETER READINGS

^{**}METHOD OF ADVANCING AND CLEANING BORING

Monitoring Well Design SOIL AND ROCK CLASSIFICATION SHEET

OJECT: Ash Filter Ponds w.o. 04-4479-158 SITE AREA Conemaugh Station

CONTRACTOR: Penn.Drilling Co.

DRILLER: Tom Stewart

ELEVATION __ 1088.9 (GS) GWL 0 HRS _____

CLASSIFIED BY: Yogesh Shah DATE: 6/11/86								24 HRS
S P T Blows/ 6 In. 6 12 18	Ft. Rec.	Profile	DESCRIPTION Density (or Consistency), Color Rock Or Soil Type - Accessories	U.S.C.S.	R.Q.D.	Soil Or Range Sixe Core	Grain Shape Rec.	REMARKS Chemical Comp, Geologic Data, Ground Water, Construction Problems, etc.
			Monitoring Well Data: MW-2 Steel Cover With Lock & Cover EL1091.57 3'-3/4" 2'-8" G-S. Grout 5' Bentonite 7' Coarse Sand & Gravel				1. Developed for 1½ hours on 6/11/86. 2. Pump test for 1 hour on 6/12/86.	

monitoring Well Design SOIL AND ROCK CLASSIFICATION SHEET

PROJECT: Ash Filter Ponds W.O. 04-4479-158 SITE AREA Conemaugh Station

CONTRACTOR: Penn. Drilling Co.

DRILLER: Tom Stewart

CLASSIFIED BY: Yogesh Shab

DATE: 6/12/86

24 HRS

2	SPT'	ď		DESCRIPTION	S.		Soil Or Rock		REMARKS Chemical Comp,	
Somple No.	6 In.	Ft. Rec.	Profile	Density (or Consistancy), Color	U.S.C.S.	R.Q.D.	Range Size	Groin Shape	Geologic Dota, Ground Water,	
3 3	- 1		-	Rock Or Sall Type - Accessories	7		Core	Rec.	Construction Problems,	
	6 12 18						Run	Core		
				Monitoring Well Data: MW-3 Steel Cover With Lock & Cover El. 1079.26 2'-10" G-S Cement Grout 5' Bentonite 7' 10' Coarse Sand & Gravel 2" OD PV Pipe Pipe 30' 30' 30' 30' 30' 30' 30' 30' 30' 30					1. Developed for 2 hour on 6/12/86 2. Pump test for 1/2 hour on 6/12/86	

Monitoring Well Design SOIL AND ROCK CLASSIFICATION SHEET

PROJECT: Ash Filter Ponds W.O. 04-4479-158 SITE AREA Conemaugh Station

CONTRACTOR: Penn. Drilling Co.

DRILLER: Tom Stewart

CLASSIFIED BY: Yogesh Shah

DATE: 6/11/86

ELEVATION 1075.6 (CS)
GWL 0 HRS

24 HRS ____

i.	š.	SPT Blows/ g a DESCRIPTION					,	Soil Or Rock		REMARKS Chemical Camp,		
Depth Ft. Sample No.		ó In.	FI. Rec.	Profile	Density (or Consistency), Color	U.S.C.S.	R.O.D.	Ronge Size	Grain Shape	Geologic Data, Ground Water,		
۵	3		-	-	Rock Or Sail Type - Accessories	-		Core	Roc.	Construction Problems, etc.		
		6 12 18						Run	Core			
		6 12 18			Monitoring Well Data: MW-4 Steel Cover El. 1078.21 2'-74" G-S. Cement Grout Bentonite 7' 10' Screen Coarse Sand & Gravel 2" GD PV Pipe 30' Solve of Solve o			Run	Core	1. Devleoped for 1½ hour on 6/11/86. 2. Pump test for ½ hour on 6/12/86		

N 384879.38 E 1634491.13 Top & PUC 1085.93

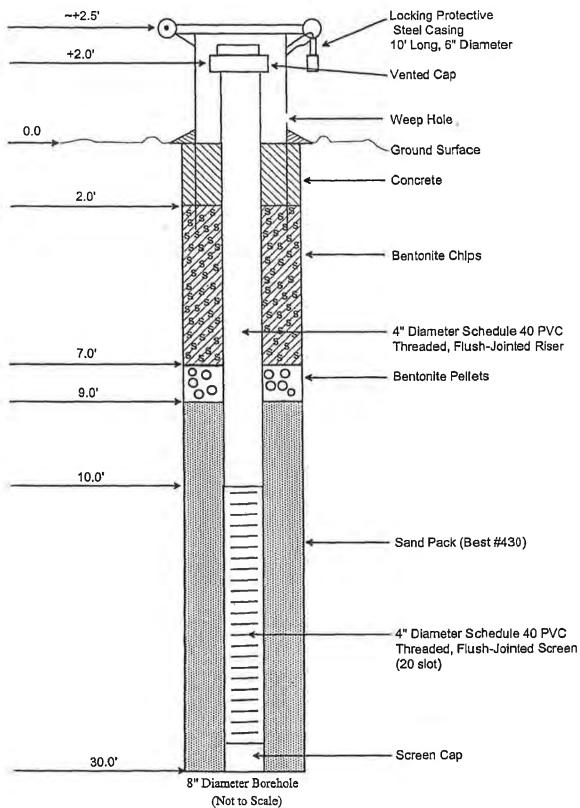
PROJECT GPU CONEMAUGH IMPOUNDMENTS WAMP	PROJECT NO. 92-220-7/-/8
FI EVATION 1089.51 GWI O HRS	BORING NO. MW-23
HRS 10/98 1068-35 DATE 10-1-98 FIELD ENGINEER S. C. WIGTON	PAGE NO. 1 OF 2

	ωŠ	- 1	i i	_			DESCRIPTION		V
DEPTH FEET	BLOWS PER SIX INCHES OR CORE RECOVERY/RUN	SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	ROD (%) PROFILE		SOIL DENSITY— CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS*
1	2	3	4	5	6	7	8	9	10
	7					BRN	SAND AND GRAVEL SOME BOULDERS (FIII)		COULDERS 3" - 1' 0
2.0									BORZUG LOCATED IN BACKHO
									TEST HOLE OUS TO - 5 FT
4.0									THEREFORE WELL MUGER A
							(4.5-5.1 Concrete [A.E.] II)		NON-SAMPLED HOLE TO 19
6.0									
8.0									
			_			-			
0.0	79	-	_	1		-			
	335	OS-I	_		V.STF	GRY/BRN	SANDY CLAY SUME SS FRAGS	CL	S. FRAGS 18 - 3/4" 0
12.0	33 ₃₂	0.6/2.0					Traces of ORGANIC MATERIAL (ROOTS ETC.)		Probable orkginal Ground leve
14.0									
	13	05-2		1	DENSE	BRN	ICLAYET SAND AND SS FRAGS	SC	SAMPLE MOSST TO WET
16.0	39	1.0/2.0							
18.0									
	37	OS-3							SAMPLE WET
20.0	16 37 74 42	13/20	-		•	*			
22.0									
	32 36 42	05-4			DENSE	BEN.	CLAYEY SAND AND GRAVEL	SC/CL	SAMPLE SATURATED
24.0	9/5	1.5/2.0					27.107		
2.2									Auger Refriga 25.6 Roll Elist
26.0							(But Dec 25-26 PT)		PUTIN HOLE.
		15-11-6							MOVANCE AUGUSTO DE ET
28.5			-	21.I		0.01	(70		
30.0			-	The same		GRY	SHATLE (TOP OF EOCK 28.1) BUTTON OF BORTANG 30 FT	-	

IEMARKS" L.G. HETMEER DRILLING GO Drille	JIM HUPKENS DRELLTECH	DHOK RIG. 0-25 841	D 14-INCH OD HSA
25-30' 7 %" ROLLER BET.		PROJECT NO.	92-220-71-18
*POOVET BENETPONETER READINGS		BORING NO.	mw-23
*POCKET PENETROMETER READINGS			

[,]

^{**}METHOD OF ADVANCING AND CLEANING BORING


PROJECT GPA CONEMAKEN TEMPOUNDMENTS WOMP	PROJECT NO. 92-220-21-18	
ELEVATION GWL 0 HRS	BORING NO	**
HRS DATE 10-2-98 FIELD ENGINEER 5. C. WIGON	PAGE NO. 2 OF 2	

DEPTH FEET BLOWS PER SIX INCHES OR CORE RECOVERY/RUN SAMPLE NO, TYPE &							DESCRIPTION		
		SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	RQD(%)	PROFILE	SOIL DENSITY— CONSISTENCY OR POCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR ROCK BROKENNESS	REMARKS'
1	2	3	4	5	6	7	В	9	10
							WELL CONSTRUCTION		
100					- SET 20	PT 205	OT SCH 40 PUL SCEREN 30-10		*
							10++2 FT		all puc pipe 4" 0
							CA SAND 30 ET - 9.0 ET		
							WETS 9-7 Fr		
							ps 7-2 FT		
		-0.0			- Concet			-	
					- 5 ET 10	Fr Love	Steel Protection cover IN CONCRETE DA	LER PHTS	\$ 30 SAND between I Wast Ster
					- Povred	2'x2'-	4 inch thick fad a round well		
			-				WELL DEUGLOPMENT		
							- SURGE AND PUMP FOR 2 HOURS		
							WATER YELY MUDDY		
							- PUMP GETS STUCK IN WELL FOR		
							6 HOURS HAVE TO GET UPSY - DAISY		
-: 1							PUMP PULLER TO REMOVE		
							- SET PUMP OUT THEN CONFORM THE		
	•		_				FINISHED DEPTH WITH PROBE AND		
							TREMMIE PLA		
			_				- THERE IS SOME 430 REST STUTCA		
-							ENSTRE THE CASON BUT IT CAME FROM		
							THE SPACE BETWEEN THE STEEL PRITECTIVE		
15							AND PUC DURENT DEVELOPMENT		
							- WELL APPEARS TO BE O.K.		
			-						-
			-						

EMARKS**	
	PROJECT NO. <u>92-220-71-18</u>
	POPING NO MW-23

^{*}POCKET PENETROMETER READINGS

^{**}METHOD OF ADVANCING AND CLEANING BORING

MW 23 CONEMAUGH RESIDUAL WASTE IMPOUNDMENTS MONITORING WELL CONSTRUCTION DIAGRAM

Appendix B

Boring Logs and Construction Details— Ash Disposal Site Groundwater Monitoring Wells

Sheet | of 2 I.D. Number 30087.6

Borehole Number:	MW-9		Drilling Method: Air Rotary Rig (Truck Mounted)
Surface Elevation (Ft		(ft)	Date Drilled: 8/3/92 (mm/dd/yy
	10 inches, From		Drilled By: L.G. Hetager
	77/8 inches, From	20 TO 110	Drillers License Number: 1728
Total Depth:	110.0	(ft)	Logged By: John B. Chapman
Depth to Static Groun	nd Water Level (SWL):	41.92 (ft)	County: Indiana
Date SWL Measured:	07/06/95	(mm/dd/yy)	Township or Municipality: West Wheatfield
Depth Lithologia Dane	Ground	Samples	

rth t)	Lithologic Description	Plot	Ground Water* Observations	No.	ples Rec**	Comments	Weil/Piezo	ometer Construction	De (F
-	Silty Sand, medium orange						$\begin{array}{c} \wedge \rightarrow \\ c \rightarrow \end{array}$	В	
	- medium brown								Jo
	orange brown								
1	Sandy Siltstone		-			Top of Rock at 20'			2
1	Sandstone, Light brain								
0	— mediun gray		32.0 ————————————————————————————————————						3.
,			41.92 (7/6/95)	-1-					٠ ٢
	Shaley Dark pray				ļ	Sonie Clay Streaks			
9	Sardy Shale, medium gray					¥			E
	Sandstone, medium gray								-

Sheet 2 of 2 1.0. Number 300876

Surface Elevation (FVMSL): III+0-73 (ft) Borehole Diameter: to Inches, From 0 To 20 7/19 inches, From 20 To 10 Depth to Static Ground Water Level (SWL): (ft) Date SWL Measured: (mm/dd/y) Pepth of Surface Swall Measured: (mm/dd/y) Pepth (static Ground Water Level (SWL): (ft) Date SWL Measured: (mm/dd/y) Pepth (black of Bark of Measured) Pepth (Swall of Bark of Measured) Samplet (Comments Wellprizameter Construction Pept) Pepth (Swall of Bark of Measured) Samplet (Comments Wellprizameter Construction Pept) Samplet (Comments Wellprizameter Construction Pept) Pepth (Swall of Bark of Measured) Pe		ole Number: MW		1077			Drilling Method:	Air Rotary Rig (Truck Mour	ited)
Total Depth: 110.0 (ft) Depth to Static Ground Water Level (SWL): (ft) Date SWL Measured: (middlyy) Pepth (h) Lithologic Description Plot Water) Samples Comments Well/Plezometer Construction Popth (Ft) Find of Soring at 110 ft. 2 (Ft) Find of Soring at 110 ft. 2 (Ft) Find of Soring at 110 ft. 2 (Ft) Find of Soring at 110 ft. 2 (Ft) Find of Soring at 110 ft. 2 (Ft) Find of Soring at 110 ft. 2 (Ft) Find of Soring at 110 ft. 2 (Ft)					O T		rt) Date Drilled: _8/3	3/92 (mm/d	ld/yy)
Total Depth: 110.0 (ft) Depth to Static Ground Water Level (SWL): (ft) Date SWL Measured: (mm/ddyy) Depth (ft) Lithologic Description Plot Ground Samples (ft) Comments Well/Piezometer Construction Depth (Pri) Socially shale, madium 31.79 Socially shale, madium 31.79 Socially shale, madium 31.79 Socially shale, madium 31.79 To Shale, placek Description Plot Ground Samples (ft) To Socially shale, madium 31.79 To Social shale, placek Description No. Sect Streaks 32.79 To Social shale, placek Description No. Sect Streaks 32.79 To Social shale sh	DOICHE						Hetager		
Depth to Static Ground Water Level (SWL): Obtate SWL Measured: (mm/dd/yy) Township or Municipality:Nest_Wipe at field Depth (Fi) Lithologic Description Plot Ground Water No. Rect No. Rect Observations No. Rect Observat	Total D	enth: 110	O	s, rioni o				nber: 11d8	
Date SWI. Measured:				el (SWI)			to Logged By: 1.K	o. Chapman	
Darth (ri) Lithologic Description Plot Ground Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Well/Plezometer Construction Observations Flow Rect Comments Flow Rect Comme	Date S								
Sandy shale, medium gray 80 Shale, Devianing Sandstone, Light Gray Shale, Block Dark Gray —Trace Coal Streaks —Reth Gray					0.00		1) LOWINITE OF MINING	ipality: West Wheattield	
Sondy Shale, Median To Sondy Shale, Median Sondstrone, Light Gray Shale, Black Dark Gray Trace Coal Streeks [10] [10] [10] [10] [10] [10] [10]	(Ft)	Lithologic Description	Plot	Water* Observations	No.	Rec**	Comments	Well/Piezameter Construction	Depth (Ft)
Sandy shale, medium gray 80 Shale, Dark Groun Sandstrine, Light Gray And Anticology That Coal Streaks -Trace Coal Streaks -Trace Coal Streaks -Trace Coal Streaks -Trace Coal Streaks -Trace Coal Streaks -Trace Coal Streaks							lid in		-
gray 80 Shale, Buckaray Sandstring, Light Gray Trace Coal Streeks 100 100 100 End of Boring at 110 ft. 9 110	-60-	Sandy shale, medium			-			1	-60 -
80 Shale, Dark Grow Sandstone, Light Gry Thata Coal Streaks -Thata Coal Streaks -Thata Gray -Thata Gray -Thata Gray -Thata Gray -Thata Gray -Thata Coal Streaks								1 116	
80 Shale, Dark Grow Sandstone, Light Gry Thata Coal Streaks -Thata Coal Streaks -Thata Gray -Thata Gray -Thata Gray -Thata Gray -Thata Gray -Thata Coal Streaks	_		i						-
80 Shale, Dark Grow Sandstone, Light Gry Thata Coal Streaks -Thata Coal Streaks -Thata Gray -Thata Gray -Thata Gray -Thata Gray -Thata Gray -Thata Coal Streaks			1	*************					-
80 Shale, Dark Grow Sandstone, Light Gry Thata Coal Streaks -Thata Coal Streaks -Thata Gray -Thata Gray -Thata Gray -Thata Gray -Thata Gray -Thata Coal Streaks			1 1	1	1 6			- H	3,4
Shale, Block Dark (sray) -100 End of Boring at 110 ft. 7	70								D
Shale, Block Dark (sray) -100 End of Boring at 110 ft. 7							V.		10 —
Shale, Block Dark (sray) -100 End of Boring at 110 ft. 7	-		i	b					-
Shale, Block Dark (sray) -100 End of Boring at 110 ft. 7	- 1								
Shale, Block Dark (sray) -100 End of Boring at 110 ft. 7	-		1	44					
Shale, Block Dark (sray) -100 End of Boring at 110 ft. 7			1						
Shale, Block - Dark Gray	-80			140					80 -
Dark Gray — Reck Gray — ID End of Boring at 110 ft. >	4	Sandstone, Light Gro	ų.						
Dark Gray — Reck Gray — ID End of Boring at 110 ft. >	-								:
Dark Gray — Reck Gray — ID End of Boring at 110 ft. >	-					*******	***************************************	†·····································	-
Dark Gray — Reck Gray — ID End of Boring at 110 ft. >			1						
Dark Gray — Reck Gray — ID End of Boring at 110 ft. >	90				1 8				
- 100 End of Boring at 110ft.		Shale, Black-	1						do
-100 End of Boring at 110ft. J		Dark Gray	1				-Trace Coal Streaks		
End of Boring at 110ft.	_	- Dark Gray	ļ		l				4
End of Boring at 110ft.									
End of Boring at 110ft.									
End of Boring at 110ft.	-100		1				(A.)		100 -
End of Boring at 110ft. J							-		100
End of Boring at 110ft. J	-					-			
End of Boring at 110ft. J	-	*******************************						ļ	_
End of Boring at 110ft. J		1							
End of Boring at 110ft. J		1		Y- X				I	
	- 110-						End of Boring at 110ft. J	1.1	110 -
1775								1	
1775									
1775	-7	·	1	*************	T	********			-
1775							7 3		
1775	_1a0								
* ▼ Encountered Ground Water ▼ Composite Static Water Level			*					8	-
		* ☐ Encountered (Groun	d Water	▼ Cor	nposit	e Static Water Level	** Recovered/Attempted	-

Sheet of 1.D. Number 30087.6

Borehole Number: $MW - IO$	Drilling Method: Air Hammer (Truck Mounte
Surface Elevation (Ft/MSL): 1/28.24 (ft)	Date Drilled: 0/23-24/89 (mm/dd/
Borehole Diameter: 10 inches, From 0 To 8.4	Drilled By: Pennsylvania Drilling Company
8 inches, From 8.4 To 50.3	Drillers License Number: 0406
Total Depth: <u>50.3</u> (ft)	Logged By: J.E. Bonetti
Depth to Static Ground Water Level (SWL):	County: Indiana
Date SWL Measured: <u>07/12/95</u> (mm/dd/yy)	Township or Municipality: West Wheatfield

epth (Ft)	Lithologic Description	Plat	Ground Water* Observations	No.	Rec**	Comments	Well/Piezometer Construction	De (F
0-							J-3 B	
	Clay and Sandstone Fragme Brown	nts,				Medium stiff and Hard	k	
T	Clay, Light gray and Red				ļ	medium stiff to stiff	₩ E	3
_	- Blue to Dark Gray					stiff to very stiff. Top of Rock at 8.4		
נ	Sandstone, Green and Brown					medium soft to medium Hard - Few shale Seams	-6	16
	- Gray and Brown				ļ	medium Hard		
0	J		Y			2		2
	Silty Claystone, Darl gray and gray					medium soft to medium Hand .	30.3	Į.
			210 (7/12/5					
0			31.0					3
					ł			
40								4
	siltstone, gray					medium Hard		
	Sandstone, gray					-Few carbonaceour shale seams medium Hard		
SO.								
						End of Boring at 50.3 Ft. 1	Well scr set act	ee

,c								4

Sheet | of 2 1.0. Number 300876

		er: <u>MW</u>					Drilling Method:	Air R	Rotaru	
Surfac	e Elevatio	on (Ft/MSL): _		126.21		(ft) Date Drilled: 117			/dd/yy
oreh	ole Diame	eter: 8	nche	s, From	0 1	10 110	Drilled By: L.G.			dd, yy,
		i i	inche:	s, From		Го	Drillers License Nun	nber:	1728	270
	Depth: _		.0			(ft) Logged By: N.S			
Depth	to Static	Ground Wate	er Lev	el (SWL):	26.3	25 (ft) County: Indian			
Date S	WL Meas	ured:oʻ	7/06/	195	(m	m/dd/y	ry) Township or Munic		Most Whatfield	
Depth (Ft)								ipanty	VVP31 VVNEG171EIA	
(Ft)	Litholog	ic Description	Plot	Ground Water* Observations	No.	Rec**	Comments	Well/Pie:	zometer Construction	Depti (Ft)
								Α-) · · ·	
- 0	Topsoil	Sondatone Fragon			-		77831	-	1 1	-0-
	Flyash,		its			l ' 0		M -	> ← D	
							SOFT .			
				************		†·····				
	1							10 8		
-10	Sand ston	e, Brown	-				Top of Rock at 9.0'			
11		l Grawn	i				medium soft to medium Hard	E-		10 -
							-some shale seams	F	HH	
3.1					l	1				1
	gray			10102102000		1	medium Hard.	1		
								1		1
-20	1								- G	
	Silty Clas	stone, gray	-				medium soft to medium Hard			a0 -
- 4			1 1							1
1			I	************	l	L			- + - +	+
				3			-	T		-
			1	(7/6/95)						
30								ł		30 _
			1	33.0		10	€			1 30 -
								1		
			ļ		ļ	Į		1		
	1		1				2	ASSESS VALUE		
		- 3								
-40										40 -
			1							1,
	Siltstone	gray					some thin carbonaceous shale			1
•	sands.t	ned gray				ļ	medium Hard	ļ	<u> </u>	
							medium Hard	75		
			1		7.5		A			
- 50			1					1		50 -
	· · · ·	!					1.1.	1		
	Silty S	hale, gray					medium soft			
•		·····	ļ		ļ	ļ		<u> </u>		
		<u> </u>								1
	Siltston	e, gray					medium Hard			
-60-	1	V								160-
	又 E	ncountered C	roun	d Water	▼ Co	mposit	e Static Water Level	** Rec	overed/Attempted	
									m . mt mmit teamter bingig	

Surfac	e Elevation (Ft/MSL): _ ole Diameter: _ g	inche	26.21 es, From	0_1		Drilling Method: Date Drilled: 11/4 Drilled By: L-G.	4-5/93 (mm/c	dd/yy)
Depth	Depth:	er Le		26.0	ro(; (; (; m/dd/y	Drillers License Num ft) Logged By: N.S. ft) County: Indian	ber: 1728 Slater	
Depth (Ft)	Lithologic Description	Plot	Ground Water* Observations	No.	Rec**	Comments	Well/Piezometer Construction	Depth (Ft)
60-	Siltstone, gray					Medium Hard Some Shale		-60 -
70	silty sandstone, gray						H	Jo —
80					********	***************************************		80
90	Shale, green - gray					Soft.	200 000 000 000 000 000 000 000 000 000	90 _
	Calcareous Shale, gran					medium Soff		loo
-	Collegraphs, Shake, Black.							_ 110 _
<u>8</u>				· · · · · · · · · · · · · · · · · · ·		End of Boring at 110 Ft.	J	
	* 又 Encountered (Grou	nd Water	¥ Co	mposit	e Static Water Level	** Recovered/Attempted	las -

Drilling Log

Monitoring Well MW-31

Page: 1 of 2

							rage. 1 or 2
Project _/			enerating Statio	n CCR	_ Ow		COMMENTS
Location	New Florer					Proj. No. 1009144001	
Surface Elev. 1475.96 ft. Total Hole Depth 57.5 ft.						North East	
Top of Casing 1477.94 ft. Water Level Initial 46.					46.2 ft		
Screen: Dia 4 in. Length 25 ft.						Type/Size Schedule 40 PVC/0.010 in.	
Casing: Dia	4 in.		Length 35 ft			Type Schedule 40 PVC	
Fill Materia	Hole Plu	ıg			Rig	/Core Versa Drill	
Drill Co.	Duncan Bro	others D	rilling, Inc. Met	hod Air	Rotary		
	ave Powell			in Moore			
Checked B	V			License	e No.		
			1	11			
	5		의율 불 2	٥	ass	Description	
Depth (ft.)	Vell	PID (ppm)		Graphic Log	Ö		
	Well Completion	1 1 11	Sample ID % Recovery Blow Count Recovery	້ອ	USCS Class.	(Color, Texture, Structi	
			8, 2		2	Geologic Descriptions are Based	on the USCS.
- 0 -				2000		Dedukerone Oll TV CAND (4 il) MITH	ODA)/EL . =====
					SM	Dark brown SILTY SAND (topsoil) WITH (sandstone cobbles and boulders (colluviur	GRAVEL; gravel as large
- 2 -					J	·	
						Yellowish brown SANDY CLAY WITH GR	AVEL; some silt; gravel as
1						large sandstone cobbles and boulders; mo brown at 6.5 feet bgs.	oist; becoming darker
4 -						blowii at 0.0 leet bgs.	
-							
- 6 -					CLS		
- 8 -							
	W 10						
- 10 -						Dark brown SILTY CLAY WITH SAND; so	ome gravel; moist.
7 7							
- 12 -							
- 9	a 8						
- 14 -							
4.0					CL		
– 16 –					ML		
7							
18 –							
-							
20 -							
20							
22 –						Yellowish brown SANDY SILT; some grave	el; moist; hard gravelly
5						layer around 32.5 feet bgs.	
}							
-							
26 -					MLS		
20							
28 –							
New T							
30 -	ral Look			6.1.47		Continued Next Page	
51			III-	II.	11	Continuos Next rage	

Drilling Log

Monitoring Well **MW-31**

Page: 2 of 2

Project NRG Conemaugh Generating Station CCR Owner NRG

Location New Florence, PA Proj. No. 1009144001

Depth (ft.)	Well	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
30 -	[83] [85]					_	Continued
32 -							
34 -						MLS	
36 -							
38 -							
¥							Dark brown/gray SANDY SILT; softer than above; wet.
40 -						MLS	
42 -							
44 -							Gray weathered CLAYSTONE bedrock.
46 ⊻							Dark gray to black CLAYSTONE bedrock; harder; competent.
48 –							Dark gray to black OLATOTONE bedrock, harder, competent.
50							
52 –							
54 -							
56 -							
58 -							
60 -							
62 -							
64 -							
66 -							
1 OF							
68 -							
70 –							

ATTACHMENT 4	<u>Documentation that AFPs Remain in Detection Monitoring per</u> § 257.71(d)(1)(i)(B)(2)
Attachment 4A	Statistical Method for Groundwater Data Evaluation Report, October 2017
Attachment 4B	Statement of Recent Statistical Methods Conducted
Attachment 4C	Groundwater Monitoring and Corrective Action Annual Report, Calendar Year 2017
Attachment 4D	Groundwater Monitoring and Corrective Action Annual Report, Calendar Year 2018
Attachment 4E	Groundwater Monitoring and Corrective Action Annual Report, Calendar Year 2019
Attachment 4F	Preliminary Groundwater Monitoring and Statistical Analyses for Calendar Year 2020
Attachment 4G	Cobalt Characterization and Associated Groundwater Evaluation – Summary of Findings, December 2020

Note: Attachment 4D contains an Alternate Source Demonstration, which was completed

in April 2018 for use in the Groundwater Monitoring and Corrective Action Annual Report for the 2018 Calendar Year and referenced in the Report for the 2019

Calendar Year (Attachment 4E).

Mr. Andrew Wheeler, Administrator, US EPA December 2020

ATTACHMENT 4A

Statistical Method for Groundwater Data Evaluation Report, October 2017

CCR COMPLIANCE STATISTICAL METHOD FOR GROUNDWATER DATA EVALUATION ASH FILTER PONDS AND ASH/REFUSE DISPOSAL SITE

Prepared for:

GenOn Northeast Management Company Conemaugh Generating Station New Florence, Pennsylvania

Prepared by:

Aptim Environmental & Infrastructure, Inc. Pittsburgh, Pennsylvania

October 2017

Table of Contents_____

List of	Figures		iii								
1.0	Introduction										
2.0	Statistical Med 2.1 Establis 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6	thod Selection and Background Data Evaluation shment of Background Groundwater Values Outlier Testing. Spatial Variability Analysis Temporal Variability Analysis Determination of Data Distribution Managing Non-Detects Parametric and Non-Parametric Evaluations 2.1.6.1 Parametric Evaluation 2.1.6.2 Non-Parametric Evaluation	4 5 5 7 7								
3.0	3.1 Detecti	Assessment Monitoringon Monitoring	.10								
4.0	Professional E	Engineer's Certification	.12								
5.0	References		.13								
Figure	S										

List of Figures	

Figure 1 Figure 2

Ash Filter Ponds—Location and Groundwater Monitoring System Map Ash/Refuse Disposal Site—Location and Groundwater Monitoring System Map

1.0 Introduction

Title 40 Code of Federal Regulations §257.91 requires the owner or operator of Coal Combustion Residuals (CCR) landfills and surface impoundments, also known as CCR units, to implement a groundwater monitoring system. These requirements are part of the overall CCR Rule (or Rule) which was published in the Federal Register on April 17, 2015 and which became effective on October 19, 2015. The referenced groundwater monitoring system for each defined CCR unit must consist of a sufficient number of wells (minimum one upgradient and three downgradient) installed at appropriate locations to accurately determine background groundwater quality and also to accurately represent the quality of groundwater passing the boundary of the CCR unit.

Further, §257.93(a) of the Rule requires that a groundwater sampling and analysis program be established to include consistent procedures to ensure that the monitoring results accurately represent the quality of groundwater at the upgradient and downgradient wells. In addition, §257.93(f) also requires selection of a statistical method for use in determining if a statistically significant increase over background concentrations in groundwater has occurred at one or more of the downgradient monitoring well locations. Candidate statistical methods are outlined in §257.93(f)(1-5) and corresponding performance standards (dependent upon the method selected) are specified in §257.93(g)(1-6). Lastly, §257.93(f)(6) requires the owner or operator of the CCR unit to obtain a certification from a professional engineer stating that the selected statistical method is appropriate for evaluating the groundwater monitoring data for the CCR management area. The certification must include a narrative description of the statistical method selected.

The Conemaugh Generating Station, operated by GenOn Northeast Management Company, is a coal-fired power plant located in New Florence, Pennsylvania. The Rule applies to this facility due to the management/disposal of CCR materials that are generated from the combustion of coal. CCR units associated with station operations include the Conemaugh Ash/Refuse Disposal Site and four Ash Filter Ponds (Ponds "A", "B", "C", and "D") used for the management of bottom ash. Each of these CCR units has a dedicated groundwater monitoring well network that meets the requirements of §257.91 with regard to number and appropriate locations of wells (certification provided under separate cover). Additionally and in accordance with the provisions of §257.91(d) of the Rule, the monitoring network for the Ash Filter Ponds has been established to provide coverage in the context of a multiunit system, encompassing all four ponds (Ponds "A," "B," "C," and "D") collectively.

This Certification has been prepared to comply with the requirements of §257.93(f)(6), addressing the statistical method selection for both of the CCR units at the station. This Certification will be placed in the Conemaugh facility's operating record per §257.105(h)(4), noticed to the State Director per §257.106(h)(3), and posted to the publicly accessible internet site per §257.107(h)(3).

2.0 Statistical Method Selection and Background Data Evaluation

As previously noted, each of the station's CCR units has a dedicated groundwater monitoring system, represented by at least one upgradient/background well and a minimum of three downgradient wells. Specific to the Ash Filter Ponds and as shown on Figure 1, the groundwater monitoring system includes upgradient wells MW-1B and MW-2, and downgradient wells MW-3, MW-4, and MW-23. Specific to the Ash/Refuse Disposal Site and as shown on Figure 2, the groundwater monitoring system is represented by upgradient well MW-31 and downgradient wells MW-9, MW-10 and MW-11. The Ash/Refuse Disposal Site is a valley fill located north of the Station proper, and consists of three stages, including Stage I (closed), Stage II (currently active), and Stage III (permitted expansion currently under construction).

Choosing an appropriate statistical method is paramount in developing a sound and defensible groundwater monitoring program. As such, the statistical method should be commensurate with knowledge of the basic site-specific characteristics such as number and configuration of wells, the water quality constituents being measured, and general hydrology. The method should also be selected with reference to the statistical characteristics of the monitored parameters such as proportion of non-detects, type of concentration distribution (e.g., normal, lognormal) and presence or absence of spatial variability.

For both CCR units at the Conemaugh Station, an interwell prediction limit approach has been selected. In addition to being one of the candidate methods cited under §257.93(f)(1-5), the interwell prediction limit method is among those recommended in U.S. EPA's (EPA) Unified Guidance document ("Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities," March 2009). This guidance document was developed in order to assist the EPA and the regulated community in testing and evaluating groundwater monitoring data under 40 CFR §258, §264, and §265 (relating to solid waste and hazardous waste management facilities).

The prediction limit approach is flexible and conforms to varying data distributions, frequencies of non-detects, and whether or not the data exhibit a significant trend. Parametric tests are used for those datasets which follow a known and identifiable distribution, with the most common examples in groundwater monitoring being the normal and the lognormal. If a specific distribution cannot be determined, non-parametric test methods can be used. Non-parametric tests do not require a known statistical distribution and can be helpful when the data contain a substantial proportion of non-detects.

Prediction limits are generally easy to construct and have a straightforward interpretation. Only background values are used to construct a concentration-based prediction limit, which is then compared to one or more future observations from a compliance point population (e.g.,

downgradient compliance wells). For purposes of detection monitoring (§257.94 of the Rule) and potential assessment monitoring (§257.95 of the Rule) and as is typical, a one-sided upper prediction limit will be constructed from the background data. A noted exception is pH which will also have a lower-prediction limit, essentially creating a range of values deemed representative of background. Specific to the Conemaugh CCR units and further detailed below, separate prediction limits will be constructed for the Ash Filter Ponds and the Ash/Refuse Disposal Site, covering each of the relevant Appendix III and IV constituents.

2.1 Establishment of Background Groundwater Values

Based on the groundwater data collected from each upgradient well (corresponding to the minimum eight required rounds of sampling per §257.94[b]), prediction limits of background for each CCR unit will be established for the constituents listed in Appendices III and IV, as follows:

Appendix III	Appendix IV
Total Boron	Total Antimony
Total Calcium	Total Arsenic
Chloride	Total Barium
Fluoride	Total Beryllium
Total Dissolved Solids	Total Cadmium
Sulfate	Total Chromium
рН	Total Cobalt
	Fluoride
	Total Lead
	Total Lithium
	Total Mercury
	Total Molybdenum
	Total Selenium
	Total Thallium
	Radium 226 + 228

2.1.1 Outlier Testing

Prior to use in establishment of the prediction limits, the background datasets (on a constituent by constituent basis) will be evaluated for potential outliers. However, in this regard, EPA's Unified Guidance recommends that statistical outliers should not be removed or altered unless independent evidence of an error exists. Accordingly, if evidence of an error is found to exist, these points will be removed from the dataset prior to calculation of the prediction limits.

2.1.2 Spatial Variability Analysis

Spatial variability in groundwater monitoring is generally understood to be present when the mean levels of a given constituent vary from one well to the next. For situations in which more than one upgradient well exists (such is the case for the Conemaugh Ash Filter Ponds), the data from these wells will be reviewed for evidence of statistically significant spatial variability based on an Analysis of Variance (ANOVA) test. If significant spatial variation is identified, consideration may be given to modification of the approach, including potential transition to an intrawell method for future comparisons at the compliance wells (assuming that it can be established convincingly that they have not been impacted by the CCR unit).

2.1.3 Temporal Variability Analysis

Temporal variability in groundwater monitoring exists when the distribution of measurements varies with the times at which sampling or analytical measurement occurs. There are several reasons that temporal variability can occur, with the most common being seasonal fluctuations. In the event that seasonality is detected, the data can be "de-seasonalized." However, corrections for seasonality are to be applied cautiously, as they represent extrapolation into the future. There should be a defensible physical explanation along with sufficient empirical evidence for seasonality before corrections are made. Any adjustments made for temporal variability would be done as described within the Unified Guidance. With respect to temporal variability, it is emphasized that clear identification of any potential trends/fluctuation would be limited until several additional years of data are collected beyond the first eight rounds of background sampling.

2.1.4 Determination of Data Distribution

Determining the distribution of data (normal vs. non-normal) is important since it forms the basic premise for parametric tests. For a normal distribution, this means that the density of the data or the natural log of the data follows the traditional bell-shaped curve, with the greatest number of values being centered around the mean and fewer values being a significant distance from the mean.

Normality will first be evaluated using the Shapiro-Wilk Test with a specified Alpha (α) of 95 percent (interwell prediction limit default). The Shapiro-Wilk Test is based on the assumption that if a dataset (or the natural logs of the dataset) is normally distributed, then the ordered values should be highly correlated with the corresponding quantiles of the normal distribution. The Shapiro-Wilk test statistic, W, will be large when the probability plot of the data indicates a straight line, but will be small if there are significant bends or curves in the plotted data. The test statistic will be compared to published critical values, and the assumption of normality rejected when the calculated test statistic falls below the critical values.

The denominator, d, of the W test statistic calculation is computed as follows (Gilbert, 1987):

$$d = \sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} X_i^2 - \frac{1}{n} \left[\sum_{i=1}^{n} X_i \right]^2$$

Where:

 X_i = the ith smallest ordered value in the sample,

 \overline{X} = the mean of the n observations, and

n = the number of observations.

The observations are then ordered from smallest to largest and k is computed where:

$$k = \frac{n}{2}$$
 (if *n* is even), and $k = \frac{n-1}{2}$ (if *n* is odd)

The W test statistic is then computed as follows:

$$W = \frac{1}{d} \left[\sum_{i=1}^{k} a_i (X_{[n-i+1]} - X_i) \right]^2$$

Where:

 $a_1, a_2, ..., a_k$ are provided in Table A6 (Gilbert, 1987).

The data will be tested at the α =0.05 significance level, with the null hypothesis being rejected if W is less than the quantile given in Table A7 (Gilbert, 1987).

However, if the original dataset fails the test, there are a series of transformations that may be applied to determine if any helps fit the data to the bell-shaped curve. The Ladder of Powers (Helsel and Hirsch, 1992) includes the following transformations in order of execution: x, $x^{1/2}$, x^2 , $x^{1/3}$, x^3 , $\ln(x)$, x^4 , x^5 , x^6 . If one or more of these transformations passes the normality test, all data will be transformed prior to the construction of any prediction limits; the data transformation that best normalizes the distribution will be used.

Specialized software (obtained from SanitasTM) will be utilized to aid in performing the above transformations, in addition to other statistical evaluations, including ultimate calculation of the background prediction limits. This software relies on a decision-logic framework that progresses through a series of statistical step-flow charts and testing algorithms, arriving at the best suited application and making any necessary adjustments or transformations to the datasets.

2.1.5 Managing Non-Detects

As is commonplace in groundwater monitoring programs and in part due to natural variability, measurable levels of constituents may be detected during certain sampling events and then be absent (non-detect) during other events. In preparation for determining the distribution of the background datasets (described above in Section 2.1.4), the following recommended procedures will be adopted to manage non-detects:

<u>100 Percent Non-Detects</u>. If 100 percent of the analyses for a constituent resulted in non-detects at or below the reporting limit, it will be assumed that the constituent is not present and no further statistical evaluation will be performed. The practical quantitation limit or method detection limit will then be assumed to be the upper prediction limit.

<u>90 to 100 Percent Non-Detects</u>. If 90 to 100 percent of the analyses for a constituent results in non-detects at or below the reporting limit, a non-parametric evaluation will be used wherein the highest detected concentration will serve as the upper prediction limit.

50 to 90 Percent Non-Detects. If 50 to 90 percent of the analyses for a constituent result in non-detects at or below the reporting limit, these values will be replaced with one half the reporting limit and a nonparametric confidence interval will be constructed wherein the highest detected concentration is utilized as the upper prediction limit.

15 to 50 Percent Non-Detects. If 15 to 50 percent of the analyses for a constituent result in non-detects at or below the reporting limit, the detected values will be evaluated using either a parametric or non-parametric method commensurate with published guidance.

<u>0 to 15 Percent Non-Detects</u>. If 0 to 15 percent of the analyses for a constituent results in non-detects at or below the reporting limit, these values will be replaced with one half the reporting limit and the data tested for normality.

If the data are normally or lognormally distributed, the sample mean and sample standard deviation will be adjusted using Aitchison's method, and a parametric evaluation (Section 2.1.6.1) will be performed to determine the upper prediction limit. If the data are not normally or lognormally distributed, a non-parametric method (Section 2.1.6.2) will be utilized wherein the highest detected concentration for each constituent will serve as the upper prediction limit.

2.1.6 Parametric and Non-Parametric Evaluations

2.1.6.1 Parametric Evaluation

The parametric evaluation of normally and lognormally distributed data with 50 percent or fewer non-detects will be performed according to the methods described in the Unified Guidance. The 95 percent prediction limit will be calculated assuming that one sample would be taken from one

well during two future sampling periods (one sampling period and one resampling event if necessary to confirm any observed exceedance). The equation for the 95 percent prediction limit is given by:

95% Prediction Limit =
$$\bar{x} + t_{1-0.05/m,n-1} s \sqrt{1 + \frac{1}{n}}$$

Where:

 \bar{x} = the sample mean of the detected or adjusted results

S = sample standard deviation of the detected or adjusted results

 $t_{1-0.05/m,n-1}$ = the students t-coefficient for degrees of freedom (n-1) and confidence level (1-0.05/m)

n = the number of samples

m = the number of future samples

For this analysis, \overline{x}_s and S_s are calculated as:

$$\overline{x}_s = \frac{1}{n} \sum_{i=1}^n x_i$$

and,

$$S_s = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (\bar{x}_s - x_i)^{1/2}} \ .$$

As described above, prediction limits can be constructed to accurately account for the number of tests to be conducted (a resampling plan), so as to limit the site-wide false positive rate and ensure an adequate level of statistical power. The Unified Guidance suggests that the annual site-wide false positive rate be no greater than 10 percent (i.e. 5 percent per semiannual event; 2.5 percent per quarterly event).

The basic equation for estimating the site-wide false positive rate (not including resampling) is the following:

$$\alpha_{\text{cum}} = 1 - (1 - \alpha_{test})^{n_T}$$

Where:

 α_{cum} = site-wide false positive rate

 α_{test} = test-wide false positive rate

 n_T = number of wells x number of constituents in a calendar year

By rearranging to solve for α_{test} , the 10 percent design site-wide false positive rate (0.1) can be substituted for α_{cum} and the needed per-test false positive error rate calculated as:

$$\alpha_{\text{test}} = 1 - (1 - 0.9)^{1/n_T}$$

Aitchison's Adjustment

Aitchison's method adjusts the sample mean and sample standard deviation to account for non-detects below the reporting limit in data that are normally or lognormally distributed and have between 15 and 50 percent non-detects. Aitchison's method assumes that non-detect samples do not contain the constituent of concern, are free of contamination, and could be considered as having a zero concentration in the analysis.

Using the data above the detection level, the sample mean and sample variance are calculated as follows:

$$\bar{X}_d = \sum\nolimits_{i=1}^m X_i$$

and.

$$s_d^2 = \frac{1}{m-1} \left\{ \sum_{i=1}^m X_i^2 - \frac{1}{m} \left(\sum_{i=1}^m X_i \right)^2 \right\}$$

The adjusted sample mean and sample variance are then calculated as follows:

$$\bar{X} = \left(\frac{m}{n}\right)\bar{x}_d$$

and.

$$s^{2} = \frac{(m-1)}{(n-1)} s_{d}^{2} + \frac{m(m-1)}{n(n-1)} \bar{X}_{d}^{2}$$

Where:

m = the number of detects,

n = the total number of samples.

2.1.6.2 Non-Parametric Evaluation

A non-parametric evaluation is one that is not based upon specific parameters of the variate, such as the sample mean and sample standard deviation. A non-parametric evaluation will be used when data do not follow a distribution that can be predicted according to statistical parameters, or in those instances where a large proportion of the samples are reported as non-detects (i.e., greater than 90 percent). The non-parametric evaluation will take the highest detected concentration as the upper prediction limit for the constituent.

3.0 Detection and Assessment Monitoring

3.1 Detection Monitoring

Per §257.90(b)(1)(iii-iv) of the Rule and no later than October 17, 2017, groundwater detection monitoring for existing CCR units is to have included performance of eight rounds (at a minimum) of background sampling, and the corresponding start of evaluation for statistically significant increases over background with regard to the Appendix III constituents. Accordingly, the data generated from the eight rounds of background sampling will be subjected to the statistical protocols outlined in Section 2.0, and upper prediction limits established for each Appendix III constituent (pH will also have a lower prediction limit). To support the evaluation of statistically significant increases, samples from the groundwater wells associated with each of the Conemaugh CCR units will be collected on a semiannual frequency (per §257.94[b]) and analyzed for the Appendix III constituents. The data from the downgradient wells at each unit will then be compared to the upper prediction limits on a constituent by constituent basis.

If during the course of semiannual detection monitoring an Appendix III constituent (in any of the downgradient wells) is measured above its respective upper prediction limit (or below the lower prediction limit in the case of pH), this finding will constitute a preliminarily identified statistically significant increase. Pursuant to this finding and within 90 days, a repeat sampling event will be conducted and further efforts undertaken to determine if possible laboratory error or some other confounding condition has been noted, or if an alternate source (other than the CCR unit) could be responsible for the increase. If these efforts do not provide the ability/evidence to either nullify the increase or delineate an alternate source, then the affected CCR units will transition from detection monitoring to assessment monitoring.

3.2 Assessment Monitoring

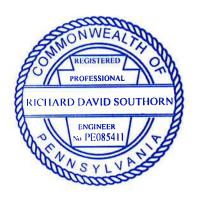
As described above, if a statistically significant increase is confirmed (and cannot be dismissed or alternate source identified) then the affected CCR unit must move from detection monitoring to assessment monitoring (§257.95 of the Rule). Notice of this transition must be placed in the facility operating record per §257.105(h)(5)94(e)(3), and appropriate notification made to the State Director per §257.106(h)(4) along with posting to the publicly accessible internet site per §257.107(h)(4).

Within 90 days of entry into assessment monitoring, all wells associated with the affected CCR unit will be sampled for the list of Appendix IV constituents. Subsequently, and within 90 days of obtaining the results from the initial round of sampling and on at least a semiannual basis thereafter, all wells will be analyzed for the constituents in Appendix III and for those constituents in Appendix IV that were detected.

In similar fashion to that described above in Section 3.1, the data from the eight rounds of background sampling will be subjected to the statistical protocols outlined in Section 2.0 and upper prediction limits established for each Appendix IV constituent. In addition, Groundwater Protection Standards will be established for all detected Appendix IV constituents. Per §257.95(h)(1-3), these standards will either correspond to the Maximum Contaminant Level (MCL) values that are provided within 40 CFR 141.62 and 141.66, or the background upper prediction limit for those constituents that do not have an MCL. In cases where the background upper prediction limit is higher than the MCL, the upper prediction limit will serve as the Groundwater Protection Standard.

For purposes of comparison, if the concentrations of all Appendix III constituents and the detected Appendix IV constituents are shown to be at or below the background prediction limits for two consecutive sampling events, the CCR unit will return to detection monitoring. The return to detection monitoring must be documented in the facility's operating record per §257.105(h)(7), noticed to the State Director per §257.106(h)(5), and posted on the publicly accessible internet site per §257.107(h)(5). If concentrations of any of these same constituents are above the background prediction limits but below the Groundwater Protection Standard, assessment monitoring will continue.

However, should one or more Appendix IV constituents exhibit a statistically significant increase above the Groundwater Protection Standard, documentation of the specific Appendix IV constituent(s) must be placed in the facility's operating record per §257.105(h)(8), along with notification to the State Director per §257.106(h)(6) and posting to the publicly accessible internet site per §257.107(h)(6). In addition, an investigation must be undertaken to evaluate the nature and extent of a possible release from the CCR unit and account for any other conditions that may factor into potential remedy implementation in accordance with the elements in §257.95(g)(1)(i-iv). Pending the outcome of the investigation, it may be possible to nullify the findings or identify an alternate source (similar to the process provided for under detection monitoring), and return the CCR unit directly to assessment monitoring. In the event that the CCR unit is ultimately deemed responsible for statistical increases in the groundwater constituent concentrations, the provisions of §257.96, §257.97, and §257.98 of the Rule would be followed to guide potential remedy assessment, selection and implementation. Moreover, should the responsible CCR unit be identified as an unlined surface impoundment, then the requirements under §257.95(g)(5), §257.101(a)(1), and §257.102 would be triggered for retrofit or closure.


4.0 Professional Engineer's Certification

In accordance with §257.93(f)(6) of the Rule, I hereby certify based on a review of the information contained herein, and my knowledge and understanding of the principles and accepted practices contained in EPA's Unified Guidance, that the statistical method selected for evaluation of groundwater data associated with the Conemaugh CCR Units is adequate and appropriate. This method's application will provide the necessary means for determining compliance and potential identification of statistically significant increases in groundwater concentrations as related to the Detection Monitoring (§257.94) and Assessment Monitoring (§257.95) elements of the Rule.

Certified by:

Date: 10/9/17

Richard Southorn, P.E., P.G., CPSWQ
Professional Engineer Registration No. PE 085411
CB&I Environmental & Infrastructure, Inc.

5.0 References

Gilbert, R. O., "Statistical Methods for Environmental Pollution Monitoring," 1987.

Helsel, D. R. and R. M. Hirsch, "Discussion of Applicability of the t-test for Detecting Trends in Water Quality Variables," Water Resources Bulletin 24, pp. 201-204, 1992.

United States Environmental Protection Agency, "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance (EPA 530/R-09-007)," March 2009.

1009144003-B3 MW-1B UPGRADIENT MW-2
UPGRADIENT ASH FILTER POND A ASH FILTER POND B ASH FILTER POND C ASH FILTER POND D File: O:\PROJECT\1009144003_Conemaugh\1009144003_B3.dwg Plot Date/Time: Sep 14, 2017 - 7:15am Xref: Notted By: qreg.jones MW-4 DOWNGRADIENT MW-3 DOWNGRADIENT 0 MW-23 DOWNGRADIENT 0 222

LEGEND:

♦ MW-3 **CCR GROUNDWATER** MONITORING WELL

REFERENCE:

GOOGLE AERIAL PHOTOGRAPH, DATED 10/2015.

500 Penn Center Boulevard, Suite 1000 Pittsburgh, Pennsylvania 15235

FIGURE 1 CCR COMPLIANCE GROUNDWATER MONITORING WELL LOCATION MAP ASH FILTER PONDS CONEMAUGH GENERATING STATION INDIANA COUNTY, PENNSYLVANIA

LEGEND:

♦ MW-9 CCR GROUNDWATER MONITORING WELL

500 Penn Center Boulevard, Suite 1000 Pittsburgh, Pennsylvania 15235

FIGURE 2 CCR COMPLIANCE GROUNDWATER MONITORING WELL LOCATION MAP ASH/REFUSE DISPOSAL SITE CONEMAUGH GENERATING STATION INDIANA COUNTY, PENNSYLVANIA

REFERENCE:

GOOGLE AERIAL PHOTOGRAPH, DATED 10/2015.

0:\PROJECT\1009144003_Conemaugh\1009144003— Date/Timer. Sep 14, 2017 — 7:17am Kref: ed By: greg.jones

Mr. Andrew Wheeler, Administrator, US EPA December 2020

ATTACHMENT 4B Statement of Recent Statistical Methods Conducted

C190459.01 December 2020

Statement of Recent Statistical Methods Conducted

APTIM Environmental and Infrastructure, LLC (APTIM) was contracted by the Station to complete initial and annual groundwater sampling, as well as the associated statistical analysis to determine background concentrations. APTIM's approach (Interwell Prediction Limit), which aligns with one of the suggested candidate methodologies per § 257.93(f)(3), is discussed in its *Groundwater Statistical Method Certification Report* (October 2017, Attachment 3D). APTIM utilizes the Sanitas™ software application to generate the upper prediction limits that are used in the ongoing groundwater data comparisons. The original Sanitas output, generated in January 2018, is provided for reference on the following page. This output documents the upper prediction limits adopted for each of the CCR Rule Appendix III constituents based on the initial eight rounds of monitoring (December 2015 through July 2017) for upgradient wells MW-1B and MW-2. It is these values against which the groundwater data obtained from downgradient wells has been compared during each round of Detection Monitoring, beginning with the October 2017 sampling event.

Prediction Limit

		Conemaugh Generating	Station	Client: GenOn	Data: Conemaugh	n Ash Filter	CCRC	hemStat P	rinted 1/15/2018	3, 10:29 AM	
Constituent	Well	<u>Upper Lim.</u>	Lower L	<u>im.</u> <u>Date</u>	Observ.	Sig.	Bg N	%NDs	Transform	<u>Alpha</u>	Method
Boron (mg/L)	n/a	0.5756	n/a	n/a	3 future	n/a	17	0	ln(x)	0.000	Param Inter 1 of 2
Calcium (mg/L)	n/a	376.3	n/a	n/a	3 future	n/a	17	0	ln(x)	0.000	Param Inter 1 of 2
Chloride (mg/L)	n/a	1560	n/a	n/a	3 future	n/a	17	0	n/a	0.00563	NP Inter (normality)
Fluoride (mg/L)	n/a	0.2	n/a	n/a	3 future	n/a	17	64.71	n/a	0.00563	NP Inter (NDs) 1 of 2
pH (S.U.)	n/a	7.42	4.586	n/a	3 future	n/a	16	0	x^2	0.000	Param Inter 1 of 2
Sulfate (mg/L)	n/a	788.4	n/a	n/a	3 future	n/a	17	0	ln(x)	0.000	Param Inter 1 of 2
Total dissolved solids (mg/L)	n/a	6975	n/a	n/a	3 future	n/a	17	0	ln(x)	0.000	Param Inter 1 of 2

Mr. Andrew Wheeler, Administrator, US EPA December 2020

ATTACHMENT 4C

Groundwater Monitoring and Corrective Action Annual Report Calendar Year 2017

CCR COMPLIANCE GROUNDWATER MONITORING AND CORRECTIVE ACTION ANNUAL REPORT ASH FILTER PONDS AND ASH/REFUSE DISPOSAL SITE

Prepared for:

GenOn Northeast Management Company Conemaugh Generating Station New Florence, Pennsylvania

Prepared by:

Aptim Environmental & Infrastructure, Inc. Pittsburgh, Pennsylvania

January 2018

Table of Contents_

List of	ables	. ji
List of	igures	. ii
1.0	Introduction	. 1
2.0	Ash Filter Ponds	. :
	2.1 Groundwater Monitoring Network 2.2 2017 Data Collection 2.3 2017 Monitoring Program Transitions. 2.4 2017 Corrective Actions 2.5 2018 Projected Activities	
3.0	Ash Disposal Site 3.1 Groundwater Monitoring Network 3.2 2017 Data Collection 3.3 2017 Monitoring Program Transitions 3.4 2017 Corrective Actions 3.5 2018 Projected Activities	

Tables

Figures

List of Tables	

Table 1	Ash Filter Ponds Groundwater Analytical Data Summary—Appendix III Constituents
Table 2	Ash Filter Ponds Groundwater Analytical Data Summary—Appendix IV Constituents
Table 3	Ash Disposal Site Groundwater Analytical Data Summary—Appendix III Constituents
Table 4	Ash Disposal Site Groundwater Analytical Data Summary—Appendix IV Constituents

List of Figures _____

Figure 1 Ash Filter Ponds—Location and Groundwater Monitoring System Map
Figure 2 Ash Disposal Site—Location and Groundwater Monitoring System Map

1.0 Introduction

Title 40 Code of Federal Regulations (CFR) §257.90 mandates that existing Coal Combustion Residuals (CCR) landfills and surface impoundments, also known as CCR units, be subject to groundwater monitoring and corrective action requirements as further detailed in §257.91 through §257.98. These requirements are part of the overall CCR Rule (or Rule) which was published in the Federal Register on April 17, 2015 and which became effective on October 19, 2015. Specific obligations for Owners and Operators of existing CCR units regarding the preparation of "Annual Groundwater Monitoring and Corrective Action Reports (Annual Report)" are outlined in §257.90(e)(1-5). The first of these Annual Reports must be completed no later than January 31, 2018, and provide information to address the following aspects for the preceding calendar year:

- Document the status of the groundwater monitoring and corrective action program for the respective CCR units;
- Summarize key actions completed;
- Describe any problems encountered and actions taken to resolve the problems; and
- Offer a projection of key activities for the upcoming year.

At a minimum, the Annual Report must contain the following information to the extent applicable and available:

- A map, aerial image, or diagram showing the CCR unit and all background/upgradient and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program;
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
- In addition to all the monitoring data obtained under §257.90 through §257.98, a summary including the number of groundwater samples that were collected for analysis for each background/upgradient and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;
- A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and
- Any other information required to be included as specified in §257.90 through §257.98.

The Conemaugh Generating Station (Station), operated by GenOn Northeast Management Company, is a coal-fired power plant located in New Florence, Pennsylvania. The Rule applies to this facility due to the management/disposal of CCR materials that are generated from the combustion of coal. CCR units associated with Station operations include the Conemaugh Ash/Refuse Disposal Site and four Ash Filter Ponds (Ponds "A," "B," "C," and "D") used for the management of bottom ash. Each of these CCR units has a dedicated groundwater monitoring system that was originally installed to comply with Commonwealth of Pennsylvania Residual Waste Regulations, and was subsequently evaluated and modified (as needed) for use under the CCR program. Additionally, in accordance with the provisions of §257.91(d) of the Rule, the groundwater monitoring system for the Ash Filter Ponds has been designated to provide coverage in the context of a multiunit system encompassing all four ponds collectively.

In summary, this Annual Report has been prepared to comply with the requirements of §257.90(e), addressing each of the Conemaugh Station's CCR Units with respect to the groundwater monitoring and corrective actions undertaken during Calendar Year 2017. This Annual Report and all subsequent reports thereto will be placed in the Station's operating record per §257.105(h)(1), noticed to the State Director per §257.106(h)(1), and posted to the publicly accessible internet site per §257.107(h)(1).

2.0 Ash Filter Ponds

2.1 Groundwater Monitoring Network

The CCR groundwater monitoring system for the Ash Filter Ponds is comprised of five wells, including Wells MW-1B and MW-2 (upgradient), and Wells MW-3, MW-4, and MW-23 (downgradient). All five wells communicate with the alluvium, which is the uppermost aquifer. The locations of the groundwater monitoring wells are shown on Figure 1, along with depiction of the generalized groundwater flow direction in the area of the ponds. Each of these wells was already existing, and no new wells were added nor were any existing wells abandoned/replaced during the 2017 reporting period.

2.2 2017 Data Collection

Per the requirements of §257.94(b), Detection Monitoring was ongoing throughout 2017, including activities to ensure the collection of a minimum of eight independent samples from each of the background/upgradient and downgradient wells associated with the Ash Filter Ponds. These samples were analyzed for the necessary Appendix III and Appendix IV constituents, with the results summarized in the attached Tables 1 and 2, respectively. In addition, a ninth round of samples was collected (October 1-4, 2017) and analyzed for Appendix III constituents only. The results from these samples (also shown in Table 1) will serve as the first point of comparison to determine if concentrations in any of the downgradient wells are at levels representing a statistically significant increase (SSI) over the background concentrations established in the upgradient well(s).

2.3 2017 Monitoring Program Transitions

During 2017, there were no transitions between monitoring programs. Only activities in support of the Detection Monitoring program were conducted.

2.4 2017 Corrective Actions

During 2017, there were no problems identified or corrective actions undertaken.

2.5 2018 Projected Activities

No later than January 15, 2018, the results from the ninth round of Detection Monitoring sampling will be reviewed against the Appendix III background concentrations and preliminary identification of any SSIs completed. If SSIs are identified, subsequent activities could include performance of an Alternate Source Demonstration [per §257.94(e)(2)] to potentially negate the SSIs (and remain in Detection Monitoring), and/or entry into the Assessment Monitoring program [per §257.94(e)(1)] should the SSIs be deemed valid. Completion of the Alternate Source

Demonstration or entry into the Assedays, or no later than April 15, 2018	essment Monitoring program must be accomplished within 90

3.0 Ash Disposal Site

3.1 Groundwater Monitoring Network

The CCR groundwater monitoring system for the Ash Disposal Site is comprised of four wells, including Well MW-31 (upgradient) and Wells MW-9, MW-10, and MW-11 (downgradient). Monitoring Wells MW-9 and MW-11 communicate with the shallow unconfined groundwater in bedrock and Monitoring Wells MW-10 and MW-31 communicate with shallow groundwater across the soil/bedrock interface. Hence, all four wells monitor the uppermost aquifer in the area of the Ash Disposal Site. The locations of the groundwater monitoring wells are shown on Figure 2, along with depiction of the generalized groundwater flow direction in the area of the disposal site. Each of these wells was already existing, and no new wells were added nor were any existing wells abandoned/replaced during the 2017 reporting period.

3.2 2017 Data Collection

Per the requirements of §257.94(b), Detection Monitoring was ongoing throughout 2017, including activities to ensure the collection of a minimum of eight independent samples from each of the background/upgradient and downgradient wells associated with the Ash Disposal Site. These samples were analyzed for the necessary Appendix III and Appendix IV constituents, with the results summarized in the attached Tables 3 and 4, respectively. In addition, a ninth round of samples was collected (October 2-3, 2017) and analyzed for Appendix III constituents only. The results from these samples (also shown in Table 3) will serve as the first point of comparison to determine if concentrations in any of the downgradient wells are at levels representing an SSI over the background concentrations established in the upgradient well(s).

3.3 2017 Monitoring Program Transitions

During 2017, there were no transitions between monitoring programs. Only activities in support of the Detection Monitoring program were conducted.

3.4 2017 Corrective Actions

During 2017, there were no problems identified or corrective actions undertaken.

3.5 2018 Projected Activities

No later than January 15, 2018, the results from the ninth round of Detection Monitoring sampling will be reviewed against the Appendix III background concentrations and preliminary identification of any SSIs completed. If SSIs are identified, subsequent activities could include performance of an Alternate Source Demonstration [per §257.94(e)(2)] to potentially negate the SSIs (and remain in Detection Monitoring), and/or entry into the Assessment Monitoring program [per §257.94(e)(1)] should the SSIs be deemed valid. Completion of the Alternate Source

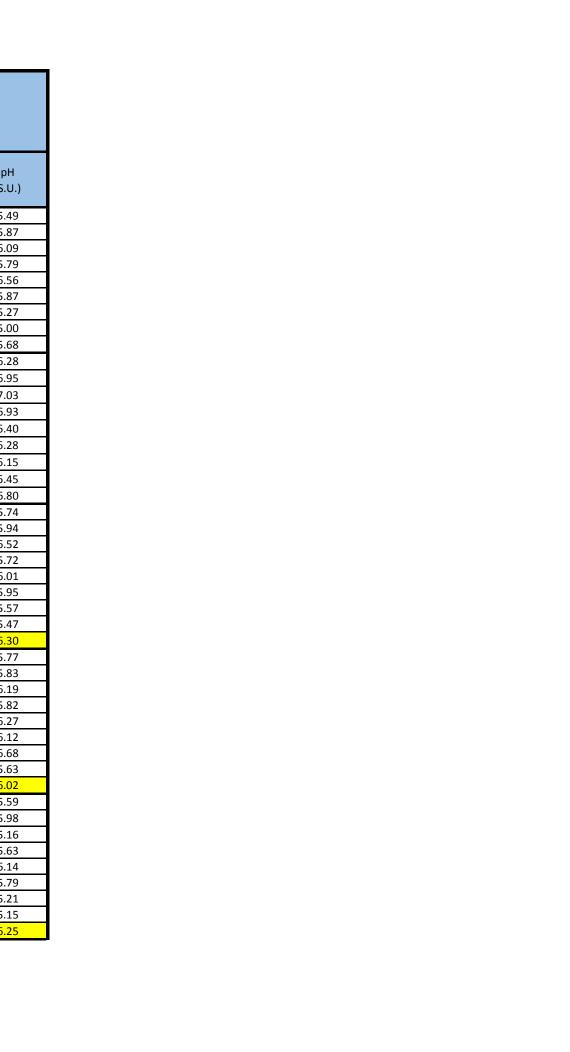

Demonstration or entry into the A days, or no later than April 15, 20	Assessment Monitoring program must be accomplished within 90 018.

Table 1 Conemaugh Generating Station Ash Filter Ponds--Groundwater Analytical Data CCR Appendix III Constituents

				сен Аррен	dix ili Constitueni				
Monitoring Well	Date Sampled	Groundwater Elevation (ft. MSL)	Total Boron (mg/L)	Total Calcium (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Dissolved Solids (mg/L)	Sulfate (mg/L)	pH (S.U.)
	17-Dec-15	1070.99	0.29	333	1540	< 0.1	3620	544	5.49
	27-Jan-16	1070.99	0.29	288	1280	< 0.1	3180	583	5.49
	20-Apr-16	1071.19	0.28	170	652	< 0.5	2410	729	6.09
	19-Jul-16	1071.69	0.36	208	1310	0.1	2760	575	5.79
MW-1B	11-Oct-16	1071.09	0.46	192	1010	0.1	2640	438	6.56
(Upgradient)	17-Jan-17	1072.54	0.43	198	1030	< 0.1	2650	427	5.87
	24-Apr-17	1072.69	0.37	166	988	< 0.1	2470	548	5.27
	20-Jul-17	1072.03	0.39	345	1560	< 0.1	3740	388	5.00
	1-Oct-17	1070.84	0.36	430	2040	< 0.1	4930	427	5.68
	11-Oct-16	1070.84	0.30	191	251	< 0.1	1200	348	6.28
	16-Nov-16	1072.72	0.31	176	94	0.1	868	416	6.95
	21-Dec-16	1072.42	0.41	176	101	0.2	1050	519	7.03
	25-Jan-17	1073.02	0.21	137	68	0.2	726	316	6.93
MW-2									
(Upgradient)	21-Mar-17	1073.82	0.33	158	75	0.1	828	387	6.40
	25-Apr-17	1072.92	0.29	136	69	< 0.1	792	373	6.28
	13-Jun-17	1073.02	0.30	150	60	< 0.1	768	369	6.15
	27-Jul-17	1072.57	0.28	133	67	< 0.1	684	310	6.45
	4-Oct-17	1071.17	0.32	138	58	< 0.1	768	330	6.80
	16-Dec-15	1065.24	< 0.05	123	363	< 0.1	882	227	5.74
	26-Jan-16	1065.89	< 0.05	132	392	< 0.1	970	250	5.94
	25-Apr-16	1066.14	< 0.05	203	505	< 0.1	1460	288	6.52
MW-3	25-Jul-16	1064.99	< 0.05	115	343	< 0.1	972	225	5.72
MW-3	24-Oct-16	1066.19	< 0.05	123	304	< 0.1	902	211	6.01
, ,	17-Jan-17	1066.94	< 0.05	113	370	< 0.1	976	245	5.95
	25-Apr-17	1067.09	< 0.05	181	552	< 0.1	1740	314	5.57
	25-Jul-17	1065.99	< 0.05	151	389	< 0.1	1270	256	5.47
	1-Oct-17	1064.89	< 0.05	135	387	< 0.1	1140	255	6.30
	21-Dec-15	1069.53	0.15	301	643	< 0.1	2470	874	5.77
	4-Feb-16	1069.73	0.13	316	654	< 0.1	2580	870	5.83
	26-Apr-16	1070.08	0.13	426	932	< 0.1	3390	965	6.19
MW-4	25-Jul-16	1068.98	0.12	346	874	< 0.1	3120	1090	5.82
(Downgradient)	26-Oct-16	1070.08	0.17 0.15	310 301	670 736	< 0.1	2530 2740	865	6.27
	30-Jan-17	1070.88				< 0.1 < 0.1	+	895	6.12
	26-Apr-17 27-Jul-17	1070.93 1070.23	0.14 0.19	392 403	863 977	< 0.1 < 0.1	3310 3350	996 1170	6.68 5.63
	4-Oct-17	1070.23	0.19	335	814	< 0.1	3200	1050	6.02
	20-Dec-15	1068.83	< 0.05	182	388	< 0.1	1580	653	5.59
	2-Feb-16	1069.08		176	344		1520	576	5.98
	25-Apr-16 21-Jul-16	1069.38		175	329	_	1540 1600	557 501	5.16
MW-23	24-Oct-16	1067.93 1068.83	0.34 < 0.05	173 173	371 327	< 0.1 < 0.1	1600 1540	591 509	5.63 6.14
(Downgradient)	18-Jan-17	1068.83	0.05	165	368	< 0.1	1550	543	5.79
	24-Apr-17	1070.13	< 0.05	164	383	< 0.1	1520	558	5.79
	24-Apr-17 24-Jul-17	1069.68	< 0.05	183	378	< 0.1	1530	532	5.21
	1-Oct-17	1069.18	< 0.05	172	313	< 0.1	1520	575	6.25
	1-061-17	1007.30	0.05	1/2	313	0.1	1320	3/3	0.23

⁼ Data to be compared against calculated Background values from the upgradient wells.

Table 2 Conemaugh Generating Station Ash Filter Ponds--Groundwater Baseline Analytical Data CCR Appendix IV Constituents

									CCR A	ppena	ix IV Con	stituen	its											
Monitoring Well	Date Sampled	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)		al Beryllium (mg/L)	Total Cadmium (mg/L)		Chromium ng/L)		al Cobalt mg/L)		Fluoride ng/L)		otal Lead (mg/L)	Total Lithium (mg/L)	Total Mercury (mg/L)	Tota	al Molybdenum (mg/L)	Total Selen (mg/L)			Thallium ng/L)	Total Radium-226 and 228 (pCi/L)
	17-Dec-15	< 0.001	< 0.001	0.04	<	0.001	0.005	<	0.01		0.012	<	0.1	<	0.001	0.03	< 0.0002	<	0.02	< 0.00	1	<	0.0002	4.24
	27-Jan-16	< 0.001	< 0.001	0.03	<	0.001	0.005	<	0.01	<	0.005	<	0.1	<	0.001	0.02	< 0.0002	<	0.02	< 0.00	1	<	0.0002	0.29
	20-Apr-16	< 0.001	< 0.001	0.01	<	0.001	< 0.002	<	0.01	<	0.005	<	0.5	<	0.001	0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	0.72
MW-1B	19-Jul-16	< 0.001	< 0.001	0.02	<	0.001	< 0.002	<	0.01		0.006		0.1	<	0.001	0.02	< 0.0002	<	0.02	< 0.00		<	0.0002	1.31
(Upgradient)	11-Oct-16	< 0.001	< 0.001	0.02	<	0.001	0.002	<	0.01	<	0.005		0.2	<	0.001	0.02	< 0.0002	<	0.02	< 0.00			0.0002	0.78
	17-Jan-17	< 0.001	< 0.001	0.02	<	0.001	0.002	<	0.01		0.005	<	0.1	<	0.001	0.02	< 0.0002	<	0.02	< 0.00			0.0002	0.24
	24-Apr-17	< 0.001	< 0.001	0.02	<	0.001	0.002	<	0.01		0.005	<	0.1	<	0.001	0.01	< 0.0002	<	0.02	< 0.00		<	0.0002	0.77
	20-Jul-17	< 0.001	< 0.001	0.03	<	0.001	0.005	<	0.01		0.013	<	0.1	<	0.001	0.02	< 0.0002	<	0.02	< 0.00			0.0002	1.03
	11-Oct-16	< 0.001	< 0.001	0.02	<	0.001	< 0.002	<	0.01	<	0.005	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	0.69
	16-Nov-16	< 0.001	< 0.001	0.02	<	0.001	< 0.002	<	0.01	<	0.005		0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00		<	0.0002	0.44
	21-Dec-16	< 0.001	< 0.001	0.02	<	0.001	< 0.002	<	0.01	<	0.005		0.2	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	0.43
MW-2	25-Jan-17	< 0.001	< 0.001	0.01	<	0.001	< 0.002	<	0.01	<	0.005		0.2	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	0.88
(Upgradient)	21-Mar-17	< 0.001	< 0.001	0.02	<	0.001	< 0.002	<	0.01	<	0.005		0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	0.09
	25-Apr-17	< 0.001	< 0.001	0.02	<	0.001	< 0.002	<	0.01	<	0.005	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	0.35
	13-Jun-17	< 0.001	< 0.001	0.02	<	0.001	< 0.002	<	0.01	<	0.005	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	0.00	1	<	0.0002	0.80
	27-Jul-17	< 0.001	< 0.001	0.01	<	0.001	< 0.002	<	0.01	<	0.005	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	0.14
	16-Dec-15	< 0.001	< 0.001	0.04	<	0.001	< 0.002	<	0.01		0.009	<	0.1	<	0.001	0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	0.44
	26-Jan-16	< 0.001	< 0.001	0.03	<	0.001	< 0.002	<	0.01		0.011	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	0.86
	25-Apr-16	< 0.001	< 0.001	0.03	<	0.001	< 0.002	<	0.01		0.014	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	0.60
MW-3	25-Jul-16	< 0.001	< 0.001	0.03	<	0.001	< 0.002	<	0.01		0.009	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	0.46
(Downgradient)	24-Oct-16	< 0.001	< 0.001	0.04	<	0.001	< 0.002	<	0.01		0.012	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	1.34
	17-Jan-17	< 0.001	< 0.001	0.03	<	0.001	< 0.002	<	0.01		0.008	<	0.1	٧	0.001	< 0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	0.28
	25-Apr-17	< 0.001	< 0.001	0.03	<	0.001	< 0.002	<	0.01		0.013	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	0.45
	25-Jul-17	< 0.001	< 0.001	0.03	<	0.001	< 0.002	<	0.01		0.010	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	1.33
	21-Dec-15	< 0.001	< 0.001	0.01	<	0.001	0.002	<	0.01		0.039	<	0.1	'	0.001	0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	1.20
	4-Feb-16	< 0.001	< 0.001	0.01	<	0.001	0.003	<	0.01		0.038	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	0.47
	26-Apr-16	< 0.001	< 0.001	0.02	<	0.001	0.003	<	0.01		0.039	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00		<	0.0002	1.15
MW-4	25-Jul-16	< 0.001	< 0.001	0.01	<	0.001	0.003	<	0.01		0.035	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	0.43
(Downgradient)	26-Oct-16	< 0.001	< 0.001	0.01	<	0.001	0.003	<	0.01		0.037	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00		<	0.0002	0.72
	30-Jan-17	< 0.001	< 0.001	0.01	<	0.001	0.003	<	0.01		0.034	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00			0.0002	0.09
	26-Apr-17	< 0.001	< 0.001	0.01	<	0.001	0.004	<	0.01		0.041	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00			0.0002	0.73
	27-Jul-17	< 0.001	< 0.001	0.01	<	0.001	0.003	<	0.01		0.039	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00			0.0002	1.24
	20-Dec-15	< 0.001	< 0.001	0.01	<	0.001	0.002	<	0.01		0.114	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00			0.0002	6.87
	2-Feb-16	< 0.001	< 0.001	0.02	<	0.001	0.002	<	0.01		0.106	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00			0.0002	1.03
	25-Apr-16	< 0.001	0.001	0.01	<	0.001	0.002	<	0.01		0.123	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00			0.0002	0.56
MW-23	21-Jul-16	< 0.001	< 0.001	0.01	<	0.001	0.003	<	0.01	1	0.114	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00			0.0002	0.65
(Downgradient)	24-Oct-16	< 0.001	0.001	0.02	<	0.001	< 0.002	<	0.01	1	0.099	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00			0.0002	0.12
	18-Jan-17	< 0.001	< 0.001	0.02	<	0.001	0.002	<	0.01		0.100	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00			0.0002	0.66
	24-Apr-17	< 0.001	< 0.001	0.01	<	0.001	< 0.002	<	0.01		0.097	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00			0.0002	0.40
	24-Jul-17	< 0.001	< 0.001	0.01	<	0.001	< 0.002	<	0.01		0.095	<	0.1	<	0.001	< 0.01	< 0.0002	<	0.02	< 0.00	1	<	0.0002	0.21

Table 3 Conemaugh Generating Station Ash Disposal Site--Groundwater Analytical Data CCR Appendix III Constituents

				- Contribution	dix iii constitueiii				
Monitoring Well	Date Sampled	Groundwater Elevation (ft. MSL)	Total Boron (mg/L)	Total Calcium (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Dissolved Solids (mg/L)	Sulfate (mg/L)	pH (S.U.)
	20-Dec-15	1435.54	< 0.05	6.2	1	< 0.1	50	4	6.15
	1-Feb-16	1438.04	< 0.05	7.1	1	< 0.1	34	4	6.42
	20-Apr-16	1439.54	< 0.05	7.8	< 1	< 0.1	44	4	6.45
MW-31	20-Jul-16	1435.89	< 0.05	6.3	1	< 0.1	58	4	6.24
(Upgradient)	25-Oct-16	1436.24	< 0.05	6.7	1	< 0.1	70	4	5.82
(Opgradient)	19-Jan-17	1438.74	< 0.05	6.4	1	< 0.1	64	3	6.19
	12-Apr-17	1439.74	< 0.05	6.2	1	< 0.1	52	4	5.75
	25-Jul-17	1437.24	< 0.05	7.4	1	< 0.1	72	4	5.62
	3-Oct-17	1434.49	< 0.05	6.6	1	< 0.1	32	4	6.36
	17-Dec-15	1100.47	< 0.05	102	83	0.1	426	72	7.08
	28-Jan-16	1100.57	0.09	102	97	0.1	424	63	7.20
	21-Apr-16	1099.77	< 0.05	96	81	0.1	398	65	7.38
MW-9	20-Jul-16	1098.97	0.05	99	93	< 0.1	466	62	7.57
	16-Nov-16	1099.82	< 0.05	104	94	< 0.1	466	55	7.05
(Downgradient) –	23-Jan-17	1100.77	< 0.05	96	92	< 0.1	406	65	7.27
	12-Apr-17	1099.47	< 0.05	96	96	< 0.1	446	77	6.74
	24-Jul-17	1099.82	< 0.05	104	98	< 0.1	456	79	6.60
	2-Oct-17	1099.67	< 0.05	94	92	< 0.1	430	75	7.41
	16-Dec-15	1103.26	< 0.05	106	90	0.1	444	97	7.71
	1-Feb-16	1103.36	< 0.05	102	100	0.1	416	107	7.56
	19-Apr-16	1103.06	< 0.05	102	95	0.1	454	99	7.45
MW-10	25-Jul-16	1102.16	< 0.05	100	91	0.1	476	114	7.25
(Downgradient)	25-Oct-16	1102.16	< 0.05	117	84	0.1	522	113	7.50
(Downgraulent)	25-Jan-17	1103.86	< 0.05	94	105	< 0.1	482	110	7.21
	13-Apr-17	1102.86	< 0.05	97	99	< 0.1	460	97	6.77
	26-Jul-17	1102.66	0.05	108	94	< 0.1	508	127	6.75
	3-Oct-17	1102.61	< 0.05	111	91	0.1	490	130	7.38
	21-Dec-15	1102.68	0.08	180	55	0.1	814	223	6.77
	27-Jan-16	1103.38	0.09	169	48	< 0.1	776	191	7.02
	21-Apr-16	1102.63	0.07	161	46	< 0.1	754	170	7.31
MW-11	21-Jul-16	1101.68	0.14	156	52	< 0.1	754	208	7.37
(Downgradient)	20-Oct-16	1101.93	0.09	166	48	0.1	754	199	6.97
(Downgradient)	23-Jan-17	1103.63	< 0.05	164	51	0.1	770	207	6.98
	13-Apr-17	1103.28	0.07	170	49	< 0.1	774	183	6.65
	26-Jul-17	1102.33	0.10	150	60	< 0.1	700	182	6.35
	2-Oct-17	1102.48	0.07	151	61	0.1	732	210	7.20

⁼ Data to be compared against calculated Background values from the upgradient wells.

Table 4

Conemaugh Generating Station Ash Disposal Site--Groundwater Baseline Analytical Data

CCR A	ppendix	IV Cons	stituents
-------	---------	----------------	-----------

Monitoring Well	Date Sampled	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	То	tal Beryllium (mg/L)	Tot	al Cadmium (mg/L)		Chromium (mg/L)	Ì	otal Cobalt (mg/L)	Tot	al Fluoride (mg/L)		Total Lead (mg/L)	То	otal Lithium (mg/L)	То	otal Mercury (mg/L)	М	Total lolybdenum (mg/L)	Tot	al Selenium (mg/L)		al Thallium (mg/L)	Total Radium-226 and 228 (pCi/L)
	20-Dec-15	< 0.001	< 0.001	0.02	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	14.1
	1-Feb-16	< 0.001	< 0.001	0.01	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.08
	20-Apr-16	< 0.001	< 0.001	0.01	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.75
MW-31	20-Jul-16	< 0.001	< 0.001	0.01	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.77
(Upgradient)	25-Oct-16	< 0.001	< 0.001	0.01	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.42
	19-Jan-17	< 0.001	< 0.001	0.01	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.03
	12-Apr-17	< 0.001	< 0.001	< 0.01	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.51
	25-Jul-17	< 0.001	< 0.001	< 0.01	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	-0.05
	17-Dec-15	< 0.001	< 0.001	0.17	<	0.001	<	0.002	<	0.01	<	0.005		0.1	<	0.001		0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	3.66
	28-Jan-16	< 0.001	< 0.001	0.05	<	0.001	<	0.002	<	0.01	<	0.005		0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.18
	21-Apr-16	< 0.001	< 0.001	0.04	<	0.001	<	0.002	<	0.01	<	0.005		0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	3.90
MW-9	20-Jul-16	< 0.001	< 0.001	0.04	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	-0.05
(Downgradient)	16-Nov-16	< 0.001	< 0.001	0.05	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.78
	23-Jan-17	< 0.001	< 0.001	0.04	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.70
	12-Apr-17	< 0.001	< 0.001	0.04	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.03
	24-Jul-17	< 0.001	< 0.001	0.05	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.74
	16-Dec-15	< 0.001	< 0.001	0.06	<	0.001	<	0.002	<	0.01	<	0.005		0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	-0.04
	1-Feb-16	< 0.001	< 0.001	0.06	<	0.001	<	0.002	<	0.01	<	0.005		0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.25
	19-Apr-16	< 0.001	< 0.001	0.10	<	0.001	<	0.002	<	0.01	<	0.005		0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.68
MW-10	25-Jul-16	< 0.001	< 0.001	0.06	<	0.001	<	0.002	<	0.01	<	0.005		0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.55
(Downgradient)	25-Oct-16	< 0.001	< 0.001	0.06	<	0.001	<	0.002	<	0.01	<	0.005		0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.62
	25-Jan-17	< 0.001	< 0.001	0.05	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.29
	13-Apr-17	< 0.001	< 0.001	0.04	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.34
	26-Jul-17	< 0.001	< 0.001	0.04	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	1.05
	21-Dec-15	< 0.001	< 0.001	0.07	<	0.001	<	0.002	<	0.01	<	0.005		0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	2.21
	27-Jan-16	< 0.001	< 0.001	0.06	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.33
	21-Apr-16	< 0.001	< 0.001	0.06	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	3.18
MW-11	21-Jul-16	< 0.001	< 0.001	0.08	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.70
(Downgradient)	20-Oct-16	< 0.001	< 0.001	0.06	<	0.001	<	0.002	<	0.01	<	0.005		0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.93
	23-Jan-17	< 0.001	< 0.001	0.07	<	0.001	<	0.002	<	0.01	<	0.005		0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.48
	13-Apr-17	< 0.001	< 0.001	0.07	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	1.46
	26-Jul-17	< 0.001	< 0.001	0.05	<	0.001	<	0.002	<	0.01	<	0.005	<	0.1	<	0.001	<	0.01	<	0.0002	<	0.02	<	0.001	<	0.0002	0.80

APPROVED BY DRAWING 1009144003-B7 MW-1B UPGRADIENT MW-2 UPGRADIENT (1071.17) ASH FILTER POND A ASH FILTER POND B ASH FILTER POND C ASH FILTER POND D MW-4
DOWNGRADIENT
(1068.83) MW-3
DOWNGRADIENT
(1064.89) MW-23 DOWNGRADIENT 222

LEGEND:

CCR GROUNDWATER MONITORING WELL WITH **GROUNDWATER ELEVATION MEASURED BETWEEN OCTOBER 1 AND 4, 2017**

GROUNDWATER FLOW DIRECTION

REFERENCE:

GOOGLE AERIAL PHOTOGRAPH, DATED 10/2015.

500 Penn Center Boulevard, Suite 1000 Pittsburgh, Pennsylvania 15235

FIGURE 1 CCR COMPLIANCE GROUNDWATER MONITORING WELL LOCATION MAP ASH FILTER PONDS

CONEMAUGH GENERATING STATION INDIANA COUNTY, PENNSYLVANIA

ROJECT\1009144003_Conemaugh\1009144003_B7. Time: Jan 31, 2018 — 9:02am Xref: Evan.Schlegel

File: Plot

File: Plot Plott

REFERENCE:

GOOGLE AERIAL PHOTOGRAPH, DATED 10/2015.

LEGEND:

♦ MW-9 CCR GROUNDWATER MONITORING WELL WITH **GROUNDWATER ELEVATION MEASURED BETWEEN** OCTOBER 2 AND 3, 2017.

GROUNDWATER FLOW DIRECTION

500 Penn Center Boulevard, Suite 1000 Pittsburgh, Pennsylvania 15235

FIGURE 2 CCR COMPLIANCE GROUNDWATER MONITORING WELL LOCATION MAP ASH/REFUSE DISPOSAL SITE CONEMAUGH GENERATING STATION INDIANA COUNTY, PENNSYLVANIA

Mr. Andrew Wheeler, Administrator, US EPA December 2020

ATTACHMENT 4D

Groundwater Monitoring and Corrective Action Annual Report Calendar Year 2018

CCR COMPLIANCE GROUNDWATER MONITORING AND CORRECTIVE ACTION ANNUAL REPORT ASH FILTER PONDS AND ASH/REFUSE DISPOSAL SITE

Prepared for:

GenOn Northeast Management Company Conemaugh Generating Station New Florence, Pennsylvania

Prepared by:

Aptim Environmental & Infrastructure, Inc. Pittsburgh, Pennsylvania

January 2019

Table of Contents_

Tables	5	. ii
Figure	.5	. ii
-		
Apper	idices	. II
Introd	luction	. 1
Ash F	Filter Ponds	5
2.1	Groundwater Monitoring Network	. :
2.2	Summary of Previously-Reported Monitoring Activities	. :
2.3	2018 Data Collection	. :
2.4		
2.5	2018 Monitoring Program Transitions	. 4
2.6	2018 Corrective Actions	. 4
2.7	2019 Projected Activities	. 4
Ash [Disnosal Site	ŗ
3.1	Groundwater Monitoring Network	Ę
3.2		
3.3	2018 Monitoring Program Transitions	. 6
3.4	2018 Corrective Actions	. 6
3.5		
	Apper Introd Ash F 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Ash E 3.1 3.2 3.3 3.4	2.2 Summary of Previously-Reported Monitoring Activities 2.3 2018 Data Collection 2.4 Alternate Source Demonstration 2.5 2018 Monitoring Program Transitions 2.6 2018 Corrective Actions 2.7 2019 Projected Activities Ash Disposal Site 3.1 Groundwater Monitoring Network 3.2 2018 Data Collection 3.3 2018 Monitoring Program Transitions 3.4 2018 Corrective Actions

Tables

Figures

Appendices

List of Ta	ables
Table 1 Table 2 Table 3 Table 4	Ash Filter Ponds Groundwater Analytical Data Summary—Appendix III Constituents Ash Filter Ponds Groundwater Analytical Data Summary—Appendix IV Constituents Ash Disposal Site Groundwater Analytical Data Summary—Appendix III Constituents Ash Disposal Site Groundwater Analytical Data Summary—Appendix IV Constituents
List of Fi	gures
Figure 1 Figure 2	Ash Filter Ponds—Location and Groundwater Monitoring System Map Ash Disposal Site—Location and Groundwater Monitoring System Map
list of Δ	nnendices

Ash Filter Ponds—Alternate Source Demonstration

Ash Disposal Site—Assessment of Corrective Measures Report

Appendix A Appendix B

1.0 Introduction

Title 40 Code of Federal Regulations (CFR) §257.90 mandates that existing Coal Combustion Residuals (CCR) landfills and surface impoundments, also known as CCR units, be subject to groundwater monitoring and corrective action requirements as further detailed in §257.91 through §257.98. These requirements are part of the overall CCR Rule (or Rule) which was published in the Federal Register on April 17, 2015 and which became effective on October 19, 2015. Specific obligations for Owners and Operators of existing CCR units regarding the preparation of "Annual Groundwater Monitoring and Corrective Action Reports (Annual Report)" are outlined in §257.90(e)(1-5). The first of these Annual Reports was completed no later than January 31, 2018, and provided information to address the following aspects for the preceding calendar year:

- Document the status of the groundwater monitoring and corrective action program for the respective CCR units;
- Summarize key actions completed;
- Describe any problems encountered and actions taken to resolve the problems; and
- Offer a projection of key activities for the upcoming year.

At a minimum, the Annual Report must contain the following information to the extent applicable and available:

- A map, aerial image, or diagram showing the CCR unit and all background/upgradient and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program;
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
- In addition to all the monitoring data obtained under §257.90 through §257.98, a summary
 including the number of groundwater samples that were collected for analysis for each
 background/upgradient and downgradient well, the dates the samples were collected, and
 whether the sample was required by the detection monitoring or assessment monitoring
 programs;
- A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and
- Any other information required to be included as specified in §257.90 through §257.98.

The Conemaugh Generating Station (Station), operated by GenOn Northeast Management Company (GenOn), is an electric generating station located in New Florence, Pennsylvania. The Station operates two coal-fired boilers each with a steam turbine-driven electric generator that provides electricity to the regional electric grid. The Rule applies to this facility due to the management/disposal of CCR materials that are generated from the combustion of coal. CCR units associated with Station operations include the Conemaugh Ash/Refuse Disposal Site and four Ash Filter Ponds (Ponds "A," "B," "C," and "D") used for the management of bottom ash. Each of these CCR units has a dedicated groundwater monitoring system that was originally installed to comply with Commonwealth of Pennsylvania Residual Waste Regulations, and was subsequently evaluated and modified (as needed) for use under the CCR program. Additionally, in accordance with the provisions of §257.91(d) of the Rule, the groundwater monitoring system for the Ash Filter Ponds has been designated to provide coverage in the context of a multiunit system encompassing all four ponds collectively.

In summary, this second Annual Report has been prepared to comply with the requirements of §257.90(e), addressing each of the Conemaugh Station's CCR Units with respect to the groundwater monitoring and corrective actions undertaken during Calendar Year 2018. This Annual Report and all subsequent reports thereto will be placed in the Station's operating record per §257.105(h)(1), noticed to the State Director per §257.106(h)(1), and posted to the publicly accessible internet site per §257.107(h)(1).

2.0 Ash Filter Ponds

2.1 Groundwater Monitoring Network

The CCR groundwater monitoring system for the Ash Filter Ponds is comprised of five wells, including Wells MW-1B and MW-2 (upgradient), and Wells MW-3, MW-4, and MW-23 (downgradient). All five wells communicate with the alluvium, which is the uppermost aquifer. The locations of the groundwater monitoring wells are shown on Figure 1, along with depiction of the generalized groundwater flow direction in the area of the ponds. Each of these wells was already existing, and no new wells were added nor were any existing wells abandoned/replaced during the 2018 reporting period.

2.2 Summary of Previously-Reported Monitoring Activities

In accordance with the requirements under §257.94(b) for existing CCR surface impoundments, a minimum of eight independent samples from each background and downgradient well were collected and analyzed for the constituents listed in Appendices III and IV of the Rule prior to October 17, 2017. The results from these samples, which were collected during the period from December 2015 through July 2017, are presented in Table 1 (Appendix III constituents) and Table 2 (Appendix IV constituents). In addition, a ninth round of samples was collected (October 1-4, 2017) and analyzed for Appendix III constituents only. The results from these samples (also shown in Table 1) served as the first point of comparison to determine if concentrations in any of the downgradient wells are at levels representing a statistically significant increase (SSI) over the background concentrations established in the upgradient well(s).

2.3 2018 Data Collection

During January 2018, the results from the October 2017 Detection Monitoring event were reviewed, and subsequent determination made that one downgradient well (MW-4) showed an Appendix III constituent (sulfate) at levels representing an SSI above corresponding background concentrations (see Table 1). Accordingly, and per the provisions of §257.94(e)(2), efforts were undertaken to conduct an Alternate Source Demonstration in an attempt to identify a potential source other than the Ash Filter Ponds which was responsible for the observed SSI. This Alternate Source Demonstration, further discussed below in Section 2.3 and included in Appendix A, was ultimately successful and determined that incidental gypsum deposition in the area of Well MW-4 was causing the elevated sulfate readings in the localized groundwater. As a result, the Ash Filter Ponds were deemed to remain in the CCR Detection Monitoring Program, and were additionally sampled in May 2018 and October 2018 with continuing observations of SSIs only for sulfate in Well MW-4 (see Table 1).

2.4 Alternate Source Demonstration

As noted above, an Alternate Source Demonstration was conducted in early-2018 which resolved the observed SSI for sulfate in downgradient Well MW-4, relative to the levels measured during the October 2017 Detection Monitoring event. This Demonstration, which was completed in April 2018 and certified by APTIM's qualified professional engineer, provided the necessary documentation to confirm that the Ash Filter Ponds are not creating unacceptable impacts to groundwater. Considering the May 2018 and October 2018 Detection Monitoring events again showed elevated sulfate only as the lone SSI in MW-4, the findings from the April 2018 Demonstration remain relevant and applicable.

2.5 2018 Monitoring Program Transitions

During 2018, there were no transitions between monitoring programs. As a result of the successful Alternate Source Demonstration, only activities in support of the Detection Monitoring program were conducted.

2.6 2018 Corrective Actions

During 2018, there were no problems identified or corrective actions undertaken.

2.7 2019 Projected Activities

It is anticipated that Detection Monitoring activities will continue for the Ash Filter Ponds during 2019, with continued review of Appendix III constituent concentrations and comparison with the calculated background values.

3.0 Ash Disposal Site

3.1 Groundwater Monitoring Network

The CCR groundwater monitoring system for the Ash Disposal Site is comprised of four wells, including Well MW-31 (upgradient) and Wells MW-9, MW-10, and MW-11 (downgradient). Monitoring Wells MW-9 and MW-11 communicate with the shallow unconfined groundwater in bedrock and Monitoring Wells MW-10 and MW-31 communicate with shallow groundwater across the soil/bedrock interface. Hence, all four wells monitor the uppermost aquifer in the area of the Ash Disposal Site. The locations of the groundwater monitoring wells are shown on Figure 2, along with depiction of the generalized groundwater flow direction in the area of the disposal site. Each of these wells was already existing, and no new wells were added nor were any existing wells abandoned/replaced during the 2018 reporting period.

3.2 Summary of Previously-Reported Monitoring Activities

In accordance with the requirements under §257.94(b) for existing CCR landfills, a minimum of eight independent samples from each background and downgradient well were collected and analyzed for the constituents listed in Appendices III and IV of the Rule prior to October 17, 2017. The results from these samples, which were collected during the period from December 2015 through July 2017, are presented in Table 3 (Appendix III constituents) and Table 4 (Appendix IV constituents). In addition, a ninth round of samples was collected (October 2-3, 2017) and analyzed for Appendix III constituents only. The results from these samples (also shown in Table 3) served as the first point of comparison to determine if concentrations in any of the downgradient wells are at levels representing an SSI over the background concentrations established in the upgradient well(s).

3.3 2018 Data Collection

During January 2018, the results from the October 2017 Detection Monitoring event were reviewed, and subsequent determination made that all three downgradient wells showed several Appendix III constituents at levels representing an SSI above corresponding background concentrations (see Table 3). Accordingly, the Ash Disposal Site was transitioned into the CCR Assessment Monitoring, and an initial round of samples covering all Appendix IV constituents was collected in March 2018 (see Table 4) per §257.95(b). From these results, the detected Appendix IV constituents were carried forward and analyzed during continued Assessment Monitoring events conducted in May 2018 and October 2018. As shown in Table 4, none of the Appendix IV constituents from the May and October 2018 events were measured at concentrations representing a statistically significant level (SSL) above the corresponding site-specific groundwater protection standards. Detected concentrations of at least one Appendix IV constituent

(total barium); however, do remain above calculated background, and thus providing the basis for continued Assessment Monitoring into 2019.

It is additionally noted that the May 2018 Assessment Monitoring event yielded an erroneous result for Radium-226/228 in downgradient Well MW-9. The initially reported value (103.6 pCi/L) was generated via an incorrect laboratory analytical method. Following this determination, a new sample (for Radium analysis only) was collected from MW-9 in July 2018 and reanalyzed using the correct analytical method. The revised result from the July 2018 sampling is highlighted in Table 4.

3.4 2018 Monitoring Program Transitions

In 2018, the Ash Disposal Site transitioned into the Assessment Monitoring Program based on review of the October 2017 Detection Monitoring results, and subsequent confirmation that several Appendix III constituents in downgradient wells were at levels representing SSIs above background. The transition to the Assessment Monitoring Program was implemented during late-March 2018, including placement of an appropriate notification into the facility's operating record per §257.105(h).

3.5 2018 Corrective Actions

On August 8, 2018, a surficial (non-groundwater) release of CCR materials from the Ash Disposal Site (associated with the Stage II active area) was discovered during the performance of a routine weekly inspection (as required by the Rule). Upon discovery, Conemaugh Station informed the Pennsylvania Department of Environmental Protection (PADEP), who conducted an inspection of the area on August 9, 2018. Following an initial investigation, the release most likely occurred during an extremely intense precipitation event on July 30, 2018.

Pursuant to the requirements of §257.96(a) and (f), GenOn initiated an assessment of corrective measures on August 8, 2018 (the date of discovery), including corresponding notification to PADEP [§257.106(h)(7)], placement of such into the Station's operating records [§257.105(h)(9)], and posting to the publicly accessible website [§257.107(h)(7)]. To minimize potential impacts to human health and/or the environment, Conemaugh Station conducted interim/corrective measures to stabilize/improve the areas which were affected by the release and to reclaim (via vacuum truck) the surficially-deposited CCR materials from along the reaches of the East Valley mitigation stream.

Soil and surface water sampling was conducted to confirm and document the adequacy of the overall cleanup efforts and corrective measures implementation. As required, an Assessment of Corrective Measures Report was prepared to further discuss the CCR release incident, the measures implemented and final resolution. Per the Rule, the Assessment of Corrective Measures Report must be included as part of the Annual Groundwater Monitoring and Corrective Action

Report, and as such, this report is presented in Appendix B. A standalone copy of the Assessment of Corrective Measures Report was placed in the Conemaugh Station's operating record per §257.105(h)(10), noticed to PADEP per §257.106(h)(8), and posted to the publicly accessible website per §257.107(h)(8).

3.6 2019 Projected Activities

It is anticipated that Assessment Monitoring activities will continue for the Ash Disposal Site during 2019, with continued review of Appendix III/Appendix IV constituent concentrations and comparison against calculated background and established groundwater protection standards.

Table 1 Conemaugh Generating Station Ash Filter Ponds--Groundwater Analytical Data CCR Appendix III Constituents

				CCR Appena	ix III Constitue	nts			
Monitoring Well	Date	Groundwater Elevation	Total Boron (mg/L)	Total Calcium (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Dissolved Solids (mg/L)	Sulfate (mg/L)	pH (S.U.)
g	Sampled	(ft. MSL)			Cal	culated Background	,		
		,	0.58	376	1560	0.20	6975	788	4.59-7.42
	17-Dec-15	1070.99	0.29	333	1540	< 0.1	3620	544	5.49
	27-Jan-16	1071.19	0.31	288	1280	< 0.1	3180	583	5.87
	20-Apr-16	1071.69	0.28	170	652	< 0.5	2410	729	6.09
	19-Jul-16	1071.69	0.36	208	1310	0.1	2760	575	5.79
	11-Oct-16	1072.99	0.46	192	1010	0.2	2640	438	6.56
MW-1B	17-Jan-17	1072.54	0.43	198	1030	< 0.1	2650	427	5.87
(Upgradient)	24-Apr-17	1072.69	0.37	166	988	< 0.1	2470	548	5.27
	20-Jul-17	1072.04	0.39	345	1560	< 0.1	3740	388	5.00
	1-Oct-17	1070.84	0.36	430	2040	< 0.1	4930	427	5.68
	22-May-18	1074.94	0.39	120	640	< 0.1	1680	364	5.91
	18-Oct-18	1074.69	0.89	53	288	3.1	1340	543	7.56
	11-Oct-16	1072.72	0.30	191	251	< 0.1	1200	348	6.28
	16-Nov-16	1072.42	0.31	176	94	0.1	868	416	6.95
	21-Dec-16	1073.02	0.41	176	101	0.2	1050	519	7.03
	25-Jan-17	1073.72	0.21	137	68	0.2	726	316	6.93
MW-2	21-Mar-17	1073.82	0.33	158	75	0.1	828	387	6.40
(Upgradient)	25-Apr-17	1072.92	0.29	136	69	< 0.1	792	373	6.28
(008.00.00)	13-Jun-17	1073.02	0.30	150	60	< 0.1	768	369	6.15
	27-Jul-17	1072.57	0.28	133	67	< 0.1	684	310	6.45
	4-Oct-17	1071.17	0.32	138	58	< 0.1	768	330	6.80
	29-May-18	1075.57	0.10	98	22	0.4	606	185	7.10
	23-Oct-18	1075.37	0.18	105	21	0.4	550	192	6.97
	16-Dec-15	1065.24	< 0.05	123	363	< 0.1	882	227	5.74
	26-Jan-16	1065.89	< 0.05	132	392	< 0.1	970	250	5.94
	25-Apr-16	1066.14	< 0.05	203	505	< 0.1	1460	288	6.52
	25-Jul-16 24-Oct-16	1064.99 1066.19	< 0.05 < 0.05	115 123	343 304	< 0.1 < 0.1	972 902	225 211	5.72 6.01
MW-3	17-Jan-17	1066.19	< 0.05	113	370	< 0.1	976	245	5.95
(Downgradient)	25-Apr-17	1067.09	< 0.05	181	552	< 0.1	1740	314	5.57
	25-Api-17 25-Jul-17	1065.99	< 0.05	151	389	< 0.1	1270	256	5.47
	1-Oct-17	1064.89	< 0.05	135	387	< 0.1	1140	255	6.30
	23-May-18	1067.79	< 0.05	175	455	< 0.1	1330	276	6.07
	23-Oct-18	1068.29	< 0.05	152	440	< 0.1	1150	293	5.75
	21-Dec-15	1069.53	0.15	301	643	< 0.1	2470	874	5.77
	4-Feb-16	1069.73	0.13	316	654	< 0.1	2580	870	5.83
	26-Apr-16	1070.08	0.13	426	932	< 0.1	3390	965	6.19
	25-Jul-16	1068.98	0.12	346	874	< 0.1	3120	1090	5.82
2024	26-Oct-16	1070.08	0.17	310	670	< 0.1	2530	865	6.27
MW-4	30-Jan-17	1070.88	0.15	301	736	< 0.1	2740	895	6.12
(Downgradient)	26-Apr-17	1070.93	0.14	392	863	< 0.1	3310	996	6.68
	27-Jul-17	1070.23	0.19	403	977	< 0.1	3350	1170	5.63
	4-Oct-17	1068.83	0.14	335	814	< 0.2	3200	1050	6.02
	29-May-18	1070.53	0.13	345	842	< 0.1	3280	1010	5.96
	24-Oct-18	1071.93	0.14	290	589	< 0.1	2550	927	5.99
	20-Dec-15	1068.03	< 0.05	182	388	< 0.1	1580	653	5.59
	2-Feb-16	1069.08	< 0.05	176	344	< 0.1	1520	576	5.98
	25-Apr-16	1069.38	< 0.05	175	329	< 0.1	1540	557	5.16
	21-Jul-16	1067.93	0.34	173	371	< 0.1	1600	591	5.63
MW-23	24-Oct-16	1068.83	< 0.05	173	327	< 0.1	1540	509	6.14
(Downgradient)	18-Jan-17	1070.13	0.11	165	368	< 0.1	1550	543	5.79
,	24-Apr-17	1069.68	< 0.05	164	383	< 0.1	1520	558	5.21
	24-Jul-17	1069.18	< 0.05	183	378	< 0.1	1530	532	5.15
	1-Oct-17	1067.98	< 0.05	172	313	< 0.1	1520	575	6.25
	22-May-18	1071.18	< 0.05	181	347	< 0.1	1460	507	5.63
	22-Oct-18	1071.13	< 0.05	165	355	< 0.1	1450	538	5.70

Notes

- 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.
- 2. Background values based on statistical evaluation of initial eight rounds (Dec. 2015 thru July 2017) of groundwater sampling data for Wells MW-1B and MW-2.

Table 2 **Conemaugh Generating Station** Ash Filter Ponds--Groundwater Analytical Data **CCR Appendix IV Constituents**

								chaix iv const								
		Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Cadmium (mg/L)	Total Chromium (mg/L)	Total Cobalt (mg/L)	Total Fluoride (mg/L)	Total Lea (mg/L)		Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Selenium (mg/L)	Total Thallium (mg/L)	Total Radium-226 and 228 (pCi/L)
Manitavina Mall	Data Campled							Ca	alculated Backgrou	nd						
Monitoring Well	Date Sampled	0.001	0.001	0.04	0.001	0.005	0.01	0.013	0.2	0.001	0.03	0.0002	0.02	0.001	0.0002	4.24
								Ground	water Protection S	tandard						
		MCL	MCL	MCL	MCL	MCL	MCL	RSL	MCL	RSL	RSL	MCL	RSL	MCL	MCL	MCL
		0.006	0.01	2	0.004	0.005	0.1	0.006	4.0	0.015	0.04	0.002	0.10	0.05	0.002	5
	1= = 1=															
	17-Dec-15	< 0.001	< 0.001	0.04	< 0.001	0.005	< 0.01	0.012	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	4.24
	27-Jan-16	< 0.001	< 0.001	0.03	< 0.001	0.005	< 0.01	< 0.005	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	0.29
	20-Apr-16	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.5	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	0.72
MW-1B	19-Jul-16	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	0.006	0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	1.31
(Upgradient)	11-Oct-16	< 0.001	< 0.001	0.02	< 0.001	0.002	< 0.01	< 0.005	0.2	< 0.00	0.02	< 0.0002	< 0.02	< 0.001	< 0.0002	0.78
	17-Jan-17	< 0.001	< 0.001	0.02	< 0.001	0.002	< 0.01	0.005	< 0.1	< 0.00	0.02	< 0.0002	< 0.02	< 0.001	< 0.0002	0.24
	24-Apr-17	< 0.001	< 0.001	0.02	< 0.001	0.002	< 0.01	0.005	< 0.1	< 0.00	0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.77
	20-Jul-17	< 0.001	< 0.001	0.03	< 0.001	0.005	< 0.01	0.013	< 0.1	< 0.00	0.02	< 0.0002	< 0.02	< 0.001	< 0.0002	1.03
	11-Oct-16	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.00	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.69
	16-Nov-16	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.00	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.44
	21-Dec-16	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	0.2	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	0.43
MW-2	25-Jan-17	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	0.2	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	0.88
(Upgradient)	21-Mar-17	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	0.09
(0)8. aa.c()	25-Apr-17	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	0.35
	13-Jun-17	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.00		< 0.0002	< 0.02	0.001	< 0.0002	0.80
	27-Jul-17	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	0.14
	16-Dec-15			0.04			< 0.01	1				< 0.0002	< 0.02	< 0.001	< 0.0002	0.44
-		< 0.001	. 0.001	0.03		< 0.002	< 0.01	0.009	< 0.1	< 0.00		< 0.0002				0.44
-	26-Jan-16	< 0.001	< 0.001		< 0.001	< 0.002		0.011	< 0.1	< 0.00			< 0.02	< 0.001	< 0.0002	
1414/2	25-Apr-16	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	0.014	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	0.60
MW-3	25-Jul-16	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	0.009	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	0.46
(Downgradient)	24-Oct-16	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	0.012	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	1.34
	17-Jan-17	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	0.008	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	0.28
	25-Apr-17	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	0.013	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	0.45
	25-Jul-17	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	0.010	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	1.33
	21-Dec-15	< 0.001	< 0.001	0.01	< 0.001	0.002	< 0.01	0.039	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	1.20
	4-Feb-16	< 0.001	< 0.001	0.01	< 0.001	0.003	< 0.01	0.038	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	0.47
	26-Apr-16	< 0.001	< 0.001	0.02	< 0.001	0.003	< 0.01	0.039	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	1.15
MW-4	25-Jul-16	< 0.001	< 0.001	0.01	< 0.001	0.003	< 0.01	0.035	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	0.43
(Downgradient)	26-Oct-16	< 0.001	< 0.001	0.01	< 0.001	0.003	< 0.01	0.037	< 0.1	< 0.00	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.72
[30-Jan-17	< 0.001	< 0.001	0.01	< 0.001	0.003	< 0.01	0.034	< 0.1	< 0.00	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.09
	26-Apr-17	< 0.001	< 0.001	0.01	< 0.001	0.004	< 0.01	0.041	< 0.1	< 0.00	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.73
Ţ	27-Jul-17	< 0.001	< 0.001	0.01	< 0.001	0.003	< 0.01	0.039	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	1.24
	20-Dec-15	< 0.001	< 0.001	0.01	< 0.001	0.002	< 0.01	0.114	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	6.87
 	2-Feb-16	< 0.001	< 0.001	0.02	< 0.001	0.002	< 0.01	0.106	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	1.03
Ī	25-Apr-16	< 0.001	0.001	0.01	< 0.001	0.002	< 0.01	0.123	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	0.56
MW-23	21-Jul-16	< 0.001	< 0.001	0.01	< 0.001	0.003	< 0.01	0.114	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	0.65
(Downgradient)	24-Oct-16	< 0.001	0.001	0.02	< 0.001	< 0.003	< 0.01	0.099	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	0.12
(Downstaulent)	18-Jan-17	< 0.001	< 0.001	0.02	< 0.001	0.002	< 0.01	0.100	< 0.1	< 0.00		< 0.0002	< 0.02	< 0.001	< 0.0002	0.12
					1			1		+						
	24-Apr-17		< 0.001	0.01	< 0.001	< 0.002	< 0.01	0.097	< 0.1	< 0.00		+	< 0.02	< 0.001	< 0.0002	0.40
	24-Jul-17	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	0.095	< 0.1	< 0.00	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.21

- Notes:

 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.
- Background values based on statistical evaluation of initial eight rounds (Dec. 2015 thru July 2017) of groundwater sampling data for Wells MW-1B and MW-2.
 As indicated, Groundwater Protection Standards are either published MCLs or risk-based Regional Screening Levels (RSLs). For constituents where calculated background exceeds either the MCL or RSL, the background value is used.

Table 3 **Conemaugh Generating Station** Ash Disposal Site--Groundwater Analytical Data CCR Appendix III Constitue

Monitoring Well	Date Sampled	Groundwater Elevation	Total Boron (mg/L)	CR Appendix III Total Calcium (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Dissolved Solids (mg/L)	Sulfate (mg/L)	pH (S.U.)	
		(ft. MSL)			Calc	ulated Background				
			0.05	8.86	1	0.1	96.2	4	4.07-6.81	
	20-Dec-15	1435.54	< 0.05	6.2	1	< 0.1	50	4	6.15	
	1-Feb-16	1438.04	< 0.05	7.1	1	< 0.1	34	4	6.42	
	20-Apr-16	1439.54	< 0.05	7.8	< 1	< 0.1	44	4	6.45	
MW-31	20-Jul-16	1435.89	< 0.05	6.3	1	< 0.1	58	4	6.24	
	25-Oct-16	1436.24	< 0.05	6.7	1	< 0.1	70	4	5.82	
(Upgradient)	19-Jan-17	1438.74	< 0.05	6.4	1	< 0.1	64	3	6.19	
(Opgradient)	12-Apr-17	1439.74	< 0.05	6.2	1	< 0.1	52	4	5.75	
	25-Jul-17	1437.24	< 0.05	7.4	1	< 0.1	72	4	5.62	
	3-Oct-17	1434.49	< 0.05	6.6	1	< 0.1	32	4	6.36	
	24-May-18	1441.64	< 0.05	6.2	1	< 0.1	58	4	6.29	
	22-Oct-18	1439.94	< 0.05	84.9	1	< 0.1	40	4	6.17	
	17-Dec-15	1100.47	< 0.05	102	83	0.1	426	72	7.08	
	28-Jan-16	1100.57	0.09	102	97	0.1	424	63	7.20	
	21-Apr-16	1099.77	< 0.05	96	81	0.1	398	65	7.38	
	20-Jul-16	1098.97	0.05	99	93	< 0.1	466	62	7.57	
MW-9	16-Nov-16	1099.82	< 0.05	104	94	< 0.1	466	55	7.05	
	23-Jan-17	1100.77	< 0.05	96	92	< 0.1	406	65	7.27	
(Downgradient)	12-Apr-17	1099.47	< 0.05	96	96	< 0.1	446	77	6.74	
	24-Jul-17	1099.82	< 0.05	104	98	< 0.1	456	79	6.60	
	2-Oct-17	1099.67	< 0.05	94	92	< 0.1	430	75	7.41	
	23-May-18	1100.17	< 0.05	104	112	< 0.1	456	84	7.29	
	17-Oct-18	1100.32	< 0.05	102	109	< 0.1	472	67	7.09	
	16-Dec-15	1103.26	< 0.05	106	90	0.1	444	97	7.71	
	1-Feb-16	1103.36	< 0.05	102	100	0.1	416	107	7.56	
	19-Apr-16	1103.06	< 0.05	102	95	0.1	454	99	7.45	
	25-Jul-16	1102.16	< 0.05	100	91	0.1	476	114	7.25	
MW-10	25-Oct-16	1102.16	< 0.05	117	84	0.1	522	113	7.50	
(Downgradient)	25-Jan-17	1103.86	< 0.05	94	105	< 0.1	482	110	7.21	
(Downgraulent)	13-Apr-17	1102.86	< 0.05	97	99	< 0.1	460	97	6.77	
	26-Jul-17	1102.66	0.05	108	94	< 0.1	508	127	6.75	
	3-Oct-17	1102.61	< 0.05	111	91	0.1	490	130	7.38	
	29-May-18	1104.76	< 0.05	99	99	0.1	492	106	7.14	
	17-Oct-18	1103.66	< 0.05	98	89	0.1	456	106	7.10	
	21-Dec-15	1102.68	0.08	180	55	0.1	814	223	6.77	
	27-Jan-16	1103.38	0.09	169	48	< 0.1	776	191	7.02	
	21-Apr-16	1102.63	0.07	161	46	< 0.1	754	170	7.31	
	21-Jul-16	1101.68	0.14	156	52	< 0.1	754	208	7.37	
MW-11	20-Oct-16	1101.93	0.09	166	48	0.1	754	199	6.97	
(Downgradient)	23-Jan-17	1103.63	< 0.05	164	51	0.1	770	207	6.98	
(DOWNE autent)	13-Apr-17	1103.28	0.07	170	49	< 0.1	774	183	6.65	
	26-Jul-17	1102.33	0.10	150	60	< 0.1	700	182	6.35	
	2-Oct-17	1102.48	0.07	151	61	0.1	732	210	7.20	
	24-May-18	1103.08	< 0.05	139	54	0.1	736	192	7.02	
	18-Oct-18	1102.93	0.07	169	60	0.1	750	194	6.94	

- Notes:

 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.

 2. Background values based on statistical evaluation of initial eight rounds (Dec. 2015 thru July 2017) of groundwater sampling data for Well MW-31.

Table 4 Conemaugh Generating Station Ash Disposal Site--Groundwater Analytical Data CCR Appendix IV Constituents

		Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Cadmium (mg/L)	Total Chromium (mg/L)	Total Cobalt (mg/L)	Total Fluoride (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Selenium (mg/L)	Total Thallium (mg/L)	Total Radium-226 and 228 (pCi/L)
Monitoring Well	Date							Ca	Iculated Backgroun	d						
wontoning wen	Sampled	0.001	0.001	0.02	0.001	0.002	0.01	0.005	0.1	0.001	0.01	0.0002	0.02	0.001	0.0002	1.89
			Groundwater Protection Standard MCI MCI MCI MCI MCI MCI MCI MCI MCI MCI													
		MCL	MCL	MCL	MCL	MCL	MCL	RSL	MCL	RSL	RSL	MCL	RSL	MCL	MCL	MCL
		0.006	0.01	2	0.004	0.005	0.1	0.006	4.0	0.15	0.04	0.002	0.10	0.05	0.002	5
	20-Dec-15	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	14.1
	1-Feb-16	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.08
	20-Apr-16	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.75
	20-Jul-16	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.77
MW-31	25-Oct-16	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.42
(Upgradient)	19-Jan-17	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.03
	12-Apr-17	< 0.001	< 0.001	< 0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.51
	25-Jul-17	< 0.001	< 0.001 < 0.001	< 0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01 < 0.01	< 0.0002	< 0.02	< 0.001 < 0.001	< 0.0002	-0.05
	28-Mar-18	< 0.001		< 0.01	< 0.001	< 0.002	< 0.01	· 0.003	< 0.1	< 0.001		< 0.0002	< 0.02	†	< 0.0002	0.63
	24-May-18 22-Oct-18	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	0.01	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	< 0.1	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	0.40 0.71
	17-Dec-15	,	< 0.001	0.17	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	3.66
	28-Jan-16	< 0.001	< 0.001	0.05	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.18
	21-Apr-16	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	3.90
	20-Jul-16	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	-0.05
	16-Nov-16	< 0.001	< 0.001	0.05	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.78
MW-9	23-Jan-17	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.70
(Downgradient)	12-Apr-17	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.03
	24-Jul-17	< 0.001	< 0.001	0.05	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.74
	28-Mar-18	< 0.001	< 0.001	0.05	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.37
	23-May-18	Not Analyzed	Not Analyzed	0.04	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	< 0.1	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.32
	17-Oct-18	Not Analyzed	Not Analyzed	0.05	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	< 0.1	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.67
	16-Dec-15	< 0.001	< 0.001	0.06	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	-0.04
	1-Feb-16	< 0.001	< 0.001	0.06	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.25
	19-Apr-16	< 0.001	< 0.001	0.10	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.68
	25-Jul-16	< 0.001	< 0.001	0.06	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.55
MW-10	25-Oct-16	< 0.001	< 0.001	0.06	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.62
(Downgradient)	25-Jan-17	< 0.001	< 0.001	0.05	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.29
	13-Apr-17	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.34
	26-Jul-17	< 0.001 < 0.001	< 0.001 < 0.001	0.04	< 0.001 < 0.001	< 0.002 < 0.002	< 0.01 < 0.01	< 0.005 < 0.005	< 0.1 0.1	< 0.001 < 0.001	< 0.01 < 0.01	< 0.0002 < 0.0002	< 0.02 < 0.02	< 0.001 < 0.001	< 0.0002 < 0.0002	1.05 0.29
	29-Mar-18 29-May-18	Not Analyzed	Not Analyzed	0.03	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.1	Not Analyzed	Not Analyzed	+	Not Analyzed	Not Analyzed	Not Analyzed	0.29
	17-Oct-18	Not Analyzed	Not Analyzed	0.04	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.1	Not Analyzed	· · · · · · · · · · · · · · · · · · ·	1	Not Analyzed	Not Analyzed	Not Analyzed	0.48
	21-Dec-15	< 0.001	< 0.001	0.07	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	2.21
	27-Jan-16	< 0.001	< 0.001	0.06	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.33
	21-Apr-16	< 0.001	< 0.001	0.06	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	3.18
	21-Jul-16	< 0.001	< 0.001	0.08	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.70
D 00 4 4 4	20-Oct-16	< 0.001	< 0.001	0.06	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.93
MW-11	23-Jan-17	< 0.001	< 0.001	0.07	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.48
(Downgradient)	13-Apr-17	< 0.001	< 0.001	0.07	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	1.46
	26-Jul-17	< 0.001	< 0.001	0.05	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.80
	29-Mar-18	< 0.001	< 0.001	0.08	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.78
	24-May-18	Not Analyzed	Not Analyzed	0.07	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.1	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.83
	18-Oct-18	Not Analyzed	Not Analyzed	0.07	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.1	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	1.20

= Value determined as a statistical outlier and excluded from background calculations.

= Result from July 17, 2018 re-sampling; prior result from May 23, 2018 sampling (103.6 pCi/L) was associated with use of incorrect analytical Method (gamma spec Method 901.1).

Notes:

- 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.
- 2. Background values based on statistical evaluation of initial eight rounds (Dec. 2015 thru July 2017) of groundwater sampling data for Well MW-31.
- 3. As indicated, Groundwater Protection Standards are either published MCLs or risk-based Regional Screening Levels (RSLs). For constituents where calculated background exceeds either the MCL or RSL, the background value is used.

ING 1009144003-B8 MW-1B UPGRADIENT (1074.69) MW-2 UPGRADIENT ASH FILTER POND A ASH FILTER POND B ASH FILTER PONIC ASH FILTER POND D MW-4
DOWNGRADIENT
(1071.93) MW-3
DOWNGRADIENT
(1068.29) MW-23 DOWNGRADIENT 222

LEGEND:

⊕ MW-3

CCR GROUNDWATER MONITORING WELL WITH **GROUNDWATER ELEVATION** MEASURED BETWEEN OCTOBER 18 AND 24, 2018.

GROUNDWATER FLOW DIRECTION

REFERENCE:

GOOGLE AERIAL PHOTOGRAPH, DATED 10/2015.

500 Penn Center Boulevard, Suite 1000 Pittsburgh, Pennsylvania 15235

FIGURE 1 CCR COMPLIANCE GROUNDWATER MONITORING WELL LOCATION MAP
ASH FILTER PONDS
CONEMAUGH GENERATING STATION
INDIANA COUNTY, PENNSYLVANIA

File: Plot Plotte

REFERENCE:

GOOGLE AERIAL PHOTOGRAPH, DATED 10/2015.

LEGEND:

CCR GROUNDWATER MONITORING WELL WITH **GROUNDWATER ELEVATION** MEASURED BETWEEN OCTOBER 17 AND 22, 2018.

GROUNDWATER FLOW DIRECTION

500 Penn Center Boulevard, Suite 1000 Pittsburgh, Pennsylvania 15235

FIGURE 2 CCR COMPLIANCE GROUNDWATER
MONITORING WELL LOCATION MAP
ASH/REFUSE DISPOSAL SITE
CONEMANDER GENERALING VANIA INDIANA COUNTY, PENNSYLVANIA

Appendix A
Ash Filter Ponds--Alternate Source Demonstration

CCR COMPLIANCE ALTERNATE SOURCE DEMONSTRATION APPENDIX III GROUNDWATER EVALUATION OF A STATISTICALLY SIGNIFICANT INCREASE AT THE CONEMAUGH ASH FILTER PONDS

Prepared for:

GenOn Northeast Management Company Conemaugh Generating Station New Florence, Pennsylvania

Prepared by:

Aptim Environmental & Infrastructure, Inc. St. Charles, Illinois

April 2018

Table of Contents_

List of	Tablesi
List of	Figuresi
	Appendicesi
	Introduction
2.0	Background
3.0	Geochemical Comparison
4.0	Alternate Source Identification and Conclusions
5.0	Professional Engineer's Certification

Tables

Figures

Appendices

List of Tables _____

Table 1 Groundwater Analytical Results (Fourth Quarter 2017)

Table 2 Ash Pond and Monitoring Well Analytical Results (April 2017)

List of Figures _____

Figure 1 Site Location Map Figure 2 Piper Diagram

Figure 3 Photo of Gypsum Haul Truck Next to Monitoring Wells

Figure 4 FGD and Gypsum Area Sump General Plan

List of Appendices_____

Appendix A Quarterly Background Data for the Upgradient Monitoring Wells and the Resultant

Calculated Background Concentrations

Appendix B Historical Sulfate Data (Three Downgradient Monitoring Wells)

1.0 Introduction

Title 40 Code of Federal Regulations (CFR) §257.90 mandates that existing Coal Combustion Residuals (CCR) impoundments, also known as CCR units, be subject to groundwater monitoring and corrective action requirements as further detailed in §257.91 through §257.98. These requirements are part of the overall CCR Rule (or Rule) which was published in the Federal Register on April 17, 2015 and which became effective on October 19, 2015. Specific obligations for Owners and Operators of existing CCR units regarding the requirements for groundwater sampling as part of the CCR Detection Monitoring Program are outlined in §257.94.

The Conemaugh Generating Station (Conemaugh), operated by GenOn Northeast Management Company, is a coal-fired steam turbine-driven electric generation station located in New Florence, Pennsylvania. The Rule applies to this facility due to the management/disposal of CCR materials that are generated from the combustion of coal. CCR units associated with Conemaugh operations include four Ash Filter Ponds (Ponds "A," "B," "C," and "D") and the Ash/Refuse Disposal Site (not the subject of this current document). The Ash Filter Ponds have a dedicated groundwater monitoring system that was originally installed to comply with Commonwealth of Pennsylvania Residual Waste Regulations, and was subsequently evaluated and modified for use under the CCR program. Additionally, in accordance with the provisions of §257.91(d) of the Rule, the groundwater monitoring system for the Ash Filter Ponds has been designated to provide coverage in the context of a multiunit system encompassing all four ponds collectively.

In accordance with §257.94(b), groundwater sampling in support of the CCR Detection Monitoring Program was conducted during the 4th quarter of 2017 at the Conemaugh Ash Filter Ponds. Samples were collected on October 1-4, 2017, and subsequently analyzed for CCR Appendix III constituents only. The analytical data from this sampling event has served as the first point of comparison to determine if concentrations in any of the downgradient wells are at levels representing a statistically significant increase (SSI) over background concentrations established in the upgradient wells. Results from the October 2017 sampling event showed only one Appendix III constituent (sulfate) at levels above background in one of the downgradient monitoring wells (MW-4).

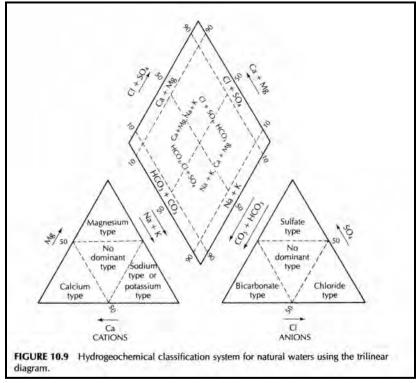
Following additional review of the data and preliminary consideration of the results as an SSI, a determination was made on January 15, 2018 to conduct an Alternate Source Demonstration per \$257.94(e)(2), which includes provisions such that:

"The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality." Accordingly, this Alternate Source Demonstration (ASD) has been prepared to satisfy the requirements of §257.94(e)(2), and which further stipulates that the ASD must be completed within 90 days of detecting a SSI(s) above background and be certified by a qualified professional engineer. If a successful ASD is completed, then sampling under the CCR Detection Monitoring program may continue for the unit. The ASD must also be included in the Annual Groundwater Monitoring and Corrective Action Report [per §257.90(e)] that must be prepared by January 31 of each year. If at the end of the 90-day period the ASD is proven unsuccessful, the owner or operator of the affected CCR unit must then initiate an Assessment Monitoring Program per §257.95.

2.0 Background

These ash ponds are located within the station proper, are situated immediately adjacent to one another, and are designated from north to south as Bottom Ash Filter Recycle Pond "A" and Bottom Ash Filter Ponds "B," "C," and "D" (see Figure 1). Each pond is approximately 405 feet long by 90 feet wide as measured at the crest and has an average depth of approximately 11 feet as measured from the crest to the top of the protective bottom ash layer. In addition, each of the ponds is constructed with a liner system compliant with the requirements of §257.71, reflecting the certified/documented presence of a two-feet thick clay liner meeting the hydraulic conductivity criteria per §257.71(a)(1)(i).

The groundwater monitoring system for the Ash Filter Ponds is comprised of five wells, including two upgradient wells (MW-1B and MW-2), and three downgradient wells (MW-3, MW-4, and MW-23). All five wells communicate with the alluvium, which is the uppermost aquifer in this portion of the property. The locations of the monitoring wells are also shown on Figure 1, along with a depiction of the generalized groundwater flow direction in the area of the ponds.


Per the requirements of §257.94, background sampling over the course of eight quarterly events was performed (4th QTR 2015 through 3rd QTR 2017) at all five groundwater monitoring wells. Data from upgradient wells MW-1B and MW-2 was then utilized to calculate background levels for each of the Appendix III constituents. The procedures used to calculate the background concentrations are presented in the document entitled "Statistical Method for Groundwater Data Evaluation – Ash Filter Ponds and Ash/Refuse Disposal Site – Conemaugh Generating Station, October 2017." In summary, specialized software that utilizes a statistical predictive algorithm was used to calculate the background concentrations. The quarterly background data for the upgradient wells and the resultant calculated background concentrations derived from the specialized software are presented in Appendix A.

An SSI is realized at a downgradient well if either the concentration at that well is greater than the background concentration, or the pH at that well is outside of the background pH range. As shown in Table 1, the results from the October 2017 Detection Monitoring event showed sulfate concentrations in well MW-4 (1,050 mg/L) to be above the calculated background value (788 mg/L). Based on this observation, a decision was made on January 15, 2018 to evaluate the possible existence of an alternate source for the observed sulfate concentration in well MW-4.

3.0 Geochemical Comparison

Utilizing the data from the October 2017 groundwater sampling event, a geochemical comparison was performed to assist in determining if the SSI for sulfate at well MW-4 originated from the Ash Filter Ponds or from an alternate source. In this regard, a Piper diagram was created to help compare analytical data from the monitoring wells to the liquid in the Ash Filter Ponds. A Piper diagram employs a methodology that is used to compare a known/suspected source to sampling locations, based on the classification and visualization of hydrochemical data. This methodology builds on the recognition that almost 90 percent of dissolved solids in groundwater are attributed to eight ions: Ca²⁺, Cl⁻, CO₃²⁻, HCO₃⁻, K⁺, Mg²⁺, Na⁺, and SO₄²⁻.

A Piper diagram normalizes the eight ions into cations and anions. The normalized data are then plotted in three areas, including a center diamond which shows the composition of the sample with respect to both cations and anions, and two triangles that represent either cations or anions in the data. A Piper diagram also combines the concentrations of the anions CO_3^{2-} and HCO_3^{-} and cations Na^+ and K^+ , which allows all the major ions to be plotted on one diagram. The illustration below shows the hydrochemical classification system used to construct a Piper diagram. Samples that have been impacted by a source would shift away from upgradient background composition and toward the source composition.

Fetter, C.W., Applied Hydrogeology, 1994.

The Piper diagram created for the current evaluation is presented in Figure 2 and makes use of supplemental data collected during the April 2017 CCR background sampling event (see Table 2) from the following locations:

- Upgradient wells MW-1B and MW-2
- Downgradient wells MW-3, MW-4, and MW-23
- Ash Filter Ponds "A" and "B"

It should be noted that the April 2017 analytical data strongly correlate with the October 2017 analytical results, including a possible SSI for sulfate (996 mg/L) at well MW-4, had background values been established at that time.

The Piper diagram further indicates that the geochemical composition of well MW-4 has not been altered by the source composition (Ponds "A" or "B"), as an altered composition would have plotted closer to the source composition. Moreover, the composition of the groundwater within well MW-4 is the least similar of all of the downgradient monitoring wells to the source composition. These observations suggest that the elevated sulfate levels well MW-4 are from a source other than the Ash Filter Ponds.

A final point to note is the presence/absence of boron, which is a recognized component of coal ash and considered to be a very mobile indicator parameter as such. Groundwater impacted by coal ash generally contains appreciable levels of boron. From review of Tables 1 and 2, significant levels of boron are present in the liquid contained within the Ash Filter Pond "A" and "B." Conversely, boron levels are generally non-detect in downgradient wells MW-3 and MW-23, and nearly non-detect in well MW-4 at concentrations seen to be a full order of magnitude less than the concentrations measured in the ponds. If well MW-4 was impacted by the regulated unit, one would expect to see elevated boron levels. These results offer additional evidence to support the differing compositions of well MW-4 versus the ponds, and further bolster the existence of an alternate source for the SSI for sulfate.

4.0 Alternate Source Identification and Conclusions

Based on discussions with Station personnel and understanding of operations in the area of the Ash Filter Ponds, focus was given to possible impacts associated with the gypsum handling operations which originate in the nearby Gypsum Storage Dome. Gypsum is generated as a product of the wet flue gas desulfurization (wet FGD) emissions control system that is designed to remove sulfur dioxide and other pollutants from the coal-fired boiler's flue gas stream. Gypsum is essentially comprised of calcium and sulfate, two of the CCR Appendix III indicator parameters. As shown on Figure 1, the Dome lies east of the Ash Filter Ponds and serves as the starting point for loading and truck-based transportation of gypsum to the Station's Ash/Refuse Disposal Site. The route from the Dome to the Ash/Refuse Disposal Site begins on a paved roadway that runs just south of the Ash Filter Ponds, with downgradient wells MW-3 and MW-4 being located immediately adjacent to this roadway. This roadway is regularly wetted via water trucks as a dust control measure, and any runoff from this section of the roadway will sheetflow in the direction of MW-3 and MW-4. Figure 3 shows a truck loaded with gypsum traveling along the haul road past the monitoring wells and en route to the Ash/Refuse Disposal Site. The photograph used in this figure was captured during APTIM's visit to Conemaugh on March 23, 2018.

Historical sulfate data for the three downgradient monitoring wells, including graphical representations (provided in Appendix B), indicate elevated and rising sulfate levels in all three wells until approximately 2014, when sulfate levels at wells MW-3 and MW-23 began to decline. At the same time, sulfate levels at well MW-4 continued to rise. Inquiries to Conemaugh personnel revealed that a concrete Gypsum Area Sump was newly installed and put on-line in and around this similar 2014 timeframe. As shown on Figure 4, the Gypsum Area Sump included a surface water runoff collection channel and culvert system located just east of well MW-3 and just south of well MW-23. Once functional, the Gypsum Area Sump and associated piping/grading began capturing the surface water runoff (containing gypsum) from the paved roadway near wells MW-3 and MW-23, and sulfate levels in these two wells subsequently decreased.

Well MW-4, however, is not topographically connected to the Gypsum Area Sump and was therefore unaffected by its implementation (refer to Figure 4). Well MW-3 is higher in surface elevation than well MW-4, and therefore, surface water runoff west of well MW-3 flows toward well MW-4 and not into the collection features tied to the Gypsum Area Sump. During APTIM's March 23, 2018 site visit, gypsum residue was present in the immediate area around MW-4 on the ground surface and completely covering the concrete wellpad. These observations were not found at either of the other downgradient monitoring wells. The analytical results from the October 2017 and April 2017 sampling events do bear out the "fingerprint" of gypsum in the form of elevated calcium and sulfate levels in well MW-4. Comparatively lesser concentrations of these

constituents are seen in wells MW-3 and MW-23, most likely due to the noted improvements in surface water drainage in these areas associated with the Gypsum Area Sump installation.

Several notable pieces of evidence have emerged during the course of this demonstration study, each of which points to an alternate source for the SSI for sulfate reported at well MW-4 during the October 2017 Detection Monitoring event. This evidence includes recognized differences in the geochemical composition of the groundwater at well MW-4 versus the liquid contents of the Ash Filter Ponds (refer to Figure 2). Further, the absence of elevated boron levels in all downgradient wells, including well MW-4, indicates a groundwater regime that is not impacted by ash or ash-derived leachate. The competent clay liner system within the ponds also bolsters the confirmation of different characteristics for groundwater outside the ponds when compared to the contents of the ponds themselves. And most notably, the examination of the gypsum handling operations and first-hand observations of gypsum accumulation in the immediate area of well MW-4 due to surface water runoff from the adjacent haul road. Subsequent surface water infiltration through these gypsum residuals and into the underlying groundwater table near well MW-4 is the most plausible explanation for the localized sulfate impacts. Commensurate with this conclusion, the SSI from the October 2017 Detection Monitoring event is deemed not to be in association with the Conemaugh Ash Filter Ponds. Accordingly, and per §257.94(e)(2), Detection Monitoring for the regulated unit will continue on the minimum semiannual frequency as outlined in §257.94(b).

5.0 Professional Engineer's Certification

In accordance with §257.94(e)(2) of the Rule, I hereby certify based on a review of the information contained herein, that the technical and investigatory methods utilized in this Alternate Source Demonstration Report are accurate and appropriate. These methods' application have provided the necessary evidence to conclude that the Conemaugh Ash Filter Ponds are not the source of the SSI observed during the October 2017 Detection Monitoring event.

Certified by:

Richard Southorn, P.E., P.G., CPSWQ

Professional Engineer Registration No. PE 085411

Aptim Environmental & Infrastructure, Inc.

Date: April 13, 2018

Table 1 Conemaugh Generating Station--Ash Filter Ponds CCR Appendix III Constituents

Monitoring Well	Date	Total Boron (mg/L)	Total Calcium (mg/L)	Total Chloride (mg/L)			Sulfate (mg/L)	pH (S.U.)							
	Sampled		Calculated Background												
		0.58	376	1560	0.2	6975	788	4.59-7.42							
MW-3 (Downgradient)	1-Oct-17	< 0.05	135	387	< 0.1	1140	255	6.30							
MW-4 (Downgradient)	4-Oct-17	0.14	335	814	< 0.2	3200	1050	6.02							
MW-23 (Downgradient)	1-Oct-17	< 0.05	172	313	< 0.1	1520	575	6.25							

= Statistically Significant Increase (SSI) over Background.

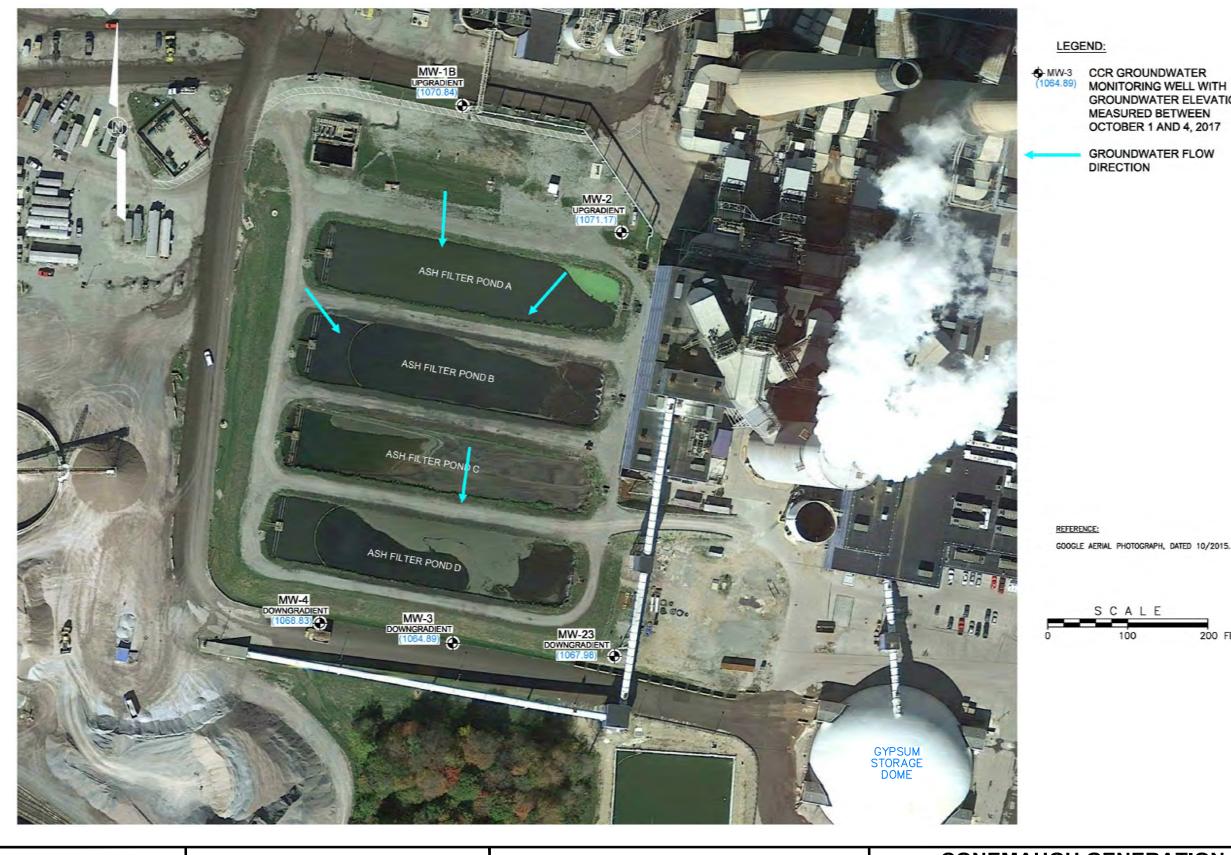
Notes:

- 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.
- 2. Background values based on statistical evaluation of initial eight rounds of groundwater sampling data from upgradient monitoring wells (see Appendix A).

Table 2
Ash Pond and Monitoring Well Analytical Results (April 2017)
Conemaugh Generating Station

Parameter	Units	MW-1B (Upgradient)	MW-2 (Upgradient)	MW-3 (Downgradient)	MW-4 (Downgradient)	MW-23 (Downgradient)	Pond A	Settling Pond (Pond B)
		4/24/2017	4/25/2017	4/25/2017	4/26/2017	4/24/2017	4/26/2017	4/26/2017
Field Readings:								
Groundwater Elevation	ft MSL	1072.69	1072.92	1067.09	1070.93	1069.68	N/A	N/A
Specific Conductance	μmhos/cm	3890	1106	2470	4750	2280	N/A	N/A
Oxidation-Reduction Potential	mV	331	302	295	325	190	176	197
Dissolved Oxygen	mg/L	2.79	4.03	2.01	3.00	2.74	N/A	N/A
Temperature	°C	16.0	15.5	14.0	14.5	15.5	21.2	27.1
Turbidity	NTU	0.03	3.34	0.35	1.06	5.21	N/A	N/A
рН	S.U.	5.27	6.28	5.57	6.68	5.21	8.37	7.22
CCR Appendix III:	•		•	•	•			1
Total Boron	mg/L	0.37	0.29	ND @ 0.05	0.14	ND @ 0.05	2.70	2.75
Total Calcium	mg/L	166	136	181	392	164	444	443
Total Chloride	mg/L	988	69	552	863	383	91	85
Total Fluoride	mg/L	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	0.2	0.3
Total Dissolved Solids	mg/L	2470	792	1740	3310	1520	2020	2020
Sulfate	mg/L	548	373	314	996	558	1060	1020
рН	S.U.	5.27	6.28	5.57	6.68	5.21	8.37	7.22
Anions:								
Alkalinity to pH 4.5	mg/L CaCO ₃	13	112	62	44	30	34	32
Bromide	mg/L	0.5	0.2	1.0	0.3	0.5	1.4	1.4
Chloride	mg/L	995	68	545	892	377	91	85
Fluoride	mg/L	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	0.2	0.3
Sulfate	mg/L	546	368	312	1000	546	1060	1020
Cations:	-							
Aluminum	mg/L	ND @ 0.1	0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	0.5	0.9
Barium	mg/L	0.02	0.02	0.03	0.01	0.01	0.06	0.13
Boron	mg/L	0.39	0.29	ND @ 0.05	0.13	ND @ 0.05	2.70	2.75
Calcium	mg/L	170	142	182	379	172	444	443
Iron	mg/L	ND @ 0.05	0.09	0.23	0.05	18.7	1.74	0.71
Lithium	mg/L	0.01	ND @ 0.01	ND @ 0.01	ND @ 0.01	ND @ 0.01	0.75	0.73
Magnesium	mg/L	29.0	36.4	75.8	98.9	70.2	58.8	56.2
Manganese	mg/L	2.94	0.09	7.30	9.00	11.8	0.35	0.31
Potassium	mg/L	12.5	4.4	2.4	4.3	2.5	20.2	19.8
Sodium	mg/L	683	38.5	180	652	206	74.6	72.7
Strontium	mg/L	0.62	0.39	0.31	0.78	0.14	2.01	2.14
Silica	mg/L	19.3	9.64	15.7	14.5	15.8	4.7	6.1

N/A = Not Analyzed.


ND = Not detected at or above the indicated reporting limit.

REV. NO.

DATE

DESCRIPTION

APTIM Environmental & Infrastructure, Inc.

APTIM Environmental & Infrastructure, Inc. has prepared this document for a specific project or purpose. All information contained within this document is copyrighted and remains intellectual property of APTIM Environmental & Infrastructure, Inc. This document may not be used or copied, in part or in whole, for any reason without expressed written consent by APTIM Environmental & Infrastructure, Inc.

CONEMAUGH GENERATION STATION NEW FLORENCE, PENNSYLVANIA

FIGURE 1 CCR COMPLIANCE GROUNDWATER MONITORING WELL LOCATION MAP ASH FILTER PONDS

1009194003 DATE:

REFERENCE:

GOOGLE AERIAL PHOTOGRAPH, DATED 10/2015.

200 FEET

APRIL 2018

SCALE

LEGEND:

GROUNDWATER ELEVATION MEASURED BETWEEN OCTOBER 1 AND 4, 2017

GROUNDWATER FLOW

DIRECTION

DRAWN BY: BWM APPROVED BY: DAM PROJ. NO.:

DAM PROJ. NO.:

1009194003 DATE:

APRIL 2018

BWM APPROVED BY:

DRAWN BY:

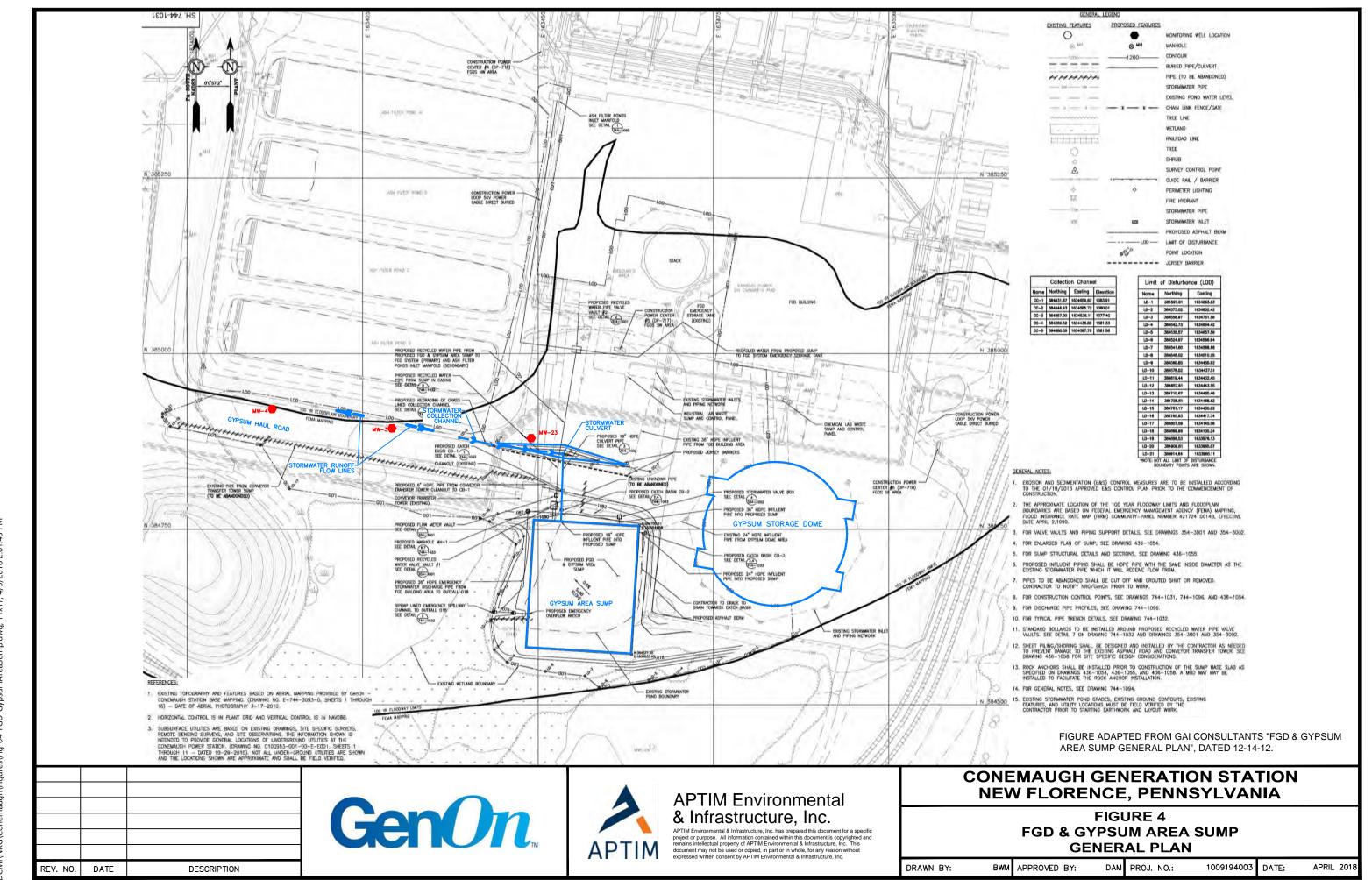
DATE

DESCRIPTION

REFERENCE: PHOTOGRAPH TAKEN MARCH 23, 2018.

DATE DESCRIPTION

APTIM Environmental


& Infrastructure, Inc.

APTIM Environmental & Infrastructure, Inc. has prepared this document for a specific project or purpose. All information contained within this document is copyrighted and remains intellectual property of APTIM Environmental & Infrastructure, Inc. This document may not be used or copied, in part or in whole, for any reasons without expressed written consent by APTIM Environmental & Infrastructure, Inc.

CONEMAUGH GENERATION STATION NEW FLORENCE, PENNSYLVANIA

FIGURE 3 PHOTO OF GYPSUM HAUL TRUCK **NEXT TO MONITORING WELLS**

DAM PROJ. NO.: DRAWN BY: BWM APPROVED BY: 1009194003 DATE: APRIL 2018

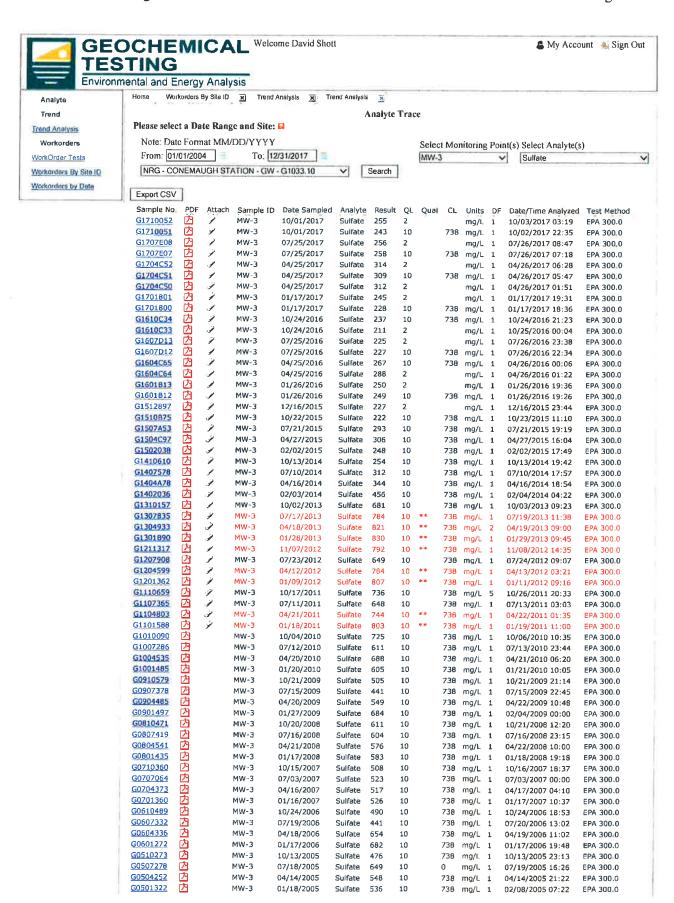
13.20 (12.17 A) (13.17 A) (13.18 A) (13.18 A) (13.18 A) (13.18 A)

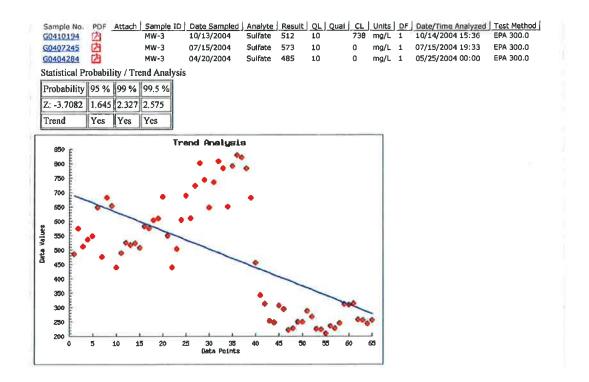
Quarterly Background Data for the Upgradient Wells and the Resultant Calculated Background Concentrations

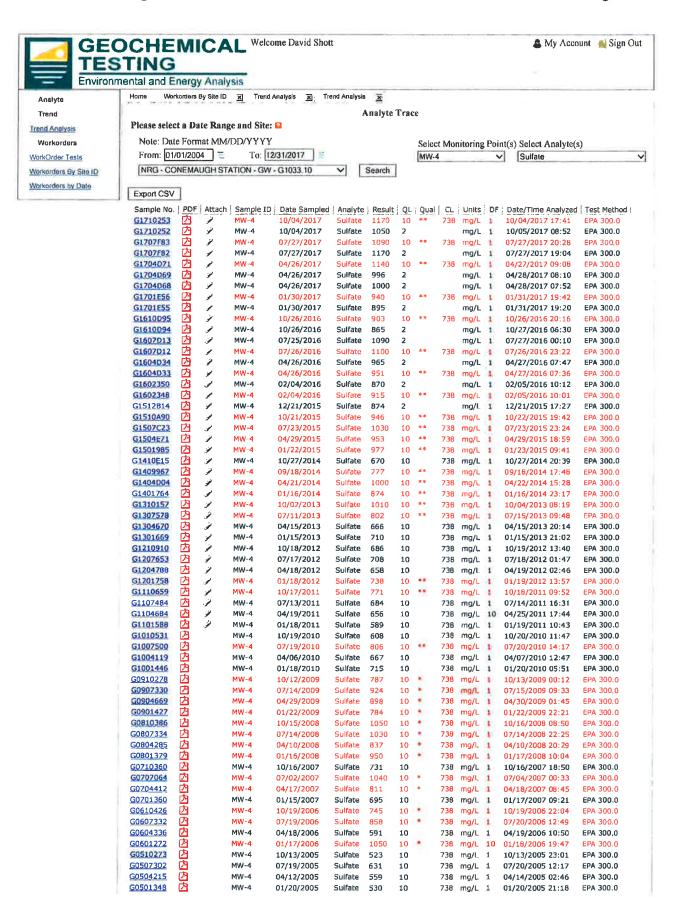
Conemaugh Generating Station--Ash Filter Ponds Data for Calculation of Background Values CCR Appendix III Constituents

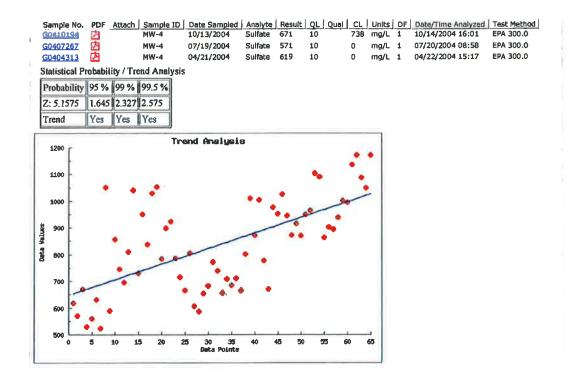
Monitoring Well	Date Sampled	Total Boron (mg/L)	Total Calcium (mg/L)	Total Chloride (mg/L)	То	otal Fluoride (mg/L)	Total Dissolved Solids (mg/L)	Sulfate (mg/L)	pH (S.U.)
	17-Dec-15	0.29	333	1540	<	0.1	3620	544	5.49
	27-Jan-16	0.31	288	1280	<	0.1	3180	583	5.87
	20-Apr-16	0.28	170	652	<	0.5	2410	729	6.09
MW-1B	19-Jul-16	0.36	208	1310		0.1	2760	575	5.79
(Upgradient)	11-Oct-16	0.46	192	1010		0.2	2640	438	6.56
	17-Jan-17	0.43	198	1030	<	0.1	2650	427	5.87
	24-Apr-17	0.37	166	988	<	0.1	2470	548	5.27
	20-Jul-17	0.39	345	1560	<	0.1	3740	388	5.00
	11-Oct-16	0.30	191	251	<	0.1	1200	348	6.28
	16-Nov-16	0.31	176	94		0.1	868	416	6.95
	21-Dec-16	0.41	176	101		0.2	1050	519	7.03
MM/2 (Ungradient)	25-Jan-17	0.21	137	68		0.2	726	316	6.93
MW-2 (Upgradient)	21-Mar-17	0.33	158	75		0.1	828	387	6.40
	25-Apr-17	0.29	136	69	<	0.1	792	373	6.28
	13-Jun-17	0.30	150	60	<	0.1	768	369	6.15
	27-Jul-17	0.28	133	67	<	0.1	684	310	6.45

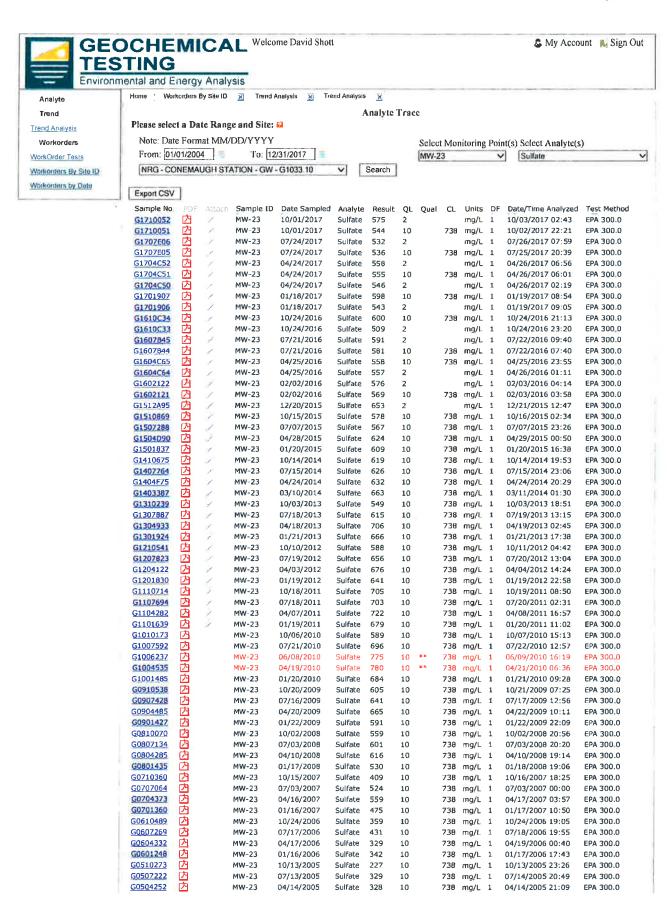
Notes:

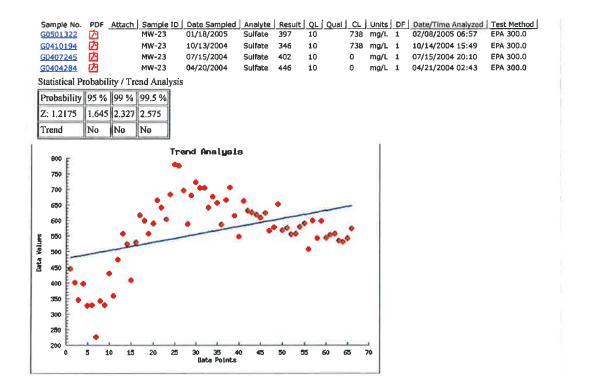

- 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.
- 2. Background values based on statistical evaluation of initial eight rounds of groundwater sampling data; see attached output from Sanitas software application.


Prediction Limit


		Conemaugh Generating S	Station C	Client: NRG Data:	Conemaugh Asl	n Filter C	CR Che	mStat F	Printed 1/15/2018, 1	10:29 AM	
Constituent	Well	Upper Lim.	Lower Li	m. <u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Boron (mg/L)	n/a	0.5756	n/a	n/a	3 future	n/a	17	0	In(x)	0.000	Param Inter 1 of 2
Calcium (mg/L)	n/a	376.3	n/a	n/a	3 future	n/a	17	0	In(x)	0.000	Param Inter 1 of 2
Chloride (mg/L)	n/a	1560	n/a	n/a	3 future	n/a	17	0	n/a	0.00563	NP Inter (normality)
Fluoride (mg/L)	n/a	0.2	n/a	n/a	3 future	n/a	17	64.71	n/a	0.00563	NP Inter (NDs) 1 of 2
pH (S.U.)	n/a	7.42	4.586	n/a	3 future	n/a	16	0	x^2	0.000	Param Inter 1 of 2
Sulfate (mg/L)	n/a	788.4	n/a	n/a	3 future	n/a	17	0	In(x)	0.000	Param Inter 1 of 2
Total dissolved solids (mg/L)	n/a	6975	n/a	n/a	3 future	n/a	17	0	In(x)	0.000	Param Inter 1 of 2


Appendix B


Historical Sulfate Data (Three Downgradient Monitoring Wells)



Appendix B
Ash Disposal Site—Assessment of Corrective Measures Report

ASSESSMENT OF CORRECTIVE MEASURES REPORT CCR RELEASE INCIDENT ASH VALLEY REFUSE/DISPOSAL AREA

Prepared for:

GenOn Northeast Management Company Conemaugh Generating Station New Florence, PA 15944

Prepared by:

Aptim Environmental & Infrastructure, Inc. Pittsburgh, Pennsylvania

January 2019

Table of Contents_

List o	f Tables	2S	iii
List o	f Figure	es	iii
List o	f Apper	ndices	iii
List o	f Acron	nyms & Abbreviations	iv
1.0	Intro	oduction	1
2.0	Facil	ility Overview	2
3.0	Sum	nmary of the Ash Release	3
4.0	Imme 4.1 4.2 4.3	Notification of Release CCR Removal Retention of Professional Engineering Services	4 4
5.0	5.1 5.2 5.3 5.4	Initial On-Site Inspection of Immediate CCR Removal Activities Environmental Sampling Plan Development 5.2.1 Soil Sampling 5.2.1.1 Overview 5.2.1.2 Number of Samples 5.2.1.3 Location of Samples 5.2.1.4 Comparison Methodology 5.2.1.5 Testing Methods for Soil Samples 5.2.1.6 Use of Groundwater Protection Standards 5.2.2 Surface Water (Stream) Sampling. Review of Pertinent Disposal Site Design Documents Correctives Measures Assessment 5.4.1 Time Period for Assessment 5.4.2 Requirements for Corrective Measures 5.4.3 Considered Corrective Measures Public Meeting	5
6.0	Sam	npling Results	12
7.0	Reco	commendation for No Further Action	13
8.0	Certi	tification	14
Table	76		

Figures

Appendices

List of Tables _____

Table 1	Background Soil Sample Results
Table 2	Confirmation Soil Sample Results
Table 3	Confirmation Leachate Sample Results
Table 4	Surface Water Sample Results

List of Figures _____

Figure 1	Site Location Map
----------	-------------------

Figure 2 Overview of Ash Release Area

Figure 3 Soil and Surface Water Sampling Locations (1 of 2)
Figure 4 Soil and Surface Water Sampling Locations (2 of 2)

List of Appendices_____

Appendix A	CCR Release Notification to PADEP

Appendix B Notice of Time Period Extension for Assessment of Corrective Measures

Appendix C Newspaper Advertisement of Public Meeting
Appendix D Supporting Soil and Surficial Materials Report

Appendix E Analytical Laboratory Reports

List of Acronyms & Abbreviations_

APTIM Aptim Environmental & Infrastructure, Inc.

CCR coal combustion residuals

CCR Rule Disposal of Coal Combustion Residuals from Electric Utilities Final Rule

cy cubic yards

disposal site Conemaugh Generating Station's Ash Valley Refuse/Disposal Site

ESP Environmental Sampling Plan

GenOn Northeast Management Company

GPS global positioning system
MCL Maximum Contaminant Level

PADEP Pennsylvania Department of Environmental Protection

Report Assessment of Corrective Measures Report RRCSP Run-On and Run-Off Control System Plan

RSL Regional Screening Level

sf square feet

SPLP Synthetic Precipitation Leaching Procedure
TCLP Toxicity Characteristic Leaching Procedure
USEPA U.S. Environmental Protection Agency

1.0 Introduction

In 2015, the Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (CCR Rule) was enacted within the Federal Register under Title 40 Code of Federal Regulations §257. The CCR Rule establishes technical requirements for coal combustion residuals (CCR) disposal sites and surface impoundments under Subtitle D of the Resource Conservation and Recovery Act, which is the primary law regulating solid waste. Conemaugh Generating Station's Ash Valley Refuse/Disposal Site (disposal site), operated by GenOn Northeast Management Company (GenOn), is subject to the CCR Rule.

On August 8, 2018, a surficial (non-groundwater) release of CCR was discovered during the performance of a routine inspection of the Conemaugh disposal site and established erosion and sedimentation control features. The release most likely occurred during an extremely intense precipitation event on July 30, 2018, which was localized and rare.

As described in §§257.84(b)(5) and 257.90(d) of the CCR Rule, in the event of a release from a CCR unit, the owner or operator of a disposal site must immediately undertake necessary measures to control the source(s) of the release so as to reduce or eliminate, to the maximum extent feasible, releases of contaminants into the environment. Additionally, the owner or operator must comply with all related applicable requirements in §§257.96-257.98. For surficial (non-groundwater) spills, these requirements generally include assessing and selecting corrective measures to prevent further releases, remediating the release as necessary, and restoring the affected area to original conditions. To document compliance with the CCR Rule, an Assessment of Corrective Measures Report (Report) must be prepared and placed into the facility's operating record per §257.96(d) and §257.105(h)(10). This Report must also be noticed to the State Director per §257.106(h)(8) and posted to the publicly accessible internet site per §257.107(h)(8).

Conemaugh Station's responses and subsequent activities to the subject CCR release were in accordance with the above-referenced regulations and guidance from the U.S. Environmental Protection Agency (USEPA) issued in response to a settlement of a portion of the lawsuit challenging the CCR Rule. In the settlement, USEPA agreed to a remand on the issue of defining which non-groundwater releases are subject to the full corrective action process under §§257.96-257.98. In the interim between the settlement and issuance of a revised regulation (which was not issued prior to this report), for no-groundwater CCR release, USEPA "would recommend that compliance determinations focus primarily on the rapid remediation of detected non-groundwater releases, consistent with §257.90(d) rather than adherence to the specific corrective action procedures in §§257.96-257.98."

1

2.0 Facility Overview

GenOn operates the Conemaugh Generating Station located in New Florence, Pennsylvania. The station began operating in 1970 and utilizes two coal-fired boilers each with a steam turbine-driven electric generator that provides electricity to the regional electric grid. CCR materials generated through the operation of these units are managed at the disposal site located directly north of the generating station. The CCR materials that are disposed consist primarily of bottom ash, fly ash, pyrites, and Flue Gas Desulfurization by-product (gypsum). The disposal site is permitted under Pennsylvania Department of Environmental Protection (PADEP) Solid Waste Permit No. 300876.

The disposal site is divided into three stages as shown on Figure 1. Stage I is approximately 160 acres and is located farthest to the north. Stage I started receiving CCR in 1970 and was closed in 1987. Stage II, which is currently active, covers approximately 120 acres and is located directly south of Stage I. Construction of the first phase (Phase IIIA) of Stage III, located directly south of Stage II, was ongoing at the time of the CCR release.

3.0 Summary of the Ash Release

On August 8, 2018, a surficial (non-groundwater) release of CCR materials (ash) was discovered during the performance of a routine inspection of the disposal site (as required by the CCR Rule) and other established erosion and sedimentation control features. As previously noted, the release most likely occurred during an extremely intense precipitation event on July 30, 2018, which was localized and rare.

Ash that was displaced from the active Stage II disposal area was initially observed outside of the disposal site boundary immediately south of Culvert 1C, which connects a Stage III intermediate non-contact stormwater channel to the locally-named "East Valley Stream" (see Figure 2). This stream is a mitigation feature that was relocated in support of the Stage III construction and is located east of the Phase III ultimate disposal site boundary. The non-contact stormwater channel is designed to convey stormwater that falls outside of the disposal site boundary so that it does not come into contact with CCR. Although the majority of deposited CCR materials were located immediately south of Culvert 1C, small pockets of ash were also identified up to 1,800 feet south of Culvert 1C adjacent to the East Valley Stream (see Figures 3 and 4). The deposits of ash in proximity to Culvert 1C and in areas farther south were observed to range in thickness between ½ inch to 4 inches.

The channel and stream were inspected upon the discovery of CCR material. It was subsequently determined that a contact water diversion berm (see Figure 2) adjacent to a main haul road along the southern boundary of the Phase II disposal area had been overtopped by contact stormwater (water that had fallen on active areas of the disposal site) and flowed through the referenced channel to Culvert 1C. The subject berm had been temporarily lowered prior to the release in order to facilitate the transport of construction materials to the Phase III area.

4.0 Immediate Response Actions

Conemaugh Station responded to the ash release through a series of actions relative to PADEP notification, immediate cleanup activities, and implementation of CCR Rule corrective measures assessment requirements, including the retention of professional engineering services. The following sections provide detailed information regarding each of these elements.

4.1 Notification of Release

Upon discovery of the CCR release on August 8, 2018, Conemaugh Station immediately informed PADEP regarding the incident. On August 9, 2018, PADEP conducted an inspection of the area, whereupon verbal authorization was provided for Conemaugh Station to move forward with cleanup activities. A formal report of this incident was prepared and submitted to PADEP on August 13, 2018; a copy of that report is presented in Appendix A. Additionally, as required by §257.96(a) and (f) and §257.106(h)(7) of the CCR Rule, GenOn provided notification to PADEP (via email dated August 23, 2018) that the Conemaugh Station had initiated an Assessment of Corrective Measures, effective August 8, 2018. This notification was also placed into the Conemaugh Station facility's operating record per §257.105(h)(9) and posted to the publicly-accessible website per §257.107(h)(7).

4.2 CCR Removal

In order to minimize the potential for future releases, and as required under §257.90(d), Conemaugh Station and its contractor (R&L Development) began immediately removing the displaced CCR materials following receipt of the above-noted authorization from PADEP. This involved the use of a vacuum truck in the affected reaches of the East Valley Stream and the areas downstream of Culvert 1C. The vacuum truck was utilized in order to minimize disturbance to the established vegetation and ecosystem within and adjacent to the stream bed. These actions were continued until all practical quantities of CCR were removed to minimize potential impacts to human health and/or the environment. All impacted erosion and sedimentation controls were restored and/or improved.

4.3 Retention of Professional Engineering Services

In conjunction with initiation of the Assessment of Corrective Measures activities, GenOn retained professional engineering services from Aptim Environmental & Infrastructure, Inc. (APTIM) to assist with the associated CCR Rule obligations and to evaluate the adequacy and effectiveness of the CCR removal actions with respect to protectiveness of public health, welfare, and safety.

5.1 Initial On-Site Inspection of Immediate CCR Removal Activities

APTIM representatives visited the site on September 26 and 28, 2018 to assess the extent of the CCR release to the ground surface. APTIM walked the entire path of the CCR release starting at the diversion berm that was overtopped (located just south of the active portion of the Stage II disposal site), along the non-contact stormwater ditch to Culvert 1C, and along the East Valley Stream until approximately 300 feet downstream of Culvert 2 (approximately 2,300 feet downstream of Culvert 1C). The following observations were made:

- No CCR was observed between the access road located just south of the active portion of the Stage II disposal site downslope to Culvert 1C.
- The height of the overtopped diversion berm, which had been temporarily lowered prior to the storm to allow materials to be delivered to the Phase III construction area, had been restored.
- Erosion controls that had been damaged during the storm were observed to have been repaired and/or improved.
- A significant portion, but not all, of the displaced CCR materials downstream of Culvert 1C and along the stream had been removed.

During the noted September 2018 visits, APTIM identified discrete locations where some CCR materials were still visible and requested additional removal activities be conducted in these areas. The majority of the additional areas identified by APTIM were located on the east side of the stream just south of Culvert 1C. The southernmost location was situated just north of the Culvert 2 weir. The additional areas were addressed by Conemaugh Station and its contractor on October 1 and 2, 2018, again with utilization of a vacuum truck to remove the displaced CCR materials.

Each of the identified CCR-impacted areas between Culvert 1C and Culvert 2 were logged with a handheld global positioning system (GPS) unit, and the resultant coordinates were used to locate these areas on Figures 3 and 4. A total of 21 individual areas were identified with a cumulative area of approximately 5,400 square feet (sf). The largest single location (the "Upper Deposit") at the outlet of Culvert 1C covered an area of approximately 4,550 sf. The remaining areas (collectively referred to as the "Lower Deposits" and designated as areas L1 through L20), were much smaller in size, ranging from 1 to 100 sf, for a cumulative total of approximately 850 sf.

5.2 Environmental Sampling Plan Development

APTIM developed an Environmental Sampling Plan (ESP) for the release area to determine whether the CCR removal activities had appropriately mitigated potential environmental impacts

or whether additional action was warranted. This ESP was developed based on site-specific considerations and incorporated both soil and surface water sampling protocols for areas south of Culvert 1C.

5.2.1 Soil Sampling

5.2.1.1 Overview

Soil sampling included both "impacted areas" (areas where CCR had deposited) and "non-impacted areas" (soils along the stream that were east of Culvert 1C). Sample locations were selected using a random number generator technique to remove bias. Samples were evaluated against site-specific groundwater protection standards and compared to background values to determine whether immediate cleanup activities were appropriate to protect public health, welfare, and safety.

5.2.1.2 Number of Samples

In order to evaluate the effectiveness of cleanup activities, a total of 26 samples were proposed to be collected, including 16 in impacted areas and 10 in non-impacted areas. It is noted that no formal guidance is provided within the CCR Rule on how many samples are required to evaluate a CCR release. Therefore, engineering judgement was used that generally follows the sampling frequency identified in Pennsylvania's Land Recycling Program (Voluntary Cleanup Program), commonly referred to as "Act 2."

The "Upper Deposit" at the outlet of Culvert 1C has an approximate area of 4,550 sf, and conservatively assuming a maximum of 4 inches of CCR was removed, the total soil volume estimated is 57 cubic yards (cy). This volume has been conservatively estimated for the purpose of determining the number of samples to be taken. However, the majority of the CCR deposit thicknesses were less than 4 inches. A total of 8 soil samples were targeted for collection in the "Upper Deposit" area.

The remaining 20 "Lower Deposit" areas have an approximate cumulative total area of 850 sf, and again assuming a conservative maximum of 4 inches of CCR was removed, the total soil volume estimated is 11 cy. A total of 8 soil samples were targeted for collection from the Lower Deposits (L1 through L20).

5.2.1.3 Location of Samples

In order to determine the sampling locations, a 50-foot by 150-foot grid was overlain on the non-impacted area with a total of 75 blocks (each grid block measuring 10 feet by feet). The 10 soil sample locations were selected using a random number generator in Excel® to provide values ranging between 1 and 75. The random sample locations generated were 1, 8, 17, 24, 30, 36, 48, 55, 62, and 66. The 10 selected soil sample locations were translated to the field and documented

using GPS coordinates. Figure 3 shows the 10 selected soil sample locations within the non-impacted area.

In order to determine the sampling locations of the impacted "Upper Deposit" area, an 80-foot by 160-foot grid was established with a total of 128 blocks (each grid block measuring 10 feet by 10 feet). The 8 soil sample locations were selected using a random number generator in Excel® to provide values ranging between 1 and 128. If a random sampling location within the grid was selected that was not within the CCR deposit limits, a new random sampling location was generated until a total of 8 samples were within the CCR deposit limits. The random sample locations generated were 15, 31, 40, 44, 70, 76, 82, and 105. The 8 selected soil sample locations were translated to the field and documented using GPS coordinates. Figure 3 shows the 8 selected soil sample locations within the "Upper Deposit" area.

The 8 soil sample locations from the "Lower Deposit" areas were again selected using a random number generator in Excel[®] to provide values ranging between 1 and 20. The random sample locations generated were L1, L4, L8, L11, L12, L15, L18, and L20. The 8 soil samples collected within the randomly selected "Lower Deposit" areas were completed as biased sampling. Figures 3 and 4 show the 8 selected soil sample locations within the "Lower Deposit" areas.

5.2.1.4 Comparison Methodology

Background samples were collected from the non-impacted area for comparison purposes to determine if the total metals concentrations in the impacted area soil samples were greater than those collected in the non-impacted area. If the total metals concentrations were found to be similar for both potentially impacted and non-impacted soils, it would serve as indication that CCR materials had been adequately removed. If total metals concentrations were higher in potentially impacted soils, but further testing via leaching analysis (as discussed below) yielded acceptable results when compared to site-specific groundwater standards, it would offer evidence that trace CCR likely remains after cleanup, but does not threaten public health.

5.2.1.5 Testing Methods for Soil Samples

The most likely potential exposure pathway for the impacted soils was determined to be if chemical constituents from the soils that had been underneath the CCR deposit could leach and enter the groundwater. As the CCR material had been deposited on the ground surface, the leaching would most likely occur when rainwater or surface water came into contact with the residually impacted soils.

Based on this potential exposure pathway, a Synthetic Precipitation Leaching Procedure (SPLP) laboratory evaluation was selected. This test method passes a synthetic leaching agent (intended to mimic rainwater) through the soil sample and analyzes the resulting chemical constituents in the leachate. It is noted that leachate is defined as any liquid that, in passing through matter,

extracts solutes, suspended solids, or any other component of the material through which it has passed. The SPLP testing methodology is specified in USEPA SW-846 Method 1312. Although considered, the Toxicity Characteristic Leaching Procedure (TCLP) was deemed inappropriate for use, as TCLP uses a leaching agent that is intended to simulate the leachate that would result from a municipal solid waste landfill rather than rainwater.

5.2.1.6 Use of Groundwater Protection Standards

The CCR Rule outlines the establishment of groundwater protection standards for disposal sites using chemical constituents that are known to occur in CCR, which generally includes heavy metals. The actual list of chemical constituents for which groundwater protection standards must be established is contained in Appendix IV of the CCR Rule. Accordingly, the site-specific groundwater protection standards are either federally-published Maximum Contaminant Levels (MCLs) or risk-based Regional Screening Levels (RSLs). For constituents where calculated background exceeds either the MCL or RSL, the background value serves as the groundwater protection standard. Under this line of reasoning, the immediate cleanup measures would be deemed adequate if the concentrations in the leachate generated from SPLP analysis of the soil samples collected in the impacted areas were no greater than the site-specific CCR groundwater standards previously adopted/developed for the Conemaugh disposal site.

5.2.2 Surface Water (Stream) Sampling

Two surface water samples from the East Valley Stream were proposed for collection and laboratory analysis for the CCR Appendix IV constituents, including an upstream (Sample WS-1, non-impacted) and downstream (Sample WS-2, potentially impacted) sample. Sample WS-1was proposed to be collected upstream of the CCR release to establish baseline values for the constituents being analyzed. In the event that a constituent was observed to be leachable during soil testing and was measured at an elevated concentration in the downstream surface water sample location when compared to the upstream sample, this could suggest that trace CCR may be impacting surface water. The approximate surface water sampling locations are shown on Figures 3 and 4.

5.3 Review of Pertinent Disposal Site Design Documents

Pertinent engineering reports and plans were reviewed to determine whether modifications to design or operations would be appropriate to minimize the potential for a future release. Documents reviewed included the Phase III Residual Waste Permit Drawings, prepared by GAI Consultants, Inc., dated March 2014, and the Run-on and Run-off Control System Plan (RRCSP), also prepared by GAI Consultants, Inc., dated October 2016. Both documents were prepared under the direction of a licensed professional engineer. The disposal site design, including stormwater controls, has been confirmed to be the same in both documents and meets CCR Rule requirements.

The RRSCP was developed to control the flow of stormwater on and around the disposal site. Engineered controls are used to route and collect runoff from active portions of the disposal site so that the water may be treated prior to off-site discharge through a National Pollutant Discharge Elimination System outfall. As described in the RRCSP, all constructed runoff channels and slope drains around the active Stage II area are designed to manage the 24-hour, 100-year storm event, which exceeds the regulatory requirement and is more protective than the 24-hour, 25-year design storm event specified by the CCR Rule. Temporary channels and other diversion channels around the Phase III intermediate phase areas are designed to meet CCR Rule requirements and pass the 24-year, 25-year storm. When constructed, all permanent Stage III run-on/runoff controls will be sized to manage the 24-hour, 100-year storm event.

Based on a review of site conditions, it appears that the Phase II diversion berm that was overtopped on July 30, 2018 was designed appropriately, but had been temporarily lowered to allow materials to be delivered to the Phase III construction area. This berm had not been appropriately restored prior to the rain event on July 30, but has since been addressed. Based on review of these site documents and subsequent APTIM site visits, it is concluded that the disposal site has been restored to the intended design, which is appropriate and meets regulatory requirements.

5.4 Correctives Measures Assessment

Concurrent with development of the ESP, which was intended to be used to determine the effectiveness of the cleanup activities, additional corrective measures were evaluated. These measures would be implemented in the event immediate cleanup measures did not mitigate the risk to public health. The assessment of corrective measures was completed in accordance with §\$257.96-257.98 of the CCR Rule, which require that corrective measures remediate releases and restore the affected area.

5.4.1 Time Period for Assessment

Per §257.96(a), the assessment of corrective measures must be completed within 90 days of the discovery of the release, unless additional time is needed. Because of the complexities related to removal of the displaced ash in the impacted areas and the need to develop a thorough sampling and analysis plan (i.e., the ESP), APTIM's professional engineer certified that a 60-day extension was appropriate for completing the assessment of corrective measures. Notification of this extension is provided in Appendix B.

5.4.2 Requirements for Corrective Measures

Per §257.97(b)(1)-(5), the selected corrective measure used to mitigate a CCR release must:

- Be protective of human health and the environment;
- Attain the groundwater protection standard as specified pursuant to §257.95(h);
- Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of constituents in Appendix IV to this part into the environment;
- Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems; and
- Comply with standards for management of wastes as specified in §257.98(d).

5.4.3 Considered Corrective Measures

Considering that the release was a non-groundwater surficial spill (resulting in deposition of CCR materials on the ground surface), direct removal of the CCR materials (as accomplished by the immediate cleanup activities) was the initially identified approach to meet the above objectives. The removal may encompass only the CCR materials or may also include the underlying soils, if laboratory testing of collected samples indicates that they have been impacted. Therefore, two corrective measures were considered, which would be implemented once laboratory test results were received.

Option 1: No Further Action

In the event that laboratory testing of the soil and surface water samples indicate that all groundwater protection standards are achieved, no further action would be the preferred approach. These results would indicate that completed cleanup activities have been sufficient to address the predominant exposure pathway (i.e., soil impacts to groundwater) and that any potential trace amounts of CCR that remain do not pose a threat to public health and comply with all requirements in §257.97. Removal of the underlying soils would not be necessary and would, in fact, cause undue harm by disturbing the East Valley Stream ecosystem environment.

Option 2: Remove Soils in Release Area

In the event that laboratory testing of the soil and surface water samples indicate that groundwater protection standards are not met due to the CCR release, the underlying soils would be recommended for removal and appropriately disposed. Under this option, additional sampling and removal would be iteratively conducted until sample results demonstrate that groundwater protection standards have been met and the objectives outlined in §257.97 are achieved. Stripping of the soil would destroy existing plant communities (and possibly disturb aquatic habitat) along the East Valley Stream, which would need to be replanted and stabilized following soil removal activities.

5.5 Public Meeting

On December 18, 2018, a public meeting was held in the New Florence Fire Hall to provide information regarding the CCR release and response actions taken to date. A discussion of corrective measures that were intended to be undertaken based on laboratory testing results was presented. Representatives from GenOn and APTIM were both available at the meeting, including the certifying engineer of this report. No representatives from the general public were in attendance. Notice of advertisement for the Public Meeting is provided in Appendix C. This meeting was held in accordance with §257.96(e).

6.0 Sampling Results

APTIM performed both soil and surface water sampling to determine whether the CCR deposits were adequately removed and whether potential environmental impacts were effectively mitigated. The sampling activities occurred on November 13 and 14, 2018.

In accordance with the ESP, a total of 26 soil samples were collected for confirmation purposes, including 10 background samples collected from the non-impacted area and 16 confirmation samples collected from the potentially impacted areas ("Upper" and "Lower Deposits"). In addition, two surface water samples were collected. The soil and surface water sample locations are shown on Figures 3 and 4. When compared to the background samples (see Table 1), the soils in the impacted areas did show slightly elevated metals concentrations at several locations (see Table 2). As discussed in Section 5.2.1.4, these findings suggest that potential trace amounts of CCR materials may still be present in the impacted areas. However, all values for SPLP testing of soil samples (see Table 3) indicate metals concentrations were either non-detect or below the site-specific CCR groundwater protection standards. Again, as mentioned in Section 5.2.1.4, these results offer evidence that although trace amounts of CCR materials may still be present in certain impacted areas, the quantities of these residuals (i) do not constitute an unacceptable risk for potential leaching to groundwater and maintain protectiveness of human health and the environment, and (ii) are generally consistent with concentrations in soil and other surficial materials located in southwestern Pennsylvania – see Appendix D.

The surface water sampling results (see Table 4) indicate that the downstream water is generally consistent with upstream source water, although radium was measured at a slightly higher concentration at the downstream location. The minimal difference in concentration is not believed to be attributed to the CCR release due to the leachability results from the SPLP testing.

The supporting analytical laboratory reports are presented in Appendix E.

7.0 Recommendation for No Further Action

The results of laboratory testing indicate that the immediate and subsequent CCR removal activities have mitigated the threat to public health, welfare, and safety. The disposal site stormwater management design has been reviewed and found to meet all CCR regulatory requirements. At the time of the CCR release, it is acknowledged that a runoff diversion berm had been temporarily lowered, which is where the CCR material was released from the disposal site. The diversion berm has been observed by APTIM personnel to have been restored to its original condition in accordance with its design.

It is the opinion of the engineer certifying this report that no further action is warranted based on the observed conditions of the facility and laboratory testing of the soils and surface water. In fact, removing additional soils in the release area would create undue harm to the East Valley Stream ecosystem and is in conflict with the stated objectives of §257.97(b)(4) (Selection of Remedy).

Moreover, groundwater in the area of the ash release ultimately flows southward and passes through the zone monitored by the disposal site's existing CCR groundwater well network (comprised of downgradient Wells MW-9, MW-10, and MW-11). Continued sampling of these wells (most recently in October 2018) under the CCR Assessment Monitoring Program has not yielded any remarkable changes in groundwater quality. Future analytical results would be anticipated as similar and providing further confirmation that the clean-up activities were adequate in mitigating potential impacts to human health and the environment. These well locations and referenced analytical results are contained in the CCR Annual Groundwater Monitoring and Corrective Action Report, dated January 2019, to which this report is appended.

8.0 Certification

I hereby certify, as a qualified professional engineer licensed in the Commonwealth of Pennsylvania, that the information described in this report is factually accurate to the best of my knowledge. I have made the recommendations contained within this report based on a review of available information, observations from my personal on-site visit and visits by colleagues under my direction, and laboratory testing results. I attest that the suggested remedy of no further action has been completed in compliance with the requirements of §257.98.

Certified by: RICHARD SOUTHORN, PE, PG

Date: JAN 9/2019

Richard Southorn, P.E., P.G., CPSWQ Professional Engineer Registration No. PE 085411 Aptim Environmental & Infrastructure, Inc.

Table 1
Background Soil Sample Results
CCR Ash Release - Ash Valley Refuse/Disposal Area
Conemaugh Generating Station

		Sample	Total Antimony	Total Arsenic	Total Barium	Total Beryllium	Total Cadmium	Total Chromium	Total Cobalt	Total Lead	Total Lithium	Total Mercury	Total Molybdenum	Total Selenium	Total Thallium	Total Radium-226 and 228
Sample ID	Date Sampled	Interval (inches)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(pCi/g)
		(,							Maximum D	etected Value)					
			< 10.0	17.2	187	1.31	< 5.0	69.4	21.2	27.9	17.8	0.057	< 2.0	2.8	< 10.0	1.58
B-1 0-4	11/13/2018	0-4	< 10.0	15.5	127	1.11	< 5.0	41.5	17.6	23.2	15.9	0.038	< 2.0	2.3	< 10.0	1.58
B-2 0-4	11/13/2018	0-4	< 10.0	11.2	123	1.05	< 5.0	41.1	15.7	22.1	12.6	0.057	< 2.0	< 2.0	< 10.0	1.25
B-3 0-4	11/13/2018	0-4	< 10.0	14.5	87.8	0.74	< 5.0	69.4	9.2	18.5	12.8	0.054	< 2.0	< 2.0	< 10.0	1.29
B-4 0-4	11/13/2018	0-4	< 10.0	12.1	179	1.12	< 5.0	42.6	21.2	24.8	16.3	0.030	< 2.0	2.2	< 10.0	1.39
B-5 0-4	11/13/2018	0-4	< 10.0	14.6	166	1.23	< 5.0	43.6	20.4	26.4	14.7	0.039	< 2.0	2.7	< 10.0	1.30
B-6 0-4	11/13/2018	0-4	< 10.0	16.5	187	1.30	< 5.0	56.5	20.1	26.6	17.8	0.055	< 2.0	2.8	< 10.0	1.34
B-7 0-4	11/13/2018	0-4	< 10.0	17.2	161	1.23	< 5.0	42.6	16.1	27.3	16.4	0.037	< 2.0	2.6	< 10.0	1.41
B-8 0-4	11/13/2018	0-4	< 10.0	14.8	160	1.29	< 5.0	53.7	19.6	25.5	15.9	0.041	< 2.0	2.4	< 10.0	1.25
B-9 0-4	11/13/2018	0-4	< 10.0	16.0	186	1.31	< 5.0	54.6	20.3	27.9	13.2	0.037	< 2.0	2.7	< 10.0	1.41
B-10 0-4	11/13/2018	0-4	< 10.0	13.1	153	1.18	< 5.0	64.5	18.2	24.9	13.4	0.033	< 2.0	2.1	< 10.0	1.26

mg/Kg-dry - milligrams per Kilogram-dry

pCi/g - pico Curies per gram

Notes

1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory quantitation limit.

Table 2
Confirmation Soil Sample Results
CCR Ash Release - Ash Valley Refuse/Disposal Area
Conemaugh Generating Station

			Total Antimony	Total Arsenic	Total Barium	Total Beryllium	Total Cadmium	Total Chromium	Total Cobalt	Total Lead	Total Lithium	Total Mercury	Total Molybdenum	Total Selenium	Total Thallium	Total Radium-226 and 228		
		Committee	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(pCi/g)		
Sample ID	Date Sampled	Sample Interval		Site-Specific Standard Value														
15	Sampled	(inches)	< 10.0	17.2	187	1.31	< 5.0	69.4	21.2	27.9	17.8	0.057	< 2.0	2.8	< 10.0	1.58		
				Maximum Detected Value														
			< 10.0	27.2	161	1.39	< 5.0	43.5	22.0	29.1	19.5	0.260	2.1	2.6	< 10.0	2.61		
UD-1 0-4	11/13/2018	0-4	< 10.0 S	25.2	113	1.01	< 5.0	24.8	17.7	20.4	11.5	0.20	< 2.0	2.3	< 10.0	1.41		
UD-2 0-4	11/13/2018	0-4	< 10.0	14.5	123	1.07	< 5.0	33.1	16.7	22.1	16.6	0.072	< 2.0	2.3	< 10.0	1.63		
UD-3 0-4	11/13/2018	0-4	< 10.0	11.3	107	0.94	< 5.0	24.5	12.7	18.9	11.8	0.037	< 2.0	< 2.0	< 10.0	2.33		
UD-4 0-4	11/13/2018	0-4	< 10.0	16.5	136	1.02	< 5.0	30.5	15.4	19.5	19.3	0.099	2.1	2.2	< 10.0	1.65		
UD-5 0-4	11/13/2018	0-4	< 10.0	5.8	50.7	0.31	< 5.0	9.2	6.4	9.7	3.5	0.045	< 2.0	< 2.0	< 10.0	0.60		
UD-6 0-4	11/13/2018	0-4	< 10.0	15.9	118	1.10	< 5.0	27.0	22.0	20.8	13.2	0.054	< 2.0	< 2.0	< 10.0	1.17		
UD-7 0-4	11/14/2018	0-4	< 10.0	27.2	149	1.24	< 5.0	31.5	14.8	22.1	17.2	0.26	1.2 J	2.2	< 10.0	1.61		
UD-8 0-4	11/14/2018	0-4	< 10.0	14.6	135	1.12	< 5.0	31.8	17.5	23.0	17.7	0.040	< 2.0	2.4	< 10.0	1.60		
LD-1 0-4	11/14/2018	0-4	< 10.0	24.5	161	1.20	< 5.0	31.7	16.9	28.9	16.2	0.042	1.2 J	2.5	< 10.0	2.50		
LD-2 0-4	11/14/2018	0-4	< 10.0	11.9	143	1.14	< 5.0	31.4	17.2	23.8	15.8	0.032	< 2.0	2.2	< 10.0	1.47		
LD-3 0-4	11/14/2018	0-4	< 10.0	17.8	147	1.19	< 5.0	32.6	17.8	24.1	17.4	0.040	1.0 J	2.0	< 10.0	2.27		
LD-4 0-4	11/14/2018	0-4	< 10.0	17.6	148	1.39	< 5.0	43.5	21.6	29.1	19.5	0.038	1.2 J	2.5	< 10.0	1.60		
LD-5 0-4	11/14/2018	0-4	< 10.0	20.8	141	1.17	< 5.0	27.7	17.9	27.8	16.0	0.057	1.8 J	2.5	< 10.0	1.55		
LD-6 0-4	11/14/2018	0-4	< 10.0	18.5	149	1.25	< 5.0	29.2	18.6	26.8	15.6	0.052	1.4 J	2.2	< 10.0	2.56		
LD-7 0-4	11/14/2018	0-4	< 10.0	12.8	99.0	0.94	< 5.0	30.1	13.0	20.2	12.6	0.046	< 2.0	2.6	< 10.0	1.38		
LD-8 0-4	11/14/2018	0-4	< 10.0	18.8	137	1.32	< 5.0	30.7	21.5	23.2	11.7	0.095	< 2.0	2.6	< 10.0	2.61		

J - Indicates an estimated value.

mg/Kg-dry - milligrams per Kilogram-dry

pCi/g - pico Curies per gram

 $S - Spike \ recovery \ indicates \ a \ possible \ matrix \ effect. \ The \ method \ is \ in \ control \ as \ indicated \ by \ the \ LCS.$

Notes:

- 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory quantitation limit.
- 2. The Site-Specific Standard values were determined to be the Maximum Background Soil Sample values, which were sampled on November 13, 2018.

Table 3
Confirmation Leachate Sample Results - SPLP Analysis
CCR Ash Release - Ash Valley Refuse/Disposal Area
Conemaugh Generating Station

			Total Antimony	Total Arsenic	Total Barium	Total Beryllium	Total Cadmium	Total Chromium	Total Cobalt	Total Fluoride	Total Lead	Total Lithium	Total Mercury	Total Molybdenum	Total Selenium	Total Thallium	Total Radium-226 and 228
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)
Sample	Date	Sample							Groundw	ater Protection	Standard						
ID	Sampled	Interval (inches)	MCL	MCL	MCL	MCL	MCL	MCL	RSL	MCL	RSL	RSL	MCL	Molybdenum Selenium Molybdenum Molyb	MCL	MCL	
			0.006	0.01	2	0.004	0.005	0.1	0.006	4.0	0.15	0.04	0.002	0.1	0.05	0.002	5
			Maximum Detected Value														
			0.05 U	0.010 U	0.093	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.51	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	1.219
UD-1 0-4	11/13/2018	0-4	0.05 U	0.010 U	0.093	0.0005 U	0.0010 U	0.005 U	0.0020 U	0.47	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.217
UD-2 0-4	11/13/2018	0-4	0.05 U	0.010 U	0.074	0.0005 U	0.0010 U	0.005 U	0.0020 U	0.20	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.747
UD-3 0-4	11/13/2018	0-4	0.05 U	0.010 U	0.059	0.0005 U	0.0010 U	0.005 U	0.0020 U	0.26	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.674
UD-4 0-4	11/13/2018	0-4	0.05 U	0.010 U	0.060	0.0005 U	0.0010 U	0.005 U	0.0020 U	0.16	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.0904
UD-5 0-4	11/13/2018	0-4	0.05 U	0.010 U	0.080	0.0005 U	0.0010 U	0.005 U	0.0020 U	0.44	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	1.066
UD-6 0-4	11/13/2018	0-4	0.05 U	0.010 U	0.073	0.0005 U	0.0010 U	0.005 U	0.0020 U	0.18	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	1.057
UD-7 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.070	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.51	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.976
UD-8 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.080	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.18	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	-0.1349
LD-1 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.066	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.08 J	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.836
LD-2 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.069	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.39	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.778
LD-3 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.062	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.09 J	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.515
LD-4 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.074	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.14	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	-0.301
LD-5 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.086	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.05 U	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.907
LD-6 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.086	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.09 J	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.468
LD-7 0-4	11/14/2018	0-4	0.050 U	0.010 U	0.047	0.0005 U	0.0010 U	0.005 U	0.0020 U	0.0917 J	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	-0.032
LD-8 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.062	0.0005 U	0.0010 U	0.005 U	0.0020 U	0.27	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	1.219

J - Indicates an estimated value.

MCL - Maximum Contaminant Level

mg/L - 1 milligrams per Liter

pCi/L - pico Curies per Liter

RSL - Regional Screening Level

SPLP - Synthetic Precipitation Leaching Procedure

 $\label{eq:U-The} \textbf{U} - \textbf{The analyte was not detected at or above the listed concentration, which is below the laboratory quantitation limit.}$

1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory quantitation limit.

2. As indicated, Groundwater Protection Standards are either published MCLs or risk-based RSLs.

Table 4
Surface Water Sample Results
CCR Ash Release - Ash Valley Refuse/Disposal Area
Conemaugh Generating Station

Sample ID	Date Sampled	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Cadmium (mg/L)	Total Chromium (mg/L)	Total Cobalt (mg/L)	Total Fluoride (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Selenium (mg/L)	Total Thallium (mg/L)	Total Radium-226 and 228 (pCi/L)
WS-1	11/14/2018	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.3834
WS-2	11/14/2018	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.796

mg/L - milligrams per Liter pCi/L - pico Curies per Liter Notes:

1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory quantitation limit.

REFERENCE:

GOOGLE EARTH AERIAL PHOTOGRAPHY, DATED 10/11/2015.

SCALE

1,000

2,000 FEET

500 Penn Center Boulevard, Suite 900 Pittsburgh, Pennsylvania 15235

FIGURE 1

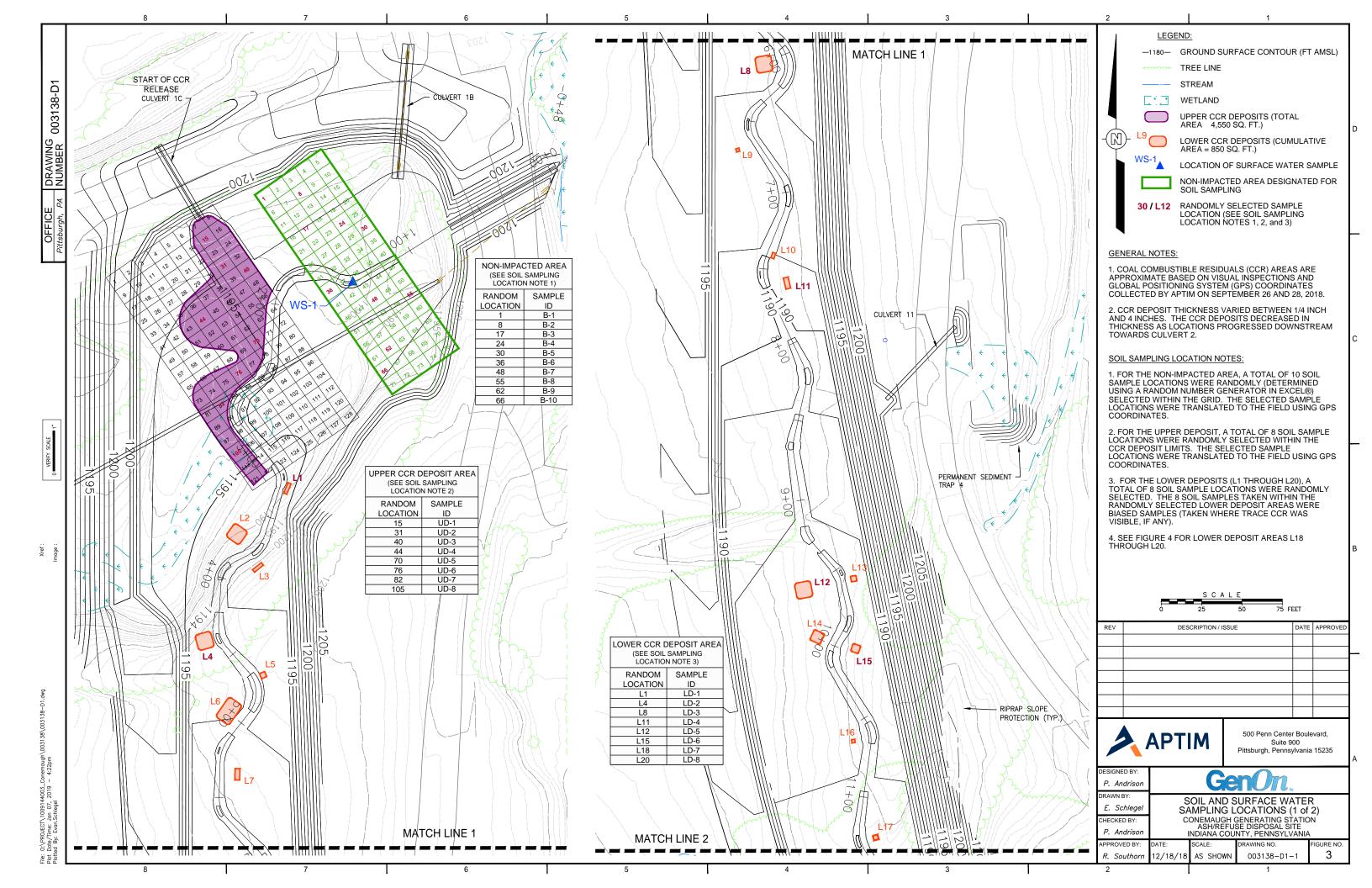
SITE LOCATION MAP

CONEMAUGH GENERATING STATION ASH/REFUSE DISPOSAL SITE INDIANA COUNTY, PENNSYLVANIA

REFERENCE:

GOOGLE EARTH AERIAL PHOTOGRAPHY, DATED 10/11/2015.

500 Penn Center Boulevard, Suite 900 Pittsburgh, Pennsylvania 15235


CULVERT 2

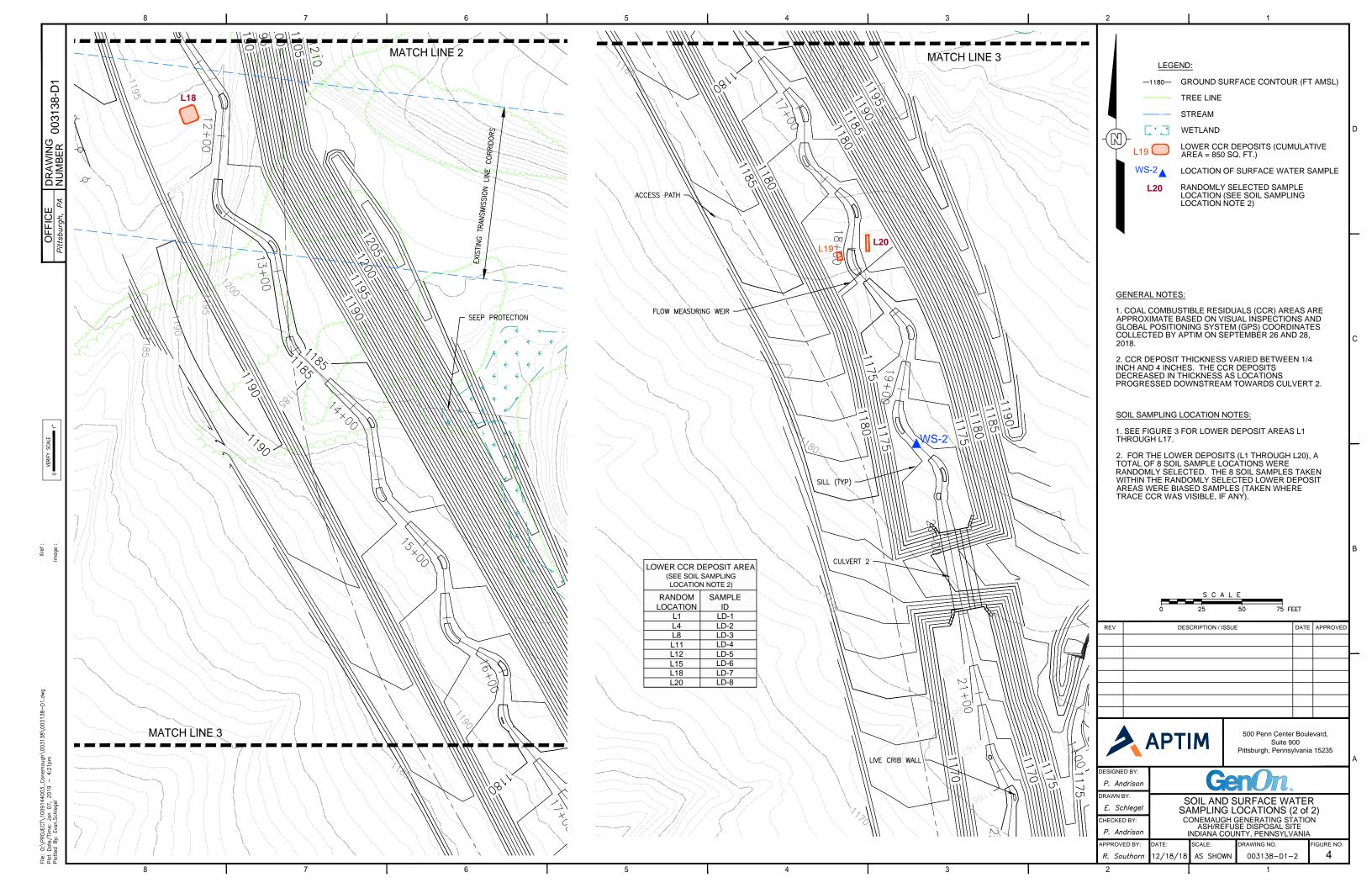


FIGURE 2

OVERVIEW OF ASH RELEASE AREA

CONEMAUGH GENERATING STATION ASH/REFUSE DISPOSAL SITE INDIANA COUNTY, PENNSYLVANIA

Appendix A

CCR Release Notification to PADEP

August 13, 2018

GenOn Northeast Management Company*
Conemaugh Generating Station
1442 Plant Road

New Florence, PA 15944

Overnight Delivery

Ms. Kristin Gearhart Pennsylvania Department of Environmental Protection Cambria District Office 286 Industrial Park Road Ebensburg, PA 15931

RE: Discharge of Contact Storm Water
5 Day Written Report
NPDES Permit No. PA0005011
Conemaugh Generating Station - New Florence, PA

Dear Ms. Gearhart:

As requested on August 9, 2018, GenOn Northeast Management Company (GenOn) is providing this five-day written report of the incident that was discovered at the Conemaugh Generating Station (Station). The incident was discovered on August 8, 2018 during inspections and repair of the landfill erosion and sedimentation controls. Ash was observed adjacent to and west of the East Valley Stream, an unnamed tributary to the Conemaugh River.

Description of the Noncompliance, Cause, and Duration

Based on data gathered from the Station rain gauge located at the Ash Valley landfill, the incident occurred on July 30th between noon and 1:35 pm. Approximately, 0.6 inches of rain fell between noon and 12:30 pm saturating the landfill drainage area. Another 1 inch of rain fell within a 15-minute period between 1:20 pm and 1:35 pm. The runoff from the large drainage area caused contact storm water from the landfill to exceed the capacity of the drainage channel adjacent to the landfill haul road near the entrance to the active Stage II disposal area. The overflow of the drainage channel subsided shortly after the storm.

At this location, a portion of this contact storm water flowed out of the channel over and through the Stage III construction area (~800 linear feet) where the flow joined noncontact storm water runoff and entered a storm water sedimentation trap adjacent to Culvert 1C. Contact storm water intermixed with non-contact storm water exceeded the capacity of the sedimentation trap, flowed through Culvert 1C on the south east side of the landfill, flowed south approximately 150 feet within a vegetated storm water swale where the flow combined with East Valley Stream flow. At this time, the East Valley Stream, a stream mitigation project for the landfill expansion, was well above the normal water levels and within the heavily vegetated constructed floodplain. Based on our inspections of the East Valley stream channel and adjacent areas on August 8, 9 and 10, one to three inches of ash was observed within the Culvert 1C storm water runoff swale and area on the west side of East Valley Stream. Several smaller areas of ash were observed

^{*:} GenOn Northeast Management Company is a subsidiary of GenOn Energy, Inc.

-

downstream within low areas adjacent to the stream. No ash was observed within the East Valley Stream channel.

Steps Taken or Planned to Reduce, Eliminate, and Prevent Reoccurrence

All erosion and sedimentation controls within this area of the landfill were restored and/or improved to minimize re-occurrence. Additional activities to improve the grade of the haul road are expected to be completed within the next two months. Ash has been removed from sedimentation traps as of August 10.

Plans and permits, if necessary, to remove the ash within the in areas adjacent to the stream channel are being developed. We will review our plans with the Department prior to proceeding with the removal work adjacent to and within the stream. Ash removal may include the placement of erosion and sedimentation controls and removal by mechanical means (e.g., excavator) or by utilizing vacuum trucks and laborers to loosen and remove the ash.

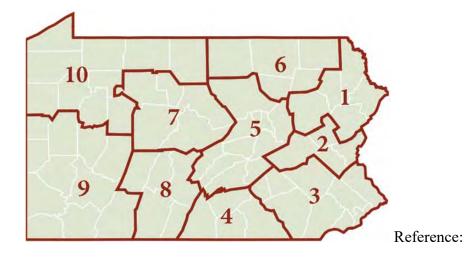
Lastly, Conemaugh Station also believes that the very rainy conditions experienced in the area and throughout the Commonwealth in July 2018 resulted in diminished capacity for the soil / land to absorb the unusually high rainfall and thus avoid the consequences from the July 30th event. The table below summarizes the precipitation data for July 2018 for the Commonwealth. As presented below, rainfall experienced in July 2018 was the second highest amount recorded that month during the last 124 years. Conemaugh Station believes that the July 30th event was an isolated and rare occurrence.

.....

Please do not hesitate to contact Stephen Frank (<u>Stephen.frank@genon.com</u>) at 724-249-3610 or John Shimshock (<u>John.Shimshock@genon.com</u>) at 724-235-4596 with any questions or comments concerning this report.

Very truly yours,

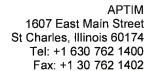
John P. Shimshock


Environmental Specialist Conemaugh Generating Station

John P. Thurslook

July 2018 Precipitation Averages (inches)

State	Average	Departure	Pct Normal	Rank	Driest	Wettest
Pennsylvania	7.37	3.10	173%	124	1.90 in 1909	7.37 in 2018
1-Pocono Mountains	7.88	3.66	187%	121	1.19 in 1936	10.95 in 1947
2-East Central Mtns	8.75	4.17	191%	120	1.01 in 1999	10.17 in 1945
3-Southeastern Piedmont	8.35	3.75	182%	120	0.85 in 1955	8.93 in 1945
4-Lower Susquehanna	9.83	5.96	254%	124	0.97 in 1983	9.83 in 2018
5-Middle Susquehanna	10.74	6.69	265%	124	1.35 in 1909	10.74 in 2018
6-Upper Susquehanna	8.44	4.42	210%	123	1.32 in 1936	8.81 in 2004
7-Central Mountains	8.21	4.00	195%	122	1.83 in 1909	9.19 in 1992
8-South Central Mtns	<mark>7.47</mark>	3.66	<mark>196%</mark>	123	0.95 in 1983	7.97 in 1989
9-Southwest Plateau	4.48	0.16	104%	76	1.75 in 1930	9.70 in 1896
10-Northwest Plateau	5.31	0.71	115%	96	1.99 in 2011	10.00 in 1992


Rankings are for the 124 years between 1895 and 2018. 1=driest; 124=wettest. Departures and percent normal are calculated using the 1981-2010 normals.

http://www.nrcc.cornell.edu/regional/tables/tables.html

Appendix B

Notice of Time Period Extension for Assessment of Corrective Measures

November 1, 2018 VIA EMAIL

Mr. Steve Frank, GenOn

Mr. John Shimshock, Conemaugh Generating Station

Subject:

Assessment of Corrective Measures—Acknowledgement of 60-day Extension

CCR Release Incident – Ash Valley Refuse/Disposal Area

Conemaugh Generating Station

West Wheatfield Township, Indiana County, Pennsylvania

Dear Messrs. Frank and Shimshock:

As you are aware, Title 40 Code of Federal Regulations (CFR) Part 257 Subpart D addresses the management of coal combustion residuals (CCR) in landfills and surface impoundments. Conemaugh Generating Station's Ash Valley Refuse/Disposal Site (operated by GenOn Northeast Management Company [GenOn]) is subject to the CCR Rule. On August 8, 2018, a surficial (non-groundwater) release of CCR was discovered during the performance of a routine inspection of the landfill and established erosion and sedimentation control features. The release most likely occurred during an extremely intense precipitation event on July 30, 2018, which was localized and rare.

As required under §257.90(d), in order to minimize the potential for future releases, Conemaugh Station and its contractor (R&L Development) immediately removed CCR from the onsite erosion and sedimentation control features and repaired them. Conemaugh Station and its contractor have additionally continued with implementation of additional interim measures to further stabilize the situation and minimize potential impacts to human health and/or the environment (e.g., removed nearly all of the displaced CCR). In this regard, a vacuum truck was used shortly after the release and during subsequent interim actions to remove as much of the released CCR as feasible in order to protect human health and the environment. This method of removal was selected in order to minimize disturbance to the vegetation and ecosystem.

Representatives from Aptim Environmental & Infrastructure, Inc. (APTIM) visited the site on September 26th and 28th, 2018 and October 23, 2018 to assess the extent of the CCR release to the ground surface. I, as a qualified professional engineer in the Commonwealth of Pennsylvania, reviewed the above-described interim/corrective actions during the noted site visit on October 23, 2018 and found them to be appropriate to minimize the potential for future release.

APTIM is currently developing a soil and surface water sampling plan to assess whether the remedial activities undertaken immediately and shortly after the release have appropriately mitigated potential impacts to the health and/or the environment. Soil and surface water sampling will be undertaken once this plan is complete. If a potential impact to human health and/or the environment is found to be present due to the release, further corrective measures will be assessed in accordance with §257.96. The selection of any additional remedy, if required, will be conducted in accordance with §257.97 and implemented in accordance with §257.98. Because of the complexities related to removal of the displaced ash in the impacted areas, and the need to develop an adequate confirmatory sampling and analysis plan, Aptim certifies that a 60-day extension beyond the CCR Rule-specified 90 days is appropriate for completing the assessment of corrective measures. U.S. EPA acknowledged the need for such extensions in the preamble to the final CCR Rule, please see below:

Based on the comments received, as well as the Agency's own experience, EPA recognizes that there may be complex situations that require more time to develop a careful and well-thought out corrective measures assessment. Therefore, the final rule has been modified to allow up to an additional 60 days to complete the assessment of corrective measures, provided that a qualified professional engineer certifies that the additional time is necessary. The initial 90 days plus the additional 60 days, which is within the range of time suggested by the commenters, would provide the owner or operator up to 150 days to complete the corrective measures assessment, which EPA expects will be sufficient. FR 80 (74) April 17, 2015, page 21406

The corrective measures assessment will be completed within 150 days of the observation of the release, representing the inclusion of a 60-day extension per the provisions of §257.96(a), and to provide sufficient time for completion of the upcoming confirmation sampling activities. Thus, the assessment and associated summary report will be completed on or before January 9, 2019.

Please contact me with any questions, either via email at <u>Richard.Southorn@aptim.com</u> or directly at 630-762-3327.

Sincerely,

Richard Southorn, PE, PG

Project Manager

Aptim Environmental & Infrastructure, Inc.

NOTICE
Public Meeting Notice
GenOn Northeast Management Company, the operator of the Conemaugh Generating Station located in West Wheatfield Township, Indiana County, PA, will hold a public meeting with interested and affected parties to discuss the incident and the assessment of corrective measures in response to a non-groundwater coal combustion residuals (CCR) release that occurred at the station's residual waste landfill on July 30, 2018. Meeting info is presented at the end of this notice. Landfill operations are subject to the requirements of U.S. EPA'S CCR Rule, 40CFR257 Subpart D. The public meeting is required by the Rule, §257.96(e). Individuals will have an opportunity to provide written or oral comments relevant to this incident, not to exceed the time allotted for the meeting. The meeting will be documented as required by the Rule, §257.015 (h)(11).
WHAT. Public meeting to review Conemaugh Station's actions and corrective measures in response to a non-groundwater CCR release that occurred at the station's residual waste landfill on July 30, 2018.
WHEN: Tuesday, December 18, 2018, 6:00 PM to 8:00 PM EST
WHERE: New Florence Fire Hall, 177 13th Street, New Florence, PA 15944
11/23, 11/24, 11/25

Proof of Publication

State of Pennsylvania County of Indiana

day of

On this

]SS

November

2018 A.D.

before me, the subscriber, a Notary Public in and for said County personally appeared:	and State,
Shirley McCombs	
who being duly sworn according to laws, deposes and says, the Solicitor of the Indiana Gazette, that the said Indiana Gazette newspaper of general circulation, published in the borough of Indiana County of Indiana, State of Pennsylvania, by the Indiana Publishing Company, and was established in said Borough on day of July 1890, since which date, said daily newspaper has been issued in said Borough and County, that annexed hereto is a true notice in the above matter exactly as the same was printed in editions and issues of the said daily newspaper on the following of 11/23, 11/24, 11/25	e is a daily iana, in the Printing & the second en regularly e copy of a the regular
Affiant further deposes and says that (s)he is an employee of the of the said daily newspaper and has been authorized to verify the statement and the (s)he is not interested in the subject ma aforesaid notice or publication and that all allegations in the statement as to time, place, and character of publication are true.	e foregoing tter of the foregoing
Indiana Printing & Publishing Company By:	
Sworn to and subscribed before me the day and year afore	said.
NOTARIAL SEAL BARBARA J SULLINGER NOTARY PUBLIC INDIANA BORO, INDIANA COUNTY My Commiss on Expires Dec 3, 2020	
Ballan Suellings Signature of notarial officer	
	\$179.40
Proof of Publication	\$5.00
Proof of Intent	
Total	\$184.40
Indiana Printing & Publishing Company, publishers of the Indiana Gazette, a daily new hereby acknowledges receipt of the aforesaid publication costs, and certifies the same have paid.	
Indiana Printing and Publishing Co. P.O. Box 10, 899 Water Street, Indiana, PA 15701	
By	

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

CHEMICAL ANALYSES OF SOILS AND OTHER SURFICIAL MATERIALS OF THE CONTERMINOUS UNITED STATES

By

Josephine G. Boerngen and Hansford T. Shacklette

Open-File Report 81-197

This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards or nomenclature

Contents

	Page
[ntroduction	. 1
Sample collection, preparation, and analysis	. 2
Location, description, and concentration of elements for samples of	
surficial materials	3
References cited	6
Table	Page
Table 1. Location, description, and concentration of elements for	
samples of surficial materials	. 8

Introduction

A sampling program was begun in 1961 that was designed to give estimates of the abundance of elements in soils and other surficial materials and in associated plants from sites selected along routes of travel, and in study areas, of U.S. Geological Survey scientists. The sampling plan was kept simple. The proposed sampling intensity consisted of one sample of soil and one of plants collected at sites about 50 mi. (81 km) along routes of travel to areas of other types of field study. Sampling sites were selected, insofar as possible, that represented soil in its natural condition. This program resulted in the sampling of 863 sites. The results of the soil analyses were published for 35 elements by plotting their concentrations, in two to five frequency classes, on maps (Shacklette, Hamilton, Boerngen, and Bowles, 1971).

Soon after this publication, interest in environmental geochemistry, particularly the application to problems of industrial and vehicular pollution, increased greatly. At the same time, advances in analytical techniques made the analysis of additional elements practical. Therefore, the samples from the first study, with some additional samples, were analyzed and reported as follows: mercury by Shacklette, Boerngen, and Turner (1971); lithium and cadmium by Shacklette, Boerngen, Cahill, and Rahill (1973); and selenium, fluorine, and arsenic by Shacklette, Boerngen, and Keith (1974).

Sampling according to this plan continued, as opportunities arose, until autumn, 1975, resulting in the sampling of 355 additional sites that were selected to give a more uniform geographical coverage of the conterminous United States. These samples were analyzed and the data were merged with those of the original samples to produce the results given in this report.

The elemental composition of only the surficial materials were given in all reports; the data on analysis of the plant samples are held in files of the U.S. Geological Survey.

This study was made possible by the cooperation of many persons in the U.S. Geological Survey. We express our appreciation to those who collected samples, as follows: Jessie M. Bowles, F. A. Branson, R. A. Cadigan, F. C. Canney, H. L. Cannon, F. W. Cater, Jr., M. A. Chaffey, Todd Church, J. J. Connor, Dwight Crowder, R. J. Ebens, R. N. Eicher, J. A. Erdman, R. F. Gantner, G. B. Gott, W. R. Griffitts, T. P. Hill, E. K. Jenne, M. I. Kaufman, J. R. Keith, Frank Kleinhampl, A. T. Miesch, R. F. Miller, R. C. Pearson, E. V. Post, Douglas Richman, James Scott, D. E. Seeland, R. C. Severson, M. H. Staatz, T. A. Steven, M. H. Strobell, V. E. Swanson, R. R. Tidball, H. A. Tourtelot, J. D. Vine, and R. W. White.

We thank the following members of the U.S. Department of Agriculture, Soil Conservation Service for providing soil samples from areas in Minnesota: Donald D. Barron, Carroll R. Carlson, Donald E. DeMartelaire, Royce R. Lewis, Charles Sutton, and Paul Nyberg. We acknowledge the analytical support provided by the following U.S. Geological Survey chemists: Lowell Artis, Philip Aruscavage, A. J. Bartel, S. D. Botts, L. A. Bradley, J. W. Budinsky, Alice Caemmerer, J. P. Cahill, E. Y. Campbell, G. W. Chloe, Don Cole, E. F. Cooley, N. M. Conklin, W. B. Crandell, Maurice Devalliere, P. L. D. Elmore, E. J. Finlay, Johnnie Gardner, J. L. Glenn, T. F. Harms, R. C. Haven, R. H. Heidel, M. B. Hinkle, Claude Huffman, Jr., L. B. Jenkins, R. J. Knight, B. W. Lanthorn, L. M. Lee, K. W. Leong, J. B. McHugh, J. D. Mensik, V. M. Merrit, H. T. Millard, Jr., Wayne Mountjoy, H. M. Nakagawa, H. G. Neiman, Uteana Oda, C. S. E. Papp, R. L. Rahill, V. E. Shaw, G. D. Shipley, Hezekiah Smith, A. J. Sutton, Jr., J. A. Thomas, Barbara Tobin, J. E. Troxel, J. H. Turner, and G. H. VanSickle.

We were assisted in computer programming for the data by J. B. Fife and George Van Trump, Jr.

Sample collection, preparation, and analysis

The sampling sites were selected, if possible, to represent surficial materials that were altered very little from their natural condition and that supported native or cultivated plants suitable for sampling. In practice, this site selection necessitated sampling away from roadcuts and fills, but in some areas only cultivated fields were available for sampling. The materials sampled included soil as defined by soil scientists, beach and dune sands, very stony lithosols, and organic deposits generally considered to be peat instead of soil. Most samples were collected at a depth of about 8 in. (20 cm), which reduced or avoided the effects of surface contamination. In zonal soils, this depth commonly is within the range of the B soil horizon (zone of element accumulation). Some lithosols over nearsurface bedrock did not extend downward to 8 in. (20 cm); they were sampled at the bottom of soil development in the profile.

Areas of field studies commonly were sampled more intensively than at intervals of 50 miles (81 km). Samples used from these studies were selected to represent about the same geographical coverage as did those along roads.

The soil samples were dried in the laboratory, pulverized and sieved, and the minus-2mm fractions were used for analysis. The methods of analysis used for some elements were changed during the course of the study as new techniques and instruments became available. The results published in the first report (Shacklette, Hamilton, Boerngen, and Bowles, 1971) were obtained for most elements by use of a semiquantitative six-step emission spectrographic method (Meiman, 1976). Other methods were used for the following elements: atomic absorption, with flame (Huffman and Dinnin, 1976) for mercury, lithium, magnesium, sodium, rubidium, and zinc; atomic absorption, flameless (Vaughn, 1967) for mercury; X-ray fluorescence spectrometry (Wahlberg, 1976) for calcium, germanium, iron, potassium, selenium, silver, sulfur, and titanium; combustion (Huffman and Dinnin, 1976), total carbon; and neutron activation (Millard, 1975, 1976) for thorium and uranium.

Location, description, and concentration of elements for samples of surficial materials

Table 1 provides one page of descriptive material for 50 samples, arranged alphabetically by Postal Service abbreviations for state names and by county names, followed by four pages of analytical data for these samples, then proceeds to the descriptive page for the next 50 samples, and so on through the table. The state names in the descriptive material of site locations are abbreviated according to the system used by the Government Printing Office (GPO). The following table gives these abbreviations.

State	GPO	Postal Service	State	GPO	Postal Service
Alabama	Ala.	AL	Nebraska	Nebr.	NE
Arizona	Ariz.	AZ	Nevada	Nev.	NV
Arkansas	Ark.	AR	New Hampshire	N.H.	NH
California	Calif.	CA	New Jersey	N.J.	NJ
Colorado	Colo.	CO	New Mexico	N. Mex.	NM
Connecticut	Conn.	CT	New York	N.Y.	NY
Delaware	Del.	DE	North Carolina	N.C.	NC
Florida	Fla.	FL	North Dakota	N. Dak.	ND
Georgia	Ga.	GA	Ohio	Ohio	OH
Idaho	Idaho	ID	Oklahoma	Okla.	OK
Illinois	III.	IL	Oregon	Oreg.	OR
Indiana	Ind.	IN	Pennsylvania	Pa.	PA
Iowa	Iowa	IA	Rhode Island	R.I.	RI
Kansas	Kans.	KS	South Carolina	S.C.	SC
Kentucky	Ky.	KY	South Dakota	S. Dak.	SD
Louisiana	La.	LA	Tennessee	Tenn.	TN
Maine	Maine	ME	Texas	Tex.	TX
Maryland	Md.	MD	Utah	Utah	UT
Massachusetts	Mass.	MA	Vermont	Vt.	VT
Michigan	Mich.	MI	Virginia	Va.	VA
Minnesota	Minn.	MN	Washington	Wash.	WA
Mississippi	Miss.	MS	West Virginia	W. Va.	WV
Missouri	Mo.	MO	Wisconsin	Wis.	WI
Montana	Mont.	MT	Wyoming	Wyo.	WY

The location of the sampling sites is given by north latitude and west longitude in degrees and minutes, and the collection date is given by year and month. The format used for table I allows only 70 spaces for site and soil descriptions, therefore, this column is written in telegraphic style, employing numerous abbreviations, minimum punctuation, and the elimination of unnecessary connectives in the statements in order to give as much information as possible in the limited space. The sampling sites are located more precisely by a descriptive reference to landmarks, such as highways, towns, rivers, or other geographic features. The distances of

the sites from these landmarks are approximate, generally rounded to whole numbers. The descriptions of the surficial materials closely follow those made at the sites by the collectors, and are usually expressed in nontechnical terms. A list of the abbreviations that were used follows.

Abbreviation	Word or term	Abbreviation	Word or term
ALLUV	Alluvium	NAT	National
ALT	Alternate	NAT FOR	National forest
BLM	Bureau of Land Management	N.P.	National Park
BR	Branch	NR	Near
BRWN	Brown	PK	Park
C.H.	Courthouse	QUAD	Quadrangle
CO	County	QUAT	Quaternary
CR	Creek	R.	River
DECID.	Deciduous	RD	Road
FT	Fort	RES	Reservation
HATC	Hatchery	RR	Railroad
HOR	Horizon	RT	State Route
HTS	Heights	RX	Rocks
I	Interstate Highway	SED	Sedimentary
IN.	Inch or inches	SERV	Service
IRR	Irrigation	SH	Shale
JCT	Junction	SPGS	Springs
LGHT	Light	SS	Sandstone
LS	Limestone	TERT	Tertiary
MED	Medium	TPK	Turnpike
MI	Mile	US	U.S. Highway
MT MX	Mount or mountain Mixed	YDS	Yards

Bismuth, cadmium, praseodymium, and silver were found infrequently in measurable concentrations in the samples. Data for these elements are given in the following table.

	IAMPLE			LATI-	LONGI-	DATE			
	NO.	STATE	COUNTY	TUDE	TUDE		ECTED	LOCATION, DESCRIPTION, AND CONCENTRATION (PPM) OF ELEMENTS	
								BISMUTH	
(250450		PINAL INYO		111 5 117 52	64 66	5	US 60-70 W EDGE OF SUPERIOR; STONY ROUGH SOIL	15 15
								CADMIUM	
v	060250 242750 243150 270650 185450 066950 155850 024850 023550 191350 042250 267450 152150 056050	CA CA CO CO CC KS KS MT NM OH SD TX VA	KERN NEVADA SANTA CLARA SHASTA MOFFAT SUMMIT BOURBON LOGAN CASCADE CHAVES AUGLAIZE BROWN HARRIS WYTHE POLK	35 30 39 14 36 58 40 31 40 15 39 33 37 45 39 32 40 30 45 25 29 47 36 58 45 31	119 38 121 2 121 33 121 30 108 40 106 9 94 55 101 44 111 10 104 50 83 55 98 7 95 38 80 57 92 35	72 63 71 71 65 66 68 63 72	10 5 6 10 8	JCT RT 33 AND UNNUMBERED RD 10 MI NW BUTTONWILLOW; SOIL NOT DESCRIBED. I-40 AT CISCO; SOIL NOT DESCRIBED. US 101 AT RT 152 EXIT GILROY; SOIL NOT DESCRIBED. IN LASSEN VOLCANIC N.P. 3 MI SE MANZANITA LAKE; B HORIZON SOIL. US 40 5 MI E MASSADONA; BROWN CLAYEY SILT 8 IN. DEPTH. US 6.5 MI E OFFICERS QUICH CAMPGROUND; BROWN GRAVELLY SOIL ON TILL. US 54 10 MI W FT. SCOTT; DARK PRAIRIE SOIL OVER LIMESTONE. US 40 AT OAKLEY; BLACK PRAIRIE SOIL. 1 MI NORTH MALSTROM AIR BASE; CULTIVATED, PLOW ZONE. US 70 18 MI SW ROSWELL; VERY DRY, TAN, MANY CHERT FRAGMENTS. US 33 1 MI NW LAKEVIEW; BROWN SILTY LOAM CULTIVATED. RT 37 1 MI S GROTON; GRAY MOTTLED B HORIZON LACUSTRINE CLAY, GRASSLAND. US 90 2 MI E ADDICKS; DARK ALLUVIAL CLAY. RT 121 AT MAX MEADOWS; MUCK. RT 35 2 MI S LUCK; YELLOW SANDY LOAM.	1.0 1.0 1.0 1.0 1.0 1.5 2.0 2.0 1.5 1.0 1.0
				*				PRASEODYMIUM	
	070350	AL	MONTGOMERY	32 17	86 12	73	1	US 231 5 MI S MONTGOMERY; SANDY LOAM	100
	171450 033150 186250 023550 263150 022750	CO ID MT UT	COCONINO CLEAR CREEK BANHOCK CASCADE SUMMIT WYTHE	34 33 39 47 42 47 47 32 40 52 36 58	111 10	71 68	586579	RT 87 AT CLINTS WELL; DARK FOREST SOIL US 40 ON BERTHOUD PASS; BROWN, ON GRANITE AND GNEISS RUBBLE I-15 8 MI SE POCATELLO; BROWN SILT, 4 IN. DEPTH 1 MI NORTH MALSTROM AIR BASE; CULTIVATED, PLOW ZONE. I-80 2 MI S RT 133 EXIT NEAR STREAM BED; BLACK ORGANIC ALLUVIUM. RT 121 AT MAX MEADOWS; MUCK.	3.0 2.0 3.0 .7 5.0 3.0

Some elements were looked for in all samples but were not found. These elements, analyzed by the semiquantative spectrographic method, and their approximate lower detection limits, in parts per million, are as follows: gold, 20; hafnium, 100; indium, 10; platinum, 30; palladium, 1; rhenium, 30; tantalum, 200; tellurium, 2,000; and thallium, 50. If lanthanum or cerium was found in a sample, the following elements, with their stated lower detection limits, were looked for in the same sample but were not found: dysprosium, 50; erbium, 50; gadolinium, 50; holmium, 20; lutetium, 30; terbium, 300; and thulium, 20.

The following symbols used in table 1 are explained as follows: N, not detected in the sample; leaders (--), no data available; <, less than the stated value; and >, greater than the stated value.

References cited

- Huffman, Claude, Jr., and Dinnin, J. I., 1976, Analysis of rocks and soil by atomic absorption spectrometry and other methods, in Miesch, A. T., Geochemical survey of Missouri--Methods of sampling, laboratory analysis, and statistical reduction of data: U.S. Geological Survey Professional Paper 954-A, p. 12-14.
- Millard, H. T., Jr., 1975, Determination of uranium and thorium in rocks and soils by the delayed neutron technique, in U.S. Geological Survey, Geochemical survey of the western coal region, 2d Annual Progress Report July 1975: U.S. Geological Survey Open-File Report 75-436, p. 79-81.
- 1976, Determination of uranium and thorium in USGS standard rocks by the delayed neutron technique, in Flanagan, F. J., ed., Description and analyses of eight new USGS rock standards: U.S. Geological Survey Professional Paper 840, p. 61-65.
- Myers, A. T., Havens, R. G., and Dunton, P. J., 1961, A spectrochemical method for the semiquantitative analysis of rocks, minerals, and ores: U.S. Geological Survey Bulletin 1084-I, p. 207-229.
- Neiman, H. G., 1976, Analysis of rocks, soils and plant ashes by emission spectroscopy, in Miesch, A. T., Geochemical survey of Missouri--Methods of sampling, laboratory analysis, and statistical reduction of data: U.S. Geological Survey Professional Paper 954-A, p. 14-15.
- Shacklette, H. T., Boerngen, J. G., Cahill, J. P., and Rahill, R. L., 1973, Lithium in surficial materials of the conterminous United States and partial data on cadmium: U.S. Geological Survey Circular 673, 8 p.
- Shacklette, H. T., Boerngen, J. G., and Keith, J. R., 1974, Selenium, fluorine, and arsenic in surficial materials of the conterminous United States: U.S. Geological Survey Circular 692, 14 p.

- Shacklette, H. T., Boerngen, J. G., and Turner, R. L., 1971, Mercury in the environment--Surficial materials of the conterminous United States: U.S. Geological Survey Circular 644, 5 p.
- Shacklette, H. T., Hamilton, J. C., Boerngen, J. G., and Bowles, J. M., 1971, Elemental composition of surficial materials in the conterminous United States: U.S. Geological Survey Professional Paper 574-D, 71 p.
- Vaughn, W. W., 1967, A simple mercury vapor detector for geochemical prospecting: U.S. Geological Survey Circular 540, 8 p.
- Wahlberg, J. S., 1976, Analysis of rocks and soils by x-ray fluorescence, in Miesch, A. T., Geochemical survey of Missouri--Methods of sampling, Taboratory analysis, and statistical reduction of data: U.S. Geological Survey Professional Paper 954-A, p. 11-12.
- Ward, F. M., Lakin, H. W., Canney, F. C., and others, 1963, Analytical methods used in geochemical exploration by the U.S. Geological Survey: U.S. Geological Survey Bulletin 1152, 100 p.

Table 1.--Location, description, and concentration of elements for samples of surficial materials

Data are divided into five-page units. The first page of each unit gives the sample numbers for 50 samples, the state and county names listed alphabetically, the latitude and longitude in degrees and minutes, the date of sample collection, the location of the sampling site, and the description of the sample. The following 4 pages give analytical results for 46 elements for each of the 50 samples in this unit. The second unit follows alphabetically by state and county, and so on through the entire table]

	Sample				Lati-	Long-	Date	Site and Soil Descriptions
	No.	State	County		tude	itude	Colln.	
	GC268950	OR	MALHEUR		44 0	117 0	68 9	US 20-26 10 MI E VALE; B HORIZON SOIL
	GC269050		MALHEUR		43 47	117 56	68 9	US 20 ABOUT 10 MI E JUNTURA; B HORIZON SOIL
	6026950		MARION		45 1	122 59	71 9	1-5 2.6 MI N JCT T-5 & US 99E; SOIL ON SILT DEPOSIT
	GC269550		MARION		44 50	123 5	68 9	1-5 S OF TURNER; B HORIZON SOIL
	GC035350		MORROW		45 50	119 36	65 8	1-80-US30 3 MI E US 730 JCT; MED BROWN SAND
	GC035650		MULTNOMAH		45 32	122 17	65 8	AT CORBETT OFF 1-80; BROWN SILT
	GC 06 06 50		SHERMAN		45 20	120 46	70 10	US 97 1 MI S GRASS VALLEY; DARK GRAY SILT OVER BASALT
	GC076650		TILLAMOOK		45 44	123 56	73 9	RT 101 1 MI N MANZANITA; REDDISH-YELLOW LOAM
	GC076750		TILLAMOOK		45 12	123 55	73 9	US 101 4 MI S CLOVERDALE; PEBBLY LOAM
	6035250		UMATILLA		45 40	118 45	65 8	US 30'1 MI E PENDLETON; GRAY SILT ON BASALT
	GC269450		UMATILLA		45 3	118 59	68 9	US 395 ABOUT 8 MI N DALE; B HORIZON SOIL
	GC035150		UNION		45 20	118 6	65 8	US 30 N EDGE LA GRANDE; GRAY-BROWN CLAY LOAM
	GC035550		WASCO		45 42	121 21	65 8	1-80N 3 MI W ROWENA; BROWN SILT, RESIDUAL ON BASALT
	GC041650		BEDFORD		39 57	78 20	66 10	PA TPK 6 MI W EXIT 12; LIGHT ORANGE-BROWN SANDY LOAM
	GC059550		CENTRE		41 2	77 57	70 9	1-80 .5 MI S JCT RT 144 ON GRAVEL TRAIL; SOIL NOT DESCRIBED
	GC041350		CHESTER		40 7	75 50	66 10	PA TPK 5 MI E EXIT 22; BROWN CLAY LOAM
	GC041550		CUMBERLAND		40 10	77 30	66 10	PA TPK 10 MI E EXIT 15; YELLOWISH CLAY LOAM
	GC041450		DAUPHIN		40 10	76 37	66 10	PA TPK 8 MI W EXIT 20; RED SANDY CLAY LOAM
	GC003050	PA	ERIE		41 56	80 29	62 5	I-90 AT US 6N INTERCHANGE; YELLOWISH-ORANGE SAND
	60030950	PA	ERIE		42 11	79 50	72 9	RT 89 3 MI S OF NORTH EAST; HEAVY CLAY FOREST SOIL
	GC041750	PA	FAYETTE		40 5	79 20	66 10	PA TPK 2 MI E EXIT 9; YELLOWISH BROWN SILTY CLAY LOAM
	GC061150	PA	JEFFERSON		41 9	78 54	70 9	US 322 2.5 MI E RT 28 JCT; SOIL NOT DESCRIBED
	GC184550		LEHIGH		40 44	75 37	67 11	NE EXIT PENN. TPK NEAR SLATINGTON; SOIL NOT DESCRIBED
	→ GCO61350	PA	LYCOMING		41 12	77 8	70 9	RT 645 3.9 MI W JCT US 15; SOIL NOT DESCRIBED
1	2 GC061050	PA	MERCER	19	41 12	80 17	70 9	4.5 MI W JCT US 62 AND US 19; SOIL NOT DESCRIBED
	GC184050	PA	SULLIVAN		41 23	76 30	67 10	US 220 2 MI S LAPORTE; B HORIZON FROM SANDSTONE
	GC184450		SUSQUEHANNA		41 38	75 38	67 11	I-81 5 MI S LENOX; SOIL NOT DESCRIBED
	GCD61450		TIOGA		41 40	77 5	70 9	US 15 2.7 MI S OF N TURNOFF TO ARNOT; SOIL NOT DESCRIBED
	GC041850		WASHINGTON		40 10	80 15	66 10	I-70 AT WASHINGTON: YELLOWISH-ORANGE SILTY LOAM
	60006050		PROVIDENCE		41 49	71 43	62 10	US & AT JCT RT 102; SANDY B HORIZON
	GC062950		AIKEN		33 24	81 33	70 10	US 78 2 MI S WINDSOR; SANDY, AZONAL, YOUNG PINE STAND
	60196650		CLARENDON		33 52	80 0	65 7	US 378 2 MI E TURBEVILLE; LIGHT YELLOW SAND
	GC 06 3 0 5 0		DARLINGTON		34 18	79 50	70 10	CO RD 1 MI E DOVESVILLE; SANDY, AZONAL, PINE PLANTATION
	GC196750		HORRY		33 50	79 14	65 7	US 378 11 MI W CONWAY; BLACK SAND AND MUCK
	GC196850		HORRY		33 50	78 40	65 7	US 17 AT LITTLE RIVER; YELLOW SAND
	GC196350		MC CORMICK		33 51	82 22	65 7	US 378 1 MI E GEORGIA STATE LINE; RED CLAY WITH QUARTZ FRAGMENTS
	GC 06 3 1 5 0		ORANGEBURG		33 20	80 57	70 10	CO RD 1 MI E COPE; SANDY, AZONAL, MATURE PINE FOREST
	GC196550		RICHLAND		33 56	80 56	65 7	US 378 10 MI E COLUMBIA; YELLOW SAND
	60196450		SALUDA		34 0	81 39	65 7	US 378 10 MI E SALUDA; RED LITHOSOL WITH QUARTZ FRAGMENTS
	60211050		SPARTANBURG		34 55	82 0	65 7	US 29 .4 MI W I-85 AT SPARTANBURG; SOIL NOT DESCRIBED
	60267550		BEADLE		44 33	98 19	68 8	RT 37 7 MI S RT 28 JCT, N HURON; DARK BROWN GRAVELLY, CULTIVATED
	6028850		BENNETT		43 13	101 27	72 9	US 18 11 MI E MARTIN; DARK SILT LOAM
	GC029250	1.4	BON HOMME		43 5	98 5	72 9	RT 46 12 MI E WAGNER; BLACK CLAY LOAM
	6055250		BROOKINGS		44 0	96 45	70 5	US 14 2 MI W BROOKINGS; BLACK PRAIRIE
	60267450		BROWN		45 25	98 7	68 8	RT 37 1 MI S GROTON; GRAY MOTTLED B HORIZON LACUSTRINE CLAY, GRASSLAND
	6054450		BUTTE		44 35	97 3	70 5 70 5	US 212 JCT RT 79; DARK CLAYEY SOIL
	60055150		CODINGTON		44 30	101 55	74 11	US 81 3 MI S WATERTOWN; BLACK PRAIRIE
	GC084150		CORSON		44 54	100 42	70 5	STANDING ROCK INDIAN RESERVATION; SOIL DERIVED FROM SANDSTONE
	GC054750 GC267750		DEWEY		43 17	98 20	68 8	US 212 6 MI E RIDGEVIEW; PRAIRIE CLAY LOAM US 281 1 MI S .5 MI E ARMOUR; DARK CLAY LOAM, PRAIRIE GROUP, CULT.
	00201130	20	DOUGLAS	-	43 17	70 20	00 0	22 CDI 1 MI 2 13 MI E MENONE, BULK CTAL COME, LENTINE BROOM, COFI.

Table 1 .-- Location, description, and concentration of elements for samples of surficial materials -- continued

Sample No.	AL X	As ppm	В ррж	Ba ppm	Be ppm	Br ppm	c x	Ca X	Ce ppm	Co ppm	Cr ppm	Cu ppm
GC268950	>10.00	4.3	20	1,000	1.0			2.60	N	15	70.0	30.0
GC269050	>10.00	3.8	<20	700	1.0			4.50	N	30	30.0	150.0
GC026950	>10.00	6.2	30	1,500	3.0	1.9	2.2	1.21	<150	20	70.0	30.0
GC269550	>10.00	6.0	N	300	N			.20	N	30	70.0	100.0
GC035350	>10.00	2.6	N	700	N			2.40	N	20	50.0	20.0
GC035650	>10.00	4.4	N	700	N			3.20	N	15	100.0	20.0
GC060650	>10.00	5.7	<20	700	1.5			2.32	<150	15	50.0	50.0
GC076650	>10.00	10.3	30	500	N	10.8	4.2	.54	N	10	70.0	70.0
GC076750	10.00	5.5	<20	300	N	7.4	10.4	-19	N	5	150.0	70.0
GC035250	>10.00	6.9	N	700	N			2.20	N	20	50.0	30.0
GC269450	7.00	1.7	N	500	N			4.60	N	30	100.0	150.0
GC035150	>10.00	4.2	. N	700	N			1.80	N	30	100.0	30.0
GC035550	>10.00	1.9	N	700	N			3.40	N	30	50.0	30.0
GC041650	7.00	29.0	70	300	2.0	1,65		.05	150	30	70.0	50.0
GC059550	5.00	6.1	30	300	N			.06	N	3	30.0	10.0
GC041350	7.00	5.2	50	500	1.5			.30	150	50	50.0	70.0
GC041550	10.00	9.9	50	500	1.5			.20	150	15	100.0	50.0
GC041450	7.00	7.0	7.0	300	3.0			.20	150	20	70.0	50.0
GC003050	1.50	6.3	30	300	N	-		.53	N	7	15.0	15.0
GC030950	7.00	15.7	50	500	N	5.3	4.1	.43	<150	10	70.0	50.0
GC041750	7.00	10.0	50	500	2.0			.45	150	30	70.0	50.0
GC061150	3.00	3.8	30	200	N			.03	N	3	15.0	7.0
GC184550	5.00	16.0	70	300	1.5			-10	N	15	30.0	50.0
6061350	10.00	17.0	50	500	2.0			.04	<150	15	100.0	50.0
00001030	7.00	14.0	50	500	1.0		**	.15	150	10	50.0	20.0
GC184050	3.00	11.0	30	150	N			.05	N	7	15.0	15.0
GC184450	5.00	14.0	70	200	1.5			.25	N	10	30.0	15.0
GC061450	7.00	10.0	50	300	1.0		**	.06	<150	10	30.0	20.0
GC041850	10.00	31.0	50	500	3.0	OF EAST		.25	150	30	100.0	70.0
60006050	>10.00	3.5	N	500	N			1.10	N	10	50.0	15.0
6062950		4.9		30.0				55.0		55		
60196650	1.50	1.1	50	70	N			-10	N	N	15.0	5.0
6063050		3.2										
6 C 19 6 7 5 D	.70	1.0	50	70	N			.10	N	N	5.0	3.0
GC196850	.70	4.55	50	50	N			-10	N	N	5.0	5.0
GC196350	>10.00	4.3	N	300	N		77	-40	N	7	50.0	50.0
GC063150	**	6.8										
GC196550	1.50	7.4	50	70	7.0		~~	-55	N	N	15.0	5.0
GC196450	3.00	2.9	N	500	N			.20	N	N	10.0	15.0
GC211050	>10.00	3.4	N	300	N			.25	N	10	50.0	30.0
GC267550	7.00	15.0	50	700	1.0			.80	N	10	50.0	50.0
GC028850	5.00	1.7	<20	1,000	N	<.5	.9	.76	N	<3	15.0	7.0
GC029250	7.00	13.5	50	700	1.5	1.4	3.5	1.27	<150	10	70.0	50.0
GC055250	5.00	7.0	30	500	N		1.8	1.00	N	7	30.0	10.0
GC267450	7.00	3.9	30	500	1.0		~-	7.00	N	7	50.0	30.0
GC054450	7.00	17.0	70	1.000	1.0	_3	1.5	1.20	N	10	70.0	30.0
60055150	7.00	10.0	30	700	1.0	0.44	4.9	1.00	N	7	70.0	15.0
GC084150	7.00	1.9	50	1,000	2.0	<.5	2.2	1.22	N	10	70.0	20.0
GC054750	10.00	12.0	70	1.000	1.0	**	1.6	1.10	N	7	70.0	20.0
GC267750	>10.00	15.0	50	700	1.0			.55	N	10	70.0	50.0

Table 1.--Location, description, and concentration of elements for samples of surficial materials--continued

	Sample No.	F X	Fe X	Ga ppm	Ge ppm	Нд ррж	1 ppm	K %	La ppm	Li ppm	Mg X	Mn ppm	No ppm
	60268950	.039	5.00	30		.03	102	2.20	50	23	1.500	700	N
	GC269050	.043	7.00	30		.02		1.40	50	12	3.000	1,000	5
	60026950	.070	7.00	20	1.78	.06	1.0	1.78	50	18	.700	1,000	N
	GC269550	.016	>10.00	70		.11		.45	N	18	.300	1,500	N
	GC035350	.031	3.00	30		.05		2.00	30	16	1.500	700	N
	GC035650	.019	3.00	30		.28		1.80	30	20	1.000	700	N
	GC060650	.037	7.00	20		.02		1.30	50	25	1.000	500	N
	GC076650	.050	7.00	20	1.37	.07	4.8	1.34	<30	25	.700	700	N
	GC076750		5.00	20	1.21	.06	2.1	.62	N	28	.500	100	N
	GC035250	.043	5.00	30	-	.02		1.80	50	27	1.500	700	N
	GC269450	.015	7.00	30		.03		.90	N	14	1.500	1,500	
	GC035150	.037	5.00	30		.11		1.20	50	23	1.000	1,000	5
	GC035550	.030	7.00	30		.38		1.10	N	16	1.500	1,000	N
	GC041650	.033	3.00	30		.06		2.00	70	37	.500	500	N
	GC059550	.009	1.50	5		.13		.78	30	18	.100	150	N
	GC041350	.026	5.00	30		.07		1.90	100	28	.700	1,000	3
	GC041550	.080	5.00	30		.12		2.00	70	55	1.000	200	N
	GC041450	.053	5.00	30		.07		1.30	70	47	1.000	1,500	N
	60003050	.009	1.50	15		.04		1.08	N	14	.300	300	N
-	GC030950		3.00	15	1.82	-11	2.2	1.51	<30	39	500	700	N
L	GC041750	.040	7.00	30		.06		1.90	70	64	-700	700	N
	GC061150	.004	.70	N		.05		.36	30	12	.070	300	N
	GC184550	.061	3.00	15	**	.08		2.30	30	27	.300	300	3
5	GC061350	.008	7.00	30		.08		3.26	50	78	.700	700	N
3	GC061050	.027	3.00	15		.06		1.25	70	35	.300	700	N
	GC184050	.034	1.50	15		.10		.75	30	41	.300	200	N
	GC184450	.026	1.50	15	**	-14		1.20	30	40	-300	700	N
	GC061450	.029	3.00	15		.25		1.29	50	39	-300	1,500	N
	GC041850	.060	7.00	50		.05		2.50	70	80	.500	300	N
	GC006050	.061	3.00	5.0		. 24		1.50	N	24	.700	500	N
	GC062950	-061				.03				6		,	
	GC196650	.002	.30	N		.05		.02	30	7	.050	20	N.
	GC063050	.017				.03			1.55	<5			
	GC196750	<.001	.15	N		.09		.04	N	<5	.020	20	N
	GC196850	.011	.30	N		.03		.03	N	6	.030	70	N
	GC196350	.012	3.00	30	1,00	.13		.65	N	12	.200	100	N
	GC063150	<.001		100	1.5-0	-06				<5			
	GC196550	<.001	.50	N		.07		.05	30	. 10	.050	50	N
	GC196450 GC211050	<.001	1.50	10	7-0	.07		.60	N	10	.070	200	N
	GC267550	.003	3.00 5.00	15		.06	0	. 36	N	17	.100	150	N
	GC028350		1.00	1.5		-08		2.00	30	23	1.500	5,000	3
	6029250	.050	2.00	10	1.06	.02	. 6	1.41	N	10	.200	200	N
	6055250	.017		15	1.32	.05	2.1	1.93	50	25	.500	1,000	N
	GC267450	.030	1.50	15		.05	<.5	1.40	N	17	.500	500	N
	GC054450	.100	2.00	15	72	.03		1.70	30	27	2.000	3,000	N
	GC055150	.028	3.00 2.00	20		.08	-6	2.00	30	61	1.000	200	N
	6084150	.040	3.00	15	1.0/	.53	<.5	1.60	N	21	.700	1.000	N
	GC054750	.062	3.00		1.04	.07	1.4	1.98	<30	17	.700	1,500	N
				50		-06	. 6	1.60	30	41	.700	200	N
	GC267750	.041	5.00	20	44	.11	0.00	2.10	50	34	1.500	700	3

Table 1.--Location, description, and concentration of elements for samples of surficial materials--continued

Sample No.	Na X	Nb ppm	Nd ppm	Ni ppm	PX	Pb ppm	Rb ppm	s x	Sb ppm	Sc ppm	Se ppm	Si X
		3.001					ие ррш		30 pp			
60268950	1.50	10	<70	30	.030	10				15	. 3	
6 6 2 6 9 0 5 0	1.00	10	70	20	-090	10				30	<.1	77
GC026950	2.00	10	N	15		20	100	.13	<1	15	. 2	29
GC269550	.30	20		30	.120	20				30	. 8	
GC035350	1.50	50	N	20	.030	15	(- -			20	<.1	
GC035650	2.00	20	N	30	.060	20				15	- 5	
GC060650	2.00	10	70	50		15				20	<.1	
GC076650	1.00	10	N	7		. 20	60	<.08	<1	20	. 8	24
GC076750	.50	10		15	77	15	55	.10	2	10	. 3	20
GC035250	1.50	20	N	30	.024	20				50	- 4	
GC269450	2.00	20		70	.060	N	1/55			30	<.1	
GC035150	1.50	30	N	50	.016	30				20	- 4	
GC035550	2.00	15	N	20	.090	30	. == -			20	<.1	
GC041650	.50	15	70	30	.040	. 30				15	. 3	
GC059550	20	10	N	<5		15				5	- 4	
GC041350	.70	10	150	30	.080	30				15	1.3	
GC041550	.70	15	70	30	.030	20				15	- 4	
GC041450	1.00	15	70	30	.030	30				15	- 4	
GC003050	.70	10		15	.052	15		.52.		7	- 1	
GC030950	.70	<10	<70	20		30	85	<.08	<1	10	. 2	31
GC041750	.50	15	70	50	.040	30	(15	.7	
GC061150	<.05	10	N	N	77	<10				5	. 3	
GC184550	-15	10	70	30	-040	30				15	1.1	
GC061350	.50	10	70	50		10				15	. 4	
GC061050	.50	10	100	15		20	-			10	- 4	
GC184050	.15	15	70	15	.024	15				7	. 5	
GC184450	.70	15	70	15	.050	30				7	- 4.	
6061450	.30	10	70	10		20			-	7	- 6	
GC041850	.50	15	70	30	.060	30			-	15	.3	••
GC006050	1.50	15	N	15	.040	15				10	9	
6062950		55			~~						<.1	
GC196650	N	20	N	N	.004	N				N	.2	
60063050					==						. 1	
GC196750	N	N	N	N	.012	N				N	-1	
GC196850	N	15	N	N	-002	N				N	. 1	
GC196350	.15	N	N	15	.004	N				15	1.3	
GC063150			7.7	-							<.1	
GC196550	N	50	N	7	.004	N				N	. 2	
GC198450	.30	N	N.	5	.008	N		-		10	.5	
GC211050	.07	10		50	.006	N				10	. 5	
GC267550	1.00	10	N	70	.030	15				10	.7	
6028850	1.00	N	-57	5		15	70	<.08	<1	5	<.1	28
6029250	1.00	<10	70	50	~~	20	75	<.08	5	10	< . 1	29
GC055250	0.480	N		15	.065	15				5	-4	36
GC267450	1.50	10	<70	30	.030	10				7	. 4	
60054450		<10	N	30	.052	15				10	1.9	29
GC055150		<10		20	.161	70				7	. 6	30
GC084150	1.00	10	N	30		15	80	<.08	<1	10	<.1	31
GC054750		<10	N	30	.052	. 15				15	. 4	29
GC267750	1.00	10	<70	70	.024	15	441			10	. 9	

Sample No.	Sn ppm	Sr ppm	Ti X	Th ppm	U pps	V ppm	Y ppm	Yb ppm	In X	Zr pp
GC268950		500	.500			150	50	3.0	50	200
GC269050		300	.700			500	70	7.0	70	150
6026950	1.79	500	1.000	9.23	3.15	200	30	3.0	89	. 150
60269550		70	.700			500	20	3.0	85	150
GC035350		500	.700			150	30	5.0	40	150
GC035650		700	.500	***		150	30	3.0	70	150
GC060650		500	.700			150	50	3.0	88	200
GC076650	1.44	150	1.000	7.76	3,58	150	20	3.0	77	200
GC076750	.22	70	.500		3.01	200	10	2.0	59	100
GC035250		500	.700		144	150	30	5.0	50	200
GC269450		300	.700	Tee.	44	300	30	5.0	65	100
GC035150		300	.700			150	30	5.0	55	150
GC035550		700	1.000			200	30	5.0	75	150
GC041650		150	.700			100	50	7.0	60	200
60059550		30	.300			20	15	2.0	24	200
GC041350		70	.700			150	100	10.0	130	150
GC041550		150	.700			150	30	3.0	60	150
GC041450		150	.700			150	30	3.0	80	150
6003050		70	.150			30	15	3.0	42	200
GC030950	1.79	150	_300	12.79	3.10	100	20	3.0	155	200
GC041750		150	.700			100	30	5.0	110	200
GC061150		10	.500			15	20	3.0	31	500
GC184550		30	.300			70	30	3.0	115	500
GC061350		150	.700			100	20	3.0	67	150
GC061050		70	.500			70	30	3.0	113 .	300
GC184050		30	.200			30	20	3.0	55	200
GC184450		30	.300		44	50	30	3.0	90	300
GC061450		50	.500		22	50	30	3.0	80	200
GC041850		150	.500			100	30	5.0	80	150
GC006050		150	.300			70	50	2.0	30	150
GC062950		122		44				722		
GC196650		N	.500			15	20	3.0		500
GC063050		-2					22			
GC196750		N	.100			N	N	N		150
GC196850		N	-200			N	N	1.0		700
GC196350		N	-200		-	150	N	1.0	25	50
GC063150	426			0-0	144					
GC196550		N	.300			15	30	3.0		500
GC196450	42	50	-200		122	30	20	3.0		100
60211050		20	.200			100	N	1.0		100
GC267550	4-1	200	.300	22		100	30	3.0	60	150
GC028850	. 34	200	.150		1.99	30	10	1.5	31	150
GC029250	1.48	200	.200	8.59	3.13	150	20	3.0	107	200
				0.37						
GC055250		150	.200	1,551	1.27	50	15	1.5	54	150
GC267450		300	-200		••	100	20	2.0	60	150
GC054450		200	.300		· · · ·	200	30	3.0	134	100
GC055150		150	.300		2.72	70	20	3.0	150	200
	. 62	200	_200	9.86	2.23	150	20	3.0	79	100
GC084150						4 5 0	20	* n	4 0 0	100
		300 200	.300			150	20 30	5.0	75	200

Appendix E Analytical Laboratory Reports

2005 N. Center Ave. Somerset, PA 15501

> 814/443-1671 814/445-6666 FAX: 814/445-6729

Friday, December 28, 2018

John Shimshock GENON - CONEMAUGH STATION CCR CONEMAUGH STATION PO BOX K NEW FLORENCE, PA 15944

RE: Conemaugh CCR IV Background Order No.: G1811861

Dear John Shimshock:

Geochemical Testing received 10 sample(s) on 11/14/2018 for the analyses presented in the following report.

There were no problems with the analyses and all QC data met NELAC, EPA, and laboratory specifications except where noted in the Case Narrative or Laboratory Results.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Timothy W. Bergstresser Director of Technical Services

Timoth W Bey trus

Leslie A. Nemeth Project Manager

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Project: Conemaugh CCR IV Background CASE NARRATIVE

Lab Order: G1811861

No problems were encountered during analysis of this workorder, except if noted in this report.

SAMPLE RECEIPT CHECKLIST

	Response
COC is present	Yes
COC is filled out in ink and legible	Yes
COC relinquished, signature, date, and time	Yes
Samples arrived within hold time	Yes
Containers properly preserved for the requested testing	Yes
Sample containers have legible labels	Yes
Sample preservation verified	Yes
Appropriate sample containers are used	Yes
Sample container(s) received at proper temperature	Yes
Zero headspace where required	Yes
Sufficient volume for all requested analyses	Yes

Comments on the above checklist: None

Legend: ND - Not Detected

J - Indicates an estimated value.

 \boldsymbol{U} - The analyte was not detected at or above the listed concentration, which is below the laboratory quantitation limit.

B - Analyte detected in the associated Method Blank

Q - Qualifier QL -Quantitation Limit

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

Date: 28-Dec-18

R - RPD outside accepted recovery limits

E - Value above quantitation range

** - Value exceeds Action Limit

H - Method Hold Time Exceeded

MCL - Contaminant Limit

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Client Sample ID: B-1 0-4

Sampled By:

Date: 28-Dec-18

APTIM

Lab Order: G1811861

Project: Conemaugh CCR IV Background

Lab ID: G1811861-001 Collection Date: 11/13/2018 11:20:00 A

Matrix: SOLID Received Date: 11/14/2018 8:54:37 PM

Result	QL Q	Units	DF Dat	te Prepared	Date Analyzed	
	Analyst: A	M			EPA 901.1	
0.71+/-0.0401	0.077	pCi/g	1		12/06/18 7:05 PM	
0.87+/-0.0742	0.092	pCi/g	1		12/06/18 7:05 PM	
	0.71+/-0.0401	Analyst: A 0.71+/-0.0401 0.077	Analyst: AM 0.71+/-0.0401 0.077 pCi/g	Analyst: AM 0.71+/-0.0401 0.077 pCi/g 1	Analyst: AM 0.71+/-0.0401	Analyst: AM EPA 901.1 0.71+/-0.0401 0.077 pCi/g 1 12/06/18 7:05 PM

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: N	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 6:42 PM
Arsenic	15.5	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Barium	127	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Beryllium	1.11	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Chromium	41.5	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Cobalt	17.6	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Lead	23.2	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Lithium	15.9	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Selenium	2.3	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
TOTAL METALS		Analyst: R	LL		EPA 7473	
Mercury	0.038	0.010	mg/Kg-dry	1		11/20/18 2:36 PM

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Client Sample ID: B-2 0-4

Lab Order: G1811861

Project: Conemaugh CCR IV Background

Lab ID: G1811861-002

Matrix: SOLID

Sampled By: APTIM

Collection Date: 11/13/2018 11:25:00 A **Received Date:** 11/14/2018 8:54:37 PM

Date: 28-Dec-18

Analyses	Result	QL (Units	DF Date Pr	epared Date Analyzed
GAMMA SPECTROSCOPY		Analyst: 🖊	M		EPA 901.1
Radium-226	0.55+/-0.0321	0.070	pCi/g	1	12/07/18 9:15 PM
Radium-228	0.70+/-0.0678	0.073	pCi/g	1	12/07/18 9:15 PM

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: N	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 7:05 PM
Arsenic	11.2	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Barium	123	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Beryllium	1.05	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Chromium	41.1	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Cobalt	15.7	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Lead	22.1	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Lithium	12.6	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Selenium	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
TOTAL METALS			EDA 7472			
		Analyst: R				EPA 7473
Mercury	0.057	0.010	mg/Kg-dry	1		11/20/18 2:36 PM

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Client Sample ID: B-3 0-4

Lab Order: G1811861

Project: Conemaugh CCR IV Background

Lab ID: G1811861-003

Matrix: SOLID

Sampled By: APTIM

Collection Date: 11/13/2018 11:30:00 A **Received Date:** 11/14/2018 8:54:37 PM

Date: 28-Dec-18

Analyses	Result	QL Q	Units	DF	Date Prepared	Date Analyzed
GAMMA SPECTROSCOPY		Analyst: A	М			EPA 901.1
Radium-226	0.58+/-0.0342	0.072	pCi/g	1		12/08/18 11:15 PN
Radium-228	0.71+/-0.0637	0.086	pCi/g	1		12/08/18 11:15 PN

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: M	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 7:09 PM
Arsenic	14.5	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Barium	87.8	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Beryllium	0.74	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Chromium	69.4	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Cobalt	9.2	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Lead	18.5	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Lithium	12.8	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Selenium	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
TOTAL METALS		Analyst: R	LL			EPA 7473
Mercury	0.054	0.010	mg/Kg-dry	1		11/20/18 2:36 PM

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Client Sample ID: B-4 0-4

Lab Order: G1811861

Project: Conemaugh CCR IV Background

Lab ID: G1811861-004

Matrix: SOLID

Sampled By: APTIM

Collection Date: 11/13/2018 11:35:00 A **Received Date:** 11/14/2018 8:54:37 PM

Date: 28-Dec-18

Analyses	Result	QL Q	Units	DF	Date Prepared	Date Analyzed
GAMMA SPECTROSCOPY		Analyst: 🗚	M			EPA 901.1
Radium-226	0.58+/-0.0329	0.066	pCi/g	1		12/10/18 12:06 AN
Radium-228	0.81+/-0.0687	0.091	pCi/g	1		12/10/18 12:06 AN

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: N	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 7:14 PM
Arsenic	12.1	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Barium	179	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Beryllium	1.12	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Chromium	42.6	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Cobalt	21.2	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Lead	24.8	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Lithium	16.3	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Selenium	2.2	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
TOTAL METAL 0		A sa a la sa ta . E				ED 4 7 170
TOTAL METALS		Analyst: R	(LL			EPA 7473
Mercury	0.030	0.010	mg/Kg-dry	1		11/20/18 2:36 PM

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Client Sample ID: B-5 0-4

Lab Order: G1811861

Project: Conemaugh CCR IV Background

Lab ID: G1811861-005

Matrix: SOLID

Sampled By: APTIM

Collection Date: 11/13/2018 11:40:00 A **Received Date:** 11/14/2018 8:54:37 PM

Date: 28-Dec-18

Result	QL Q	Units	DF Dat	te Prepared	Date Analyzed	
	Analyst: A	M			EPA 901.1	_
0.56+/-0.0319	0.065	pCi/g	1		12/10/18 7:11 PM	
0.74+/-0.0614	0.071	pCi/g	1		12/10/18 7:11 PM	
	0.56+/-0.0319	Analyst: A 0.56+/-0.0319 0.065	Analyst: AM 0.56+/-0.0319	Analyst: AM 0.56+/-0.0319 0.065 pCi/g 1	Analyst: AM 0.56+/-0.0319 0.065 pCi/g 1	Analyst: AM EPA 901.1 0.56+/-0.0319 0.065 pCi/g 1 12/10/18 7:11 PM

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: N	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AN
Arsenic	14.6	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AM
Barium	166	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AM
Beryllium	1.23	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AM
Chromium	43.6	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AM
Cobalt	20.4	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AM
Lead	26.4	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AM
Lithium	14.7	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AM
Selenium	2.7	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AN
TOTAL METALS		Analyst: R		EPA 7473		
Mercury	0.039	0.010	mg/Kg-dry	1		11/20/18 2:36 PM

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: B-6 0-4

Date: 28-Dec-18

Lab Order: G1811861

Conemaugh CCR IV Background **Project:**

Sampled By: APTIM **Collection Date:** 11/13/2018 11:45:00 A G1811861-006 Lab ID:

Received Date: 11/14/2018 8:54:37 PM Matrix: SOLID

Analyses	Result	QL Q	Units	DF	Date Prepared	Date Analyzed	_
GAMMA SPECTROSCOPY		Analyst: 🗚	M			EPA 901.1	
Radium-226	0.6+/-0.0344	0.070	pCi/g	1		12/11/18 7:23 AM	
Radium-228	0.74+/-0.0634	0.081	pCi/g	1		12/11/18 7:23 AM	

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: N	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AM
Arsenic	16.5	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AM
Barium	187	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AM
Beryllium	1.30	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AN
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AM
Chromium	56.5	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AM
Cobalt	20.1	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AM
Lead	26.6	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AM
Lithium	17.8	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AM
Selenium	2.8	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AN
TOTAL METALS		Analyst: R		EPA 7473		
Mercury	0.055	0.010	mg/Kg-dry	1		11/20/18 2:36 PM

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Client Sample ID: B-7 0-4

Sampled By:

Date: 28-Dec-18

APTIM

Lab Order: G1811861

Project: Conemaugh CCR IV Background

Lab ID: G1811861-007 Collection Date: 11/13/2018 11:50:00 A

Matrix: SOLID Received Date: 11/14/2018 8:54:37 PM

Analyses	Result	QL Q	Units	DF	Date Prepared	Date Analyzed	
GAMMA SPECTROSCOPY		Analyst: 🖊	M			EPA 901.1	_
Radium-226	0.62+/-0.0342	0.067	pCi/g	1		12/11/18 7:52 PM	
Radium-228	0.79+/-0.0671	0.088	pCi/g	1		12/11/18 7:52 PM	

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: N	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AM
Arsenic	17.2	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AM
Barium	161	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AM
Beryllium	1.23	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AM
Chromium	42.6	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AM
Cobalt	16.1	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AM
Lead	27.3	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AM
Lithium	16.4	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AM
Selenium	2.6	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AN
TOTAL METALS		Analyst: R	KLL			EPA 7473
Mercury	0.037	0.010	mg/Kg-dry	1		11/20/18 2:36 PM

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Client Sample ID: B-8 0-4

Lab Order: G1811861

Project: Conemaugh CCR IV Background

Lab ID: G1811861-008

Matrix: SOLID

Sampled By: APTIM

Collection Date: 11/13/2018 11:55:00 A **Received Date:** 11/14/2018 8:54:37 PM

Date: 28-Dec-18

Result	QL Q	Units	DF I	Date Prepared	Date Analyzed	
	Analyst: A	M			EPA 901.1	-
0.6+/-0.0341	0.068	pCi/g	1		12/12/18 7:58 AM	
0.65+/-0.0669	0.079	pCi/g	1		12/12/18 7:58 AM	
	0.6+/-0.0341	Analyst: A 0.6+/-0.0341 0.068	Analyst: AM 0.6+/-0.0341	Analyst: AM 0.6+/-0.0341 0.068 pCi/g 1	Analyst: AM 0.6+/-0.0341	Analyst: AM EPA 901.1 0.6+/-0.0341 0.068 pCi/g 1 12/12/18 7:58 AM

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: N	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PM
Arsenic	14.8	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PM
Barium	160	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PM
Beryllium	1.29	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PM
Chromium	53.7	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PM
Cobalt	19.6	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PM
Lead	25.5	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PM
Lithium	15.9	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PM
Selenium	2.4	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PN
		A				==A = 4=0
TOTAL METALS		Analyst: R	(LL			EPA 7473
Mercury	0.041	0.010	mg/Kg-dry	1		11/20/18 2:36 PM

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: B-9 0-4

Lab Order: G1811861

Conemaugh CCR IV Background **Project:**

G1811861-009 Lab ID:

Matrix: **SOLID** Sampled By: APTIM

Collection Date: 11/13/2018 12:00:00 P **Received Date:** 11/14/2018 8:54:37 PM

Date: 28-Dec-18

OL O Units DF Date Prepared Date Analyzed

Analyses	Result	QL Q	Units	DF	Date Prepared	Date Analyzed
GAMMA SPECTROSCOPY		Analyst: A	М			EPA 901.1
Radium-226	0.62+/-0.0345	0.071	pCi/g	1		12/12/18 8:31 PM
Radium-228	0.79+/-0.0672	0.086	pCi/g	1		12/12/18 8:31 PM

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: M	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Arsenic	16.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Barium	186	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Beryllium	1.31	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Chromium	54.6	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Cobalt	20.3	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Lead	27.9	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Lithium	13.2	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Selenium	2.7	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
TOTAL METALS		Analyst: R	LL			EPA 7473
Mercury	0.037	0.010	mg/Kg-dry	1		11/20/18 2:36 PM

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Client Sample ID: B-10 0-4

Sampled By:

Date: 28-Dec-18

APTIM

Lab Order: G1811861

Project: Conemaugh CCR IV Background

Lab ID: G1811861-010 Collection Date: 11/13/2018 12:05:00 P

Matrix: SOLID **Received Date:** 11/14/2018 8:54:37 PM

Analyses	Result	QL Q	Units	DF	Date Prepared	Date Analyzed	
GAMMA SPECTROSCOPY		Analyst: 🖊	λM			EPA 901.1	•
Radium-226	0.57+/-0.0313	0.062	pCi/g	1		12/13/18 10:19 AN	
Radium-228	0.69+/-0.0593	0.068	pCi/g	1		12/13/18 10:19 AN	

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: M	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Arsenic	13.1	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Barium	153	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Beryllium	1.18	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Chromium	64.5	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Cobalt	18.2	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Lead	24.9	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Lithium	13.4	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Selenium	2.1	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
TOTAL METALS		Analyst: R	LL			EPA 7473
Mercury	0.033	0.010	mg/Kg-dry	1		11/20/18 2:36 PM

Shuttle/Cooler ID#:

CHAIN OF CUSTODY

Geochemical Testing

Geochemical Testing • 2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729

						Number of Container		_	_	-	-	-	-	-	-	
Phone: (4/2) 380-4272	Fax: ()	State Sampled: PA		and American Tall and House to The		Remarks/	f multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG	Field Filtered: Y / N	Field Filtered: Y / N	Field Filtered: Y / N	Field Filtered: Y / N	Field Filtered: Y / N	Field Filtered: Y / N	Field Filtered: Y / N	Field Filtered: Y / N	
nd C	e-mail: patricia andrison @ aptim. com Fr					**Analyses Requested	on one line UNLESS LISTEL	SEE BOTTLES	_						•	
1): APTIN	10 noshbri	Sampled by: PATTI ANDRISON AND	EVAN SHLEGEL	SO Soil	S Special/DW		EN list separately	356								
pany	clasa	PATT		water		Sample	lyte, TH	2	2	2	2	0	0	0	2	-
Contact (Company):	11 patn	oled by:	ct:	ww waste	R Raw/DW	Time (Military)	for one ana	1120	1137	1125	121	1130	1132	1135	1137	
Cont	e-ma	15944 Samp	Project:	Potable Water WW Wastewater	D Distribution/DW	Date	f multiple bottles	11/13/18	11/13/18	11/13/18	11/13/18	11/13/18	11/13/18	11 13 18	11/13/18	
				PW	9	Sample	4 .	20	20	90	8	20	20	99	9	
		State: PA Zip:		SW Surface Water	C Composite	Lab	alytes from one both	100	1	(00)	1	00 }	l	1 ha		
Billing Client: GENON	ess: Conempugh	NEW ROBENCE	19811317	Sample Matrix: GW Ground Water	Type: G Grab	Sample Location/ Description	**NOTE: IF multiple analytes from one bottle, OR	0-4	1 4-8	4-0	2 4-8	0-4	3 48	4 0-4	4 4-8	Note Deficiencies Here:
Billin	Address:	City:	WO#:	Sample	Sample Type:			8-1	8-1	8-2	8-2	8-3	8-3	8-4	8	Note L

Relinquished by (Company & Signature)	Date	Time (Military)	Received by (Company & Signature):	Date	Time (Military)
Faturia M Budrison	11/13/18	1615	Sulls	2121-11	3050

SAMPLES MUST BE PRESERVED ON ICE.

Ice present on receipt: X Yes or No Sample Receiving (1st Review):

Cooler Temp (°C) on receipt: S

Shuttle/Cooler ID#:

CHAIN OF CUSTODY

Geochemical Testing

Geochemical Testing • 2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729

Billing Client:	GENON			Cont	Contact (Company):	pany):	APTIM		Phon	Phone: (413 380-4272	272
Address:	CONEMPLAH	(GH		e-mail:	:				Fax:	()	
City: New Flok	ORENLE S	State: PA Zip: 159	1: 159.	44 Samp	Sampled by:	Z	ATTI ANIXPISON AND	ON AND	State	State Sampled: 74	
NO#: 6/8/1/86	198			Project:	ct:	4	EVAN SCHLEGEL	MEL	PO/Q	PO/Quote#:	
Sample Matrix: G	GW Ground Water	or SW Surface Water	PW	Potable Water	WW Wastewater		SO Soil SI		7 Not Hazard	NAT Not Hazardous (HZ Hazardous)	oc Bo
Sample Type: G	G Grab	C Composite	D Dis	D Distribution/DW	R Raw/DW	П	al/DW				8
Sample Location/ Description	cation/	Lab	Sample	Date	Time (Military)	Sample		**Analyses Requested	Q	Remarks/	Number o
ON.	TE: IF multiple ar	**NOTE: IF multiple analytes from one bottle, OR if	tle, OR if	multiple bottles	for one analy	yte, THE	Viist separately on	one line UNLESS	LISTED ON	multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG	
6-5 0-4	+	500	20	11/13/18	1140	B	SEEP	SEE BOTHES		Field Filtered: Y / N	_
B5 48	2	1	Я	11/13/18	1142	9				Field Filtered: Y / N	-
86 04	4	900	20	11/13/18	1.45	9				Field Filtered: Y / N	-
Bb 4	8	1	8	11/13/18	1147	2				Field Filtered: Y / N	-
87 04	4	500 F 500 7	3	11/13/18	1150	9				Field Filtered: Y / N	_
8-7 4-8	0	1	8	11/13/18	1152	9				Field Filtered: Y / N	_
BB 04		800	90	11/13/18	1155	9				Field Filtered: Y / N	-
B-8 44	8)	20	11/13/18 1157	11511	2	*			Field Filtered: Y / N	-
Note Deficiencies Here:	Here:					-					

Relinquished by (Company & Signature)	Date	Time (Military)	Received by (Company & Signature):	Date	Time (Military
APM Fatwick Manderson	11/3/18	1615	Car Mi	3-21-11	15000

SAMPLES MUST BE PRESERVED ON ICE.

Ice present on receipt: X Yes or No Sample Receiving (1st Review): \(\sum_{\text{off}} \)

No Cooler Temp (°C) on receipt: Support (2nd Review):

Shuttle/Cooler ID#:

CHAIN OF CUSTODY

Geochemical Testing

 2005 North Center Avenue Somerset PA 15501 (814) 443-1671 Fax (814) 445-6729 Phone: (412) 380 Contact (Company): Geochemical Testing GENON Billing Client:

Number a PCBs Preservatives, etc. 4 **NOTE: IF multiple analytes from one bottle, OR if multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG Remarks/ nHZ Not Hazardous / HZ Hazardous Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Field Fiftered: Y / N ield Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N State Sampled: PO/Quote#: Fax: **Analyses Requested SEE Bornes SO Soil SL Sludge S Special/DW O Other fath HOUTSON and Han Schler SO Soil Sample Type D 0 5 2 2 2 2 GW Ground Water SW Surface Water PW Potable Water WW Wastewater D Distribution/DW R Raw/DW 200 Sampled by: (Military) 1330 335 1845 Time 202 205 207 1350 Project: e-mail: 0 1113/18 1113/18 00 8 11318 20 Date 113 3 3 3 3 Matrix Sample 20 20 Zip: C Composite Number Lab 5 State: 00 ONEMANAH DRENIE Sample Location/ G Grab Note Deficiencies Here: 4 8-8 8118 Description 4-0 0.4 4-0 4-0 48 Sample Matrix: Sample Type: 8-10 8-10 Address: 2-0n 1-QK -00 WO#: City:

Relinquished by (Company & Signature)	Date	Time (Military)	Received by (Company & Signature):	Date	Time (Military
APAIM Patrica Marchison	11/13/18	1615	on Me	111471 3050	2059

SAMPLES MUST BE PRESERVED ON ICE.

present on receipt: XYes or No Sample Receiving (1st Review): Ice present on receipt: XYes or __

Cooler Temp (°C) on receipt: Client Support (2nd Review): Confirmation Soil and Leachate Samples (UD-1 through UD-8 and LD-1 through LD-8)

2005 N. Center Ave. Somerset, PA 15501

> 814/443-1671 814/445-6666 FAX: 814/445-6729

Friday, December 21, 2018

John Shimshock GENON - CONEMAUGH STATION CCR CONEMAUGH STATION PO BOX K NEW FLORENCE, PA 15944

RE: Conemaugh CCR IV SPLP Order No.: G1811860

Dear John Shimshock:

Geochemical Testing received 6 sample(s) on 11/14/2018 for the analyses presented in the following report.

There were no problems with the analyses and all QC data met NELAC, EPA, and laboratory specifications except where noted in the Case Narrative or Laboratory Results.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Timothy W. Bergstresser

Director of Technical Services

Timoff W Ley trus

Leslie A. Nemeth Project Manager

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Project: Conemaugh CCR IV SPLP CASE NARRATIVE

Lab Order: G1811860

No problems were encountered during analysis of this workorder, except if noted in this report.

SAMPLE RECEIPT CHECKLIST

	Response
COC is present	Yes
COC is filled out in ink and legible	Yes
COC relinquished, signature, date, and time	Yes
Samples arrived within hold time	Yes
Containers properly preserved for the requested testing	Yes
Sample containers have legible labels	Yes
Sample preservation verified	Yes
Appropriate sample containers are used	Yes
Sample container(s) received at proper temperature	Yes
Zero headspace where required	Yes
Sufficient volume for all requested analyses	Yes

Comments on the above checklist: None

The radiological analysis (Radium 226 by EPA 903.1; Radium 228 by EPA 904.0) was subcontracted to Pace Analytical (PADEP 65-00282). A copy of the subcontractor's laboratory report is enclosed with this Analytical Report.

Legend: ND - Not Detected

J - Indicates an estimated value.

U - The analyte was not detected at or above the listed concentration, which is below the laboratory quantitation limit.

B - Analyte detected in the associated Method Blank

Q - Qualifier QL -Quantitation Limit

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

Date: 21-Dec-18

R - RPD outside accepted recovery limits

E - Value above quantitation range

** - Value exceeds Action Limit

H - Method Hold Time Exceeded

MCL - Contaminant Limit

Date: 21-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: UD-1 0-4

Lab Order: G1811860

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811860-001
 Collection Date:
 11/13/2018 1:30:00 PM

 Matrix:
 SOLID
 Received Date:
 11/14/2018 7:39:08 PM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
TOTAL METALS		Analyst:	RLL	_			EPA 7473
Mercury	0.20	0.010		mg/Kg-dry	1		11/20/18 2:36 PM
SPLP INORGANICS		Analyst:	МВ	G		EPA 300.0	EPA 300.0
Fluoride	0.47	0.05		mg/L	1	11/16/18 11:45 AM	11/16/18 12:09 PM
TOTAL METALS		Analyst:	MX	S		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	S	mg/Kg-dry	1	11/20/18 1:30 PM	11/26/18 11:24 AM
Arsenic	25.2	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Barium	113	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Beryllium	1.01	0.10		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Cadmium	< 5.0	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Chromium	24.8	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Cobalt	17.7	0.5		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Lead	20.4	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Lithium	11.5	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Molybdenum	< 2.0	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Selenium	2.3	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Thallium	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
NOTES:							

S - Spike recovery indicates a possible matrix effect. The method is in control as indicated by the LCS.

SPLP METALS FLUID #1		Analyst: (GXI		SM 3112 B	EPA 7470
Mercury	< 0.0001	0.0001	J mg/L	1	11/19/18 9:20 AM	11/19/18 1:49 PM
SPLP METALS FLUID #1		Analyst: I	MXS		EPA 200.2	EPA 200.7
Antimony	0.05	0.05	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:46 PM
Arsenic	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:46 PM
Barium	0.093	0.005	mg/L	1	11/19/18 11:25 AM	11/20/18 1:46 PM
Beryllium	0.0005	0.0005	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:46 PM
Cadmium	0.0010	0.0010	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:46 PM
Chromium	0.005	0.005	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:46 PM
Cobalt	0.0020	0.0020	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:46 PM
Lead	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:46 PM
Lithium	0.005	0.005	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:46 PM
Molybdenum	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:46 PM
Selenium	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:46 PM
Thallium	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:46 PM
GAMMA SPECTROSCOPY		Analyst:	AM			EPA 901.1
Radium-226	0.70+/-0.0756	0.073	pCi/g	1		11/15/18 6:45 PM
Radium-228	0.71+/-0.0647	0.097	pCi/g	1		11/15/18 6:45 PM

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Clie

Client Sample ID: UD-1 0-4

Sampled By:

Date: 21-Dec-18

APTIM

Lab Order: G1811860

Project: Conemaugh CCR IV SPLP

 Lab ID:
 G1811860-001
 Collection Date:
 11/13/2018 1:30:00 PM

 Matrix:
 SOLID
 Received Date:
 11/14/2018 7:39:08 PM

Analyses Result QL Q Units DF Date Prepared Date Analyzed

GAMMA SPECTROSCOPY Analyst: AM EPA 901.1

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

Ra-228 and Ac-228 are assumed to be in secular equilibrium. The results for Ra-228 are inferred from Ac-228.

SPLP RADIOLOGICAL PARAMETERS Analyst: SUB **EPA 903.1 MOD** 12/06/18 10:42 AM Radium 226 0.366+-0.382 0.5 pCi/L SPLP RADIOLOGICAL PARAMETERS Analyst: SUB **EPA 904.0 MOD** 12/05/18 12:09 PM Radium 228 -0.149+-0.331 8.0 pCi/L **SPLP FLUID #1** Analyst: ALD **EPA 1312** Final pH Metals 6.56 S.U. 11/15/18 8:00 PM 1 SPLP FLUID #3 Analyst: MAG **EPA 1312** 11/15/18 9:16 AM Final pH Non Metals 8.01 S.U. 1

Date: 21-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: UD-2 0-4

Lab Order: G1811860

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811860-002
 Collection Date:
 11/13/2018 1:45:00 PM

 Matrix:
 SOLID
 Received Date:
 11/14/2018 7:39:08 PM

Analyses	Result	QL (Q Units	DF	Date Prepared	Date Analyzed
TOTAL METALS		Analyst: F	RLL			EPA 7473
Mercury	0.072	0.010	mg/Kg-dry	1		11/20/18 2:36 PM
SPLP INORGANICS		Analyst: N	ИBG		EPA 300.0	EPA 300.0
Fluoride	0.20	0.05	mg/L	1	11/16/18 11:45 AM	11/16/18 1:03 PM
TOTAL METALS		Analyst: N	MXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 6:19 PM
Arsenic	14.5	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:48 PM
Barium	123	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:48 PM
Beryllium	1.07	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:48 PM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:48 PM
Chromium	33.1	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:48 PM
Cobalt	16.7	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:48 PM
Lead	22.1	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:48 PM
Lithium	16.6	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:48 PM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:48 PM
Selenium	2.3	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:48 PM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:48 PM
SPLP METALS FLUID #1		Analyst: G	ΞXI		SM 3112 B	EPA 7470
Mercury	< 0.0001	0.0001	J mg/L	1	11/19/18 9:20 AM	11/19/18 1:51 PM
SPLP METALS FLUID #1		Analyst: N	MXS		EPA 200.2	EPA 200.7
Antimony	0.05	0.05	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:51 PM
Arsenic	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:51 PM
Barium	0.074	0.005	mg/L	1	11/19/18 11:25 AM	11/20/18 1:51 PM
Beryllium	0.0005		U mg/L	1	11/19/18 11:25 AM	11/20/18 1:51 PM
Cadmium	0.0010	0.0010	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:51 PM
Chromium	0.005		U mg/L	1		11/20/18 1:51 PM
Cobalt	0.0020		U mg/L	1	11/19/18 11:25 AM	
Lead	0.010		U mg/L	1	11/19/18 11:25 AM	
Lithium	0.005		U mg/L	1		11/20/18 1:51 PM
Molybdenum	0.010		U mg/L	1		11/20/18 1:51 PM
Selenium	0.010		U mg/L	1	11/19/18 11:25 AM	
Thallium	0.010		U mg/L	1		11/20/18 1:51 PM
GAMMA SPECTROSCOPY		Analyst: A	λM			EPA 901.1
Radium-226	0.71+/-0.0788	0.074	pCi/g	1		11/16/18 6:52 AM
Radium-228	0.92+/-0.0751	0.074		1		11/16/18 6:52 AM
Naululli-220	0.927/-0.0/01	0.000	pCi/g	1		11/10/10 0.32 AIVI

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client

Client Sample ID: UD-2 0-4

Sampled By:

Date: 21-Dec-18

APTIM

Lab Order: G1811860

Project: Conemaugh CCR IV SPLP

 Lab ID:
 G1811860-002
 Collection Date:
 11/13/2018 1:45:00 PM

 Matrix:
 SOLID
 Received Date:
 11/14/2018 7:39:08 PM

Analyses Result QL Q Units DF Date Prepared Date Analyzed

GAMMA SPECTROSCOPY Analyst: AM EPA 901.1

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

SPLP RADIOLOGICAL PARAMET	ERS	Analyst: S	UB		EPA 903.1 MOD
Radium 226	0.503+-0.523	8.0	pCi/L	1	12/14/18 10:03 PM
SPLP RADIOLOGICAL PARAMET	ERS	Analyst: S	UB		EPA 904.0 MOD
Radium 228	0.244+-0.301	0.6	pCi/L	1	12/14/18 2:12 PM
SPLP FLUID #1		Analyst: A	LD		EPA 1312
SPLP FLUID #1 Final pH Metals	4.87	Analyst: A	S.U.	1	EPA 1312 11/15/18 8:00 PM
	4.87	Analyst: A	S.U.	1	

Date: 21-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: UD-3 0-4

Lab Order: G1811860

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811860-003
 Collection Date:
 11/13/2018 2:05:00 PM

 Matrix:
 SOLID
 Received Date:
 11/14/2018 7:39:08 PM

Analyses	Result	QL	Q Units	DF	Date Prepared	Date Analyzed
TOTAL METALS		Analyst: F	RLL			EPA 7473
Mercury	0.037	0.010	mg/Kg-dry	1		11/20/18 2:36 PM
SPLP INORGANICS		Analyst: I	MBG		EPA 300.0	EPA 300.0
Fluoride	0.26	0.05	mg/L	1	11/16/18 11:45 AM	11/16/18 1:21 PM
TOTAL METALS		Analyst: I	MXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 6:24 PM
Arsenic	11.3	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:53 PM
Barium	107	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:53 PM
Beryllium	0.94	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:53 PM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:53 PM
Chromium	24.5	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:53 PM
Cobalt	12.7	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:53 PM
Lead	18.9	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:53 PM
Lithium	11.8	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:53 PM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:53 PM
Selenium	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:53 PM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:53 PM
SPLP METALS FLUID #1		Analyst: (GXI		SM 3112 B	EPA 7470
Mercury	< 0.0001	0.0001	J mg/L	1	11/19/18 11:32 AM	11/20/18 9:55 AM
SPLP METALS FLUID #1		Analyst: I	MXS		EPA 200.2	EPA 200.7
Antimony	0.05	0.05	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:55 PM
Arsenic	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:55 PM
Barium	0.059	0.005	mg/L	1	11/19/18 11:25 AM	11/20/18 1:55 PM
Beryllium	0.0005	0.0005	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:55 PM
Cadmium	0.0010	0.0010	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:55 PM
Chromium	0.005	0.005	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:55 PM
Cobalt	0.0020	0.0020	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:55 PM
Lead	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:55 PM
Lithium	0.005	0.005	U mg/L	1	11/19/18 11:25 AM	11/20/18 1:55 PM
Molybdenum	0.010		U mg/L	1		11/20/18 1:55 PM
Selenium	0.010		U mg/L	1	11/19/18 11:25 AM	
Thallium	0.010		U mg/L	1		11/20/18 1:55 PM
GAMMA SPECTROSCOPY		Analyst: A	AM			EPA 901.1
Radium-226	0.99+/-0.0504	0.054	pCi/g	1		11/16/18 7:57 PM
Radium-228	1.34+/-0.0862	0.045	pCi/g	1		11/16/18 7:57 PM
	, 5.5562	0.0.0	r = " 3	•		

Date: 21-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: UD-3 0-4

Lab Order: G1811860

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811860-003
 Collection Date:
 11/13/2018 2:05:00 PM

 Matrix:
 SOLID
 Received Date:
 11/14/2018 7:39:08 PM

Analyses Result QL Q Units DF Date Prepared Date Analyzed

GAMMA SPECTROSCOPY Analyst: AM EPA 901.1

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

Ra-228 and Ac-228 are assumed to be in secular equilibrium. The results for Ra-228 are inferred from Ac-228.

SPLP RADIOLOGICAL PARAMETERS Analyst: SUB **EPA 903.1 MOD** 12/06/18 10:42 AM Radium 226 0.394+-0.410 0.6 pCi/L SPLP RADIOLOGICAL PARAMETERS Analyst: SUB **EPA 904.0 MOD** 12/05/18 12:09 PM Radium 228 0.280+-0.460 1.0 pCi/L **SPLP FLUID #1** Analyst: ALD **EPA 1312** Final pH Metals 7.66 S.U. 11/15/18 8:00 PM 1 SPLP FLUID #3 Analyst: MAG **EPA 1312** 11/15/18 9:16 AM Final pH Non Metals 8.42 S.U. 1

Date: 21-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: UD-4 0-4

Lab Order: G1811860

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811860-004
 Collection Date:
 11/13/2018 2:20:00 PM

 Matrix:
 SOLID
 Received Date:
 11/14/2018 7:39:08 PM

Analyses Result \mathbf{OL} 0 Units DF **Date Prepared Date Analyzed TOTAL METALS** Analyst: RLL **EPA 7473** 11/20/18 2:36 PM 0.099 0.010 Mercury mg/Kg-dry 1 **SPLP INORGANICS** Analyst: MBG **EPA 300.0 EPA 300.0** Fluoride 0.16 0.05 11/16/18 11:45 AM 11/16/18 1:39 PM mg/L **TOTAL METALS** Analyst: MXS **EPA 3050 EPA 6010** 10.0 11/20/18 1:30 PM 11/23/18 6:28 PM Antimony < 10.0 mg/Kg-dry 1 2.0 11/20/18 1:30 PM 11/21/18 6:16 PM Arsenic 16.5 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:16 PM Barium 136 1.0 mg/Kg-dry 1.02 0.10 11/20/18 1:30 PM 11/21/18 6:16 PM Beryllium mg/Kg-dry 1 5.0 11/21/18 6:16 PM Cadmium < 5.0 mg/Kg-dry 1 11/20/18 1:30 PM Chromium 5.0 11/20/18 1:30 PM 11/21/18 6:16 PM 30.5 mg/Kg-dry Cobalt 0.5 mg/Kg-dry 15.4 1 11/20/18 1:30 PM 11/21/18 6:16 PM Lead 19.5 20 mg/Kg-dry 11/20/18 1:30 PM 11/21/18 6:16 PM Lithium 19.3 1.0 mg/Kg-dry 11/20/18 1:30 PM 11/21/18 6:16 PM Molybdenum 2.1 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:16 PM Selenium 2.2 2.0 mg/Kg-dry 11/20/18 1:30 PM 11/21/18 6:16 PM Thallium < 10.0 10.0 mg/Kg-dry 11/20/18 1:30 PM 11/21/18 6:16 PM Analyst: GXI **SPLP METALS FLUID #1 SM 3112 B EPA 7470** Mercury < 0.0001 0.0001 mg/L 11/19/18 11:32 AM 11/20/18 10:01 AM **SPLP METALS FLUID #1** Analyst: MXS **EPA 200.2 EPA 200.7** Antimony 0.05 0.05 U mg/L 11/19/18 11:25 AM 11/20/18 2:18 PM Arsenic 0.010 0.010 mg/L 1 11/19/18 11:25 AM 11/20/18 2:18 PM 0.060 0.005 11/19/18 11:25 AM 11/20/18 2:18 PM Barium mg/L Beryllium 0.0005 0.0005 U mg/L 11/19/18 11:25 AM 11/20/18 2:18 PM Cadmium 0.0010 0.0010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:18 PM Chromium 0.005 0.005 11/19/18 11:25 AM 11/20/18 2:18 PM U mg/L Cobalt 0.0020 0.0020 11/19/18 11:25 AM 11/20/18 2:18 PM U mg/L Lead 0.010 0.010 U mg/L 11/19/18 11:25 AM 11/20/18 2:18 PM 0.005 11/19/18 11:25 AM 11/20/18 2:18 PM Lithium 0.005 U mg/L 0.010 11/19/18 11:25 AM 11/20/18 2:18 PM Molybdenum 0.010 mg/L Selenium 0.010 0.010 mg/L 11/19/18 11:25 AM 11/20/18 2:18 PM U 0.010 U 11/19/18 11:25 AM 11/20/18 2:18 PM Thallium 0.010 mg/L **GAMMA SPECTROSCOPY** Analyst: AM **EPA 901.1** Radium-226 0.82+/-0.0442 0.074 pCi/g 1 11/16/18 7:59 PM Radium-228 0.83+/-0.0696 0.089 pCi/g 1 11/16/18 7:59 PM

Date: 21-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: UD-4 0-4

Lab Order: G1811860

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811860-004
 Collection Date:
 11/13/2018 2:20:00 PM

 Matrix:
 SOLID
 Received Date:
 11/14/2018 7:39:08 PM

Analyses Result QL Q Units DF Date Prepared Date Analyzed

GAMMA SPECTROSCOPY Analyst: AM EPA 901.1

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

Ra-228 and Ac-228 are assumed to be in secular equilibrium. The results for Ra-228 are inferred from Ac-228.

SPLP RADIOLOGICAL PARAMETERS Analyst: SUB **EPA 903.1 MOD** 12/14/18 10:03 PM Radium 226 0.148+-0.409 8.0 pCi/L SPLP RADIOLOGICAL PARAMETERS Analyst: SUB **EPA 904.0 MOD** Radium 228 -0.0576+-0.299 0.7 pCi/L 12/14/18 2:12 PM **SPLP FLUID #1** Analyst: ALD **EPA 1312** Final pH Metals S.U. 11/15/18 8:00 PM 3.97 1 SPLP FLUID #3 Analyst: MAG **EPA 1312** 11/15/18 9:16 AM Final pH Non Metals 6.64 S.U. 1

Date: 21-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: UD-5 0-4

Lab Order: G1811860

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811860-005
 Collection Date:
 11/13/2018 3:00:00 PM

 Matrix:
 SOLID
 Received Date:
 11/14/2018 7:39:08 PM

Marcury	Analyses	Result	QL	Q Units	DF	Date Prepared	Date Analyzed						
SPLP INORGANICS Analyst: by the properties of the properties	TOTAL METALS		Analyst: F	RLL			EPA 7473						
Fluoride	Mercury	0.045	0.010	mg/Kg-dry	1		11/20/18 2:36 PM						
TOTAL METALS Analyst: blass blass blass blass blass blass blass blass blass class clas	SPLP INORGANICS		Analyst: N	MBG		EPA 300.0	EPA 300.0						
Arsenic 5.8 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 6:20 PM Barium 50.7 1.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Barium 50.7 1.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Barium 6.31 0.01 0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Barium 6.31 0.01 0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Cadmium 6.50 5.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 9.2 5.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 9.2 5.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 9.2 5.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 9.2 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chadd 9.7 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 3.5 1.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 3.5 1.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 3.5 1.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 6.2 0 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 6.2 0 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 6.0 0.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 6.0 0.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 6.0 0.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 6.0 0.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 6.0 0.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 6.0 0.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 6.0 0.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 6.0 0.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 6.0 0.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 6.0 0.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 6.0 0.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/20/18 2:23 PM Chromium 6.0 0.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/20/18 2:23 PM Chromium 6.0 0.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/20/18 2:23 PM Chromium 6.0 0.0 mg/Kg-dry 1 11/20/18 1:25 AM 11/20/18 2:23 PM Chromium 6.0 0.0 mg/Kg-dry 1 11/20/18 1:25 AM 11/20/18 2:23 PM Chromium 6.0 0.0 mg/Kg-dry 1 11/20/18 1:125 AM 11/20/18 2:23 PM Chromium 6.0 0.0 mg/Kg-dry 1 1	Fluoride	0.44	0.05	mg/L	1	11/16/18 11:45 AM	11/16/18 1:57 PM						
Arsenic 5.8 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Barium 50.7 1.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Beryllium 0.31 0.10 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Cadmium 4.50 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Choalt 6.4 0.5 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Lead 9.7 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Lead 9.7 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Molybdenum < 2.0	TOTAL METALS		Analyst: N	MXS		EPA 3050	EPA 6010						
Barium 50.7 1.0 wg/kg-dry of mg/kg-dry of mg/kg-dry 1 11/20/18 1.30 PM 11/21/18 6.20 PM Cadmium 6.30 0.10 mg/kg-dry 1 11/20/18 1.30 PM 11/21/18 6.20 PM Cadmium 5.0 5.0 mg/kg-dry 1 11/20/18 1.30 PM 11/21/18 6.20 PM Chromium 9.2 5.0 mg/kg-dry 1 11/20/18 1.30 PM 11/21/18 6.20 PM Cobalt 6.4 0.5 mg/kg-dry 1 11/20/18 1.30 PM 11/21/18 6.20 PM Lead 9.7 2.0 mg/kg-dry 1 11/20/18 1.30 PM 11/21/18 6.20 PM Lithium 3.5 1.0 mg/kg-dry 1 11/20/18 1.30 PM 11/21/18 6.20 PM Selenium < 2.0	Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 6:33 PM						
Beryllium 0.31 0.10 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Cadmium < 5.0 5.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Chromium 9.2 5.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Cobalt 6.4 0.5 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Lead 9.7 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Lithium 3.5 1.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Molybdenum < 2.0 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Belenium < 10.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Bry Ber METALS FLUID #1 Analyst ************************************	Arsenic	5.8	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:20 PM						
Cadmium	Barium	50.7	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:20 PM						
Chromium 9.2 b. mg/Kg-dry 1 mg/Kg-dry	Beryllium	0.31	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:20 PM						
Cobalt 6.4 0.5 mg/Kg-dry 1 11/20/18 1.30 PM 11/21/18 6.20 PM Lead 9.7 2.0 mg/Kg-dry 1 11/20/18 1.30 PM 11/21/18 6.20 PM Lithium 3.5 1.0 mg/Kg-dry 1 11/20/18 1.30 PM 11/21/18 6.20 PM Molybdenum < 2.0 2.0 mg/Kg-dry 1 11/20/18 1.30 PM 11/21/18 6.20 PM Selenium < 2.0 2.0 mg/Kg-dry 1 11/20/18 1.30 PM 11/21/18 6.20 PM Splenium < 10.0 10.0 mg/Kg-dry 1 11/20/18 1.30 PM 11/21/18 6.20 PM Splenium < 10.0 10.0 mg/Kg-dry 1 11/20/18 1.30 PM 11/21/18 6.20 PM Splenium < 10.00 10.0 0.00 1 mg/Kg-dry 1 11/19/18 11/21/18 6.20 PM Splenium < 0.00001 0.0001 0.0001 mg/L	Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:20 PM						
Lead	Chromium	9.2	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:20 PM						
Lead 9.7 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Lithium 3.5 1.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Molybdenum < 2.0	Cobalt	6.4	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:20 PM						
Molybdenum < 2.0 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Selenium < 2.0	Lead	9.7	2.0		1	11/20/18 1:30 PM	11/21/18 6:20 PM						
Molybdenum < 2.0 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:20 PM Selenium < 2.0	Lithium	3.5	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:20 PM						
Thallium < 10.0 10.0 mg/kg-dry 1 11/20/18 130 PM 11/21/18 6:20 PM SPLP METALS FLUID #1 Analyst: ST SM 3112 B EPA 747 SPLP METALS FLUID #1 Analyst: WT EPA 200.7 Antimony 0.05 0.05 U mg/L 1 11/19/18 11/20/18 23 PM Arsenic 0.010 0.010 U mg/L 1 11/19/18 11/25 AM 11/20/18 2:23 PM Barium 0.080 0.005 U mg/L 1 11/19/18 11/25 AM 11/20/18 2:23 PM Beryllium 0.0005 0.0005 U mg/L 1 11/19/18 11/25 AM 11/20/18 2:23 PM Cadmium 0.0005 0.0005 U mg/L 1 11/19/18 11/25 AM 11/20/18 2:23 PM Chromium 0.0010 0.0010 U mg/L 1 11/19/18 11/25 AM 11/20/18 2:23 PM	Molybdenum	< 2.0	2.0		1	11/20/18 1:30 PM	11/21/18 6:20 PM						
SPLP METALS FLUID #1 Analyst: SJ SM 3112 B EPA 74√ SPLP METALS FLUID #1 Analyst: WJS EPA 200.2 EPA 200.7 Antimony 0.05 <th <="" colspan="6" td=""><td>Selenium</td><td>< 2.0</td><td>2.0</td><td>mg/Kg-dry</td><td>1</td><td>11/20/18 1:30 PM</td><td>11/21/18 6:20 PM</td></th>	<td>Selenium</td> <td>< 2.0</td> <td>2.0</td> <td>mg/Kg-dry</td> <td>1</td> <td>11/20/18 1:30 PM</td> <td>11/21/18 6:20 PM</td>						Selenium	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:20 PM
Mercury < 0.0001 0.0001 J mg/L 1 11/19/18 11:32 AM 11/20/18 10:02 AM 10:02 AM SPLP METALS FLUID #1 Analyst: XXV EPA 200.2 EPA 200.7 Antimony 0.05 0.05 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Arsenic 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Barium 0.080 0.005 mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Beryllium 0.0005 0.0005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Cadmium 0.0010 0.0010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Chromium 0.001 0.0010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Cobalt 0.0020 0.0020 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Lithium 0.0010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Molybdenum 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM <	Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:20 PM						
SPLP METALS FLUID #1 Analyst: MXS EPA 200.2 EPA 200.7 Antimony 0.05 0.05 0.0 mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Arsenic 0.010 0.010 0.010 mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Barium 0.080 0.005 mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Beryllium 0.0005 0.0005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Cadmium 0.0010 0.0010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Chromium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Cobalt 0.0020 0.0020 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Lead 0.010 0.010 U mg/L 1 11/19/18	SPLP METALS FLUID #1		Analyst: (GXI		SM 3112 B	EPA 7470						
Antimony 0.05 0.05 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Arsenic 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Barium 0.080 0.005 mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Beryllium 0.0005 0.0005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Cadmium 0.0010 0.0010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Chromium 0.0010 0.0010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Cobalt 0.0020 0.0020 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Lead 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Molybdenum <td>Mercury</td> <td>< 0.0001</td> <td>0.0001</td> <td>J mg/L</td> <td>1</td> <td>11/19/18 11:32 AM</td> <td>11/20/18 10:02 AM</td>	Mercury	< 0.0001	0.0001	J mg/L	1	11/19/18 11:32 AM	11/20/18 10:02 AM						
Arsenic 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Barium 0.080 0.005 mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Beryllium 0.0005 0.0005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Cadmium 0.0010 0.0010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Chromium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Cobalt 0.0020 0.0020 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Lead 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Lithium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Molybdenum <td>SPLP METALS FLUID #1</td> <td></td> <td>Analyst: N</td> <td>MXS</td> <td></td> <td>EPA 200.2</td> <td>EPA 200.7</td>	SPLP METALS FLUID #1		Analyst: N	MXS		EPA 200.2	EPA 200.7						
Barium 0.080 0.005 mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Beryllium 0.0005 0.0005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Cadmium 0.0010 0.0010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Chromium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Cobalt 0.0020 0.0020 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Lead 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Lithium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Molybdenum 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Thallium <td>Antimony</td> <td>0.05</td> <td>0.05</td> <td>U mg/L</td> <td>1</td> <td>11/19/18 11:25 AM</td> <td>11/20/18 2:23 PM</td>	Antimony	0.05	0.05	U mg/L	1	11/19/18 11:25 AM	11/20/18 2:23 PM						
Beryllium 0.0005 0.0005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Cadmium 0.0010 0.0010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Chromium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Cobalt 0.0020 0.0020 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Lead 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Lithium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Molybdenum 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Selenium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM	Arsenic	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	11/20/18 2:23 PM						
Beryllium 0.0005 0.0005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Cadmium 0.0010 0.0010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Chromium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Cobalt 0.0020 0.0020 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Lead 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Lithium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Molybdenum 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Selenium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM	Barium	0.080	0.005	mg/L	1	11/19/18 11:25 AM	11/20/18 2:23 PM						
Chromium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Cobalt 0.0020 0.0020 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Lead 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Lithium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Molybdenum 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Selenium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Thallium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM GAMMA SPECTROSCOPY Analyst: Analyst: Amalyst: Amalyst: Amalyst: Amalyst: Amalyst: Amalyst:	Beryllium	0.0005	0.0005	U mg/L	1	11/19/18 11:25 AM	11/20/18 2:23 PM						
Cobalt 0.0020 0.0020 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Lead 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Lithium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Molybdenum 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Selenium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Thallium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM GAMMA SPECTROSCOPY Analyst: Analyst: Amalyst: Amalyst: <td>Cadmium</td> <td>0.0010</td> <td>0.0010</td> <td>U mg/L</td> <td>1</td> <td>11/19/18 11:25 AM</td> <td>11/20/18 2:23 PM</td>	Cadmium	0.0010	0.0010	U mg/L	1	11/19/18 11:25 AM	11/20/18 2:23 PM						
Lead 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Lithium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Molybdenum 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Selenium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Thallium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM GAMMA SPECTROSCOPY Analyst: AM FCi/g 1 1 11/19/18 11/19/18 6:56 PM	Chromium	0.005	0.005	U mg/L	1	11/19/18 11:25 AM	11/20/18 2:23 PM						
Lithium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Molybdenum 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Selenium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Thallium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM GAMMA SPECTROSCOPY Radium-226 0.35+/-0.0283 0.065 pCi/g 1 1 11/19/18 11/19/18 6:56 PM	Cobalt	0.0020	0.0020	U mg/L	1	11/19/18 11:25 AM	11/20/18 2:23 PM						
Lithium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Molybdenum 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Selenium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Thallium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM GAMMA SPECTROSCOPY Analyst: Amalyst: Amalyst: PCi/g 1 1 11/19/18 11/19/18 11/19/18 6:56 PM	Lead	0.010	0.010	· ·	1	11/19/18 11:25 AM	11/20/18 2:23 PM						
Molybdenum 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Selenium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Thallium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM GAMMA SPECTROSCOPY Analyst: Amalyst: Amalyst: FCi/g 1 1 11/19/18 11/19/18 6:56 PM	Lithium	0.005	0.005		1	11/19/18 11:25 AM	11/20/18 2:23 PM						
Selenium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM Thallium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM GAMMA SPECTROSCOPY Analyst: Amalyst: Amalyst: FPCi/g 1 1 11/19/18 11/19/18 6:56 PM	Molybdenum			· ·	1								
Thallium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:23 PM GAMMA SPECTROSCOPY Analyst: Amalyst: Amalyst: Amalyst: PCi/g 1 11/19/18 11/19/18 6:56 PM	•			ŭ	1								
Radium-226 0.35+/-0.0283 0.065 pCi/g 1 11/19/18 6:56 PM				· ·	1								
Radium-226 0.35+/-0.0283 0.065 pCi/g 1 11/19/18 6:56 PM	GAMMA SPECTROSCOPY		Analyst: #	AM			EPA 901.1						
· · · · · · · · · · · · · · · · · · ·	Radium-226	0.35+/-0.0283	0.065	pCi/a	1		11/19/18 6:56 PM						
	Radium-228	0.25+/-0.0473	0.078	pCi/g	1		11/19/18 6:56 PM						

Date: 21-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: UD-5 0-4

Lab Order: G1811860

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811860-005
 Collection Date:
 11/13/2018 3:00:00 PM

 Matrix:
 SOLID
 Received Date:
 11/14/2018 7:39:08 PM

Analyses Result QL Q Units DF Date Prepared Date Analyzed

GAMMA SPECTROSCOPY Analyst: AM EPA 901.1

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

SPLP RADIOLOGICAL PARAMETE	ERS	Analyst: S	UB		EPA 903.1 MOD
Radium 226	0.564+-0.527	0.7	pCi/L	1	12/06/18 10:42 AM
SPLP RADIOLOGICAL PARAMETE	ERS	Analyst: S	UB		EPA 904.0 MOD
Radium 228	0.502+-0.418	0.8	pCi/L	1	12/05/18 12:09 PM
SPLP FLUID #1		Analyst: A	LD		EPA 1312
Final pH Metals	6.13		S.U.	1	11/15/18 8:00 PM
SPLP FLUID #3		Analyst: M	IAG		EPA 1312
Final pH Non Metals	8.75		S.U.	1	11/15/18 9:16 AM

Date: 21-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: UD-6 0-4

Lab Order: G1811860

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811860-006
 Collection Date:
 11/13/2018 3:10:00 PM

 Matrix:
 SOLID
 Received Date:
 11/14/2018 7:39:08 PM

Analyses Result \mathbf{OL} 0 Units DF **Date Prepared Date Analyzed TOTAL METALS** Analyst: RLL **EPA 7473** 11/20/18 2:36 PM 0.054 0.010 Mercury mg/Kg-dry 1 **SPLP INORGANICS** Analyst: MBG **EPA 300.0 EPA 300.0** Fluoride 0.18 0.05 11/16/18 11:45 AM 11/16/18 2:15 PM mg/L **TOTAL METALS** Analyst: MXS **EPA 3050 EPA 6010** 10.0 11/20/18 1:30 PM 11/23/18 6:37 PM Antimony < 10.0 mg/Kg-dry 1 2.0 11/20/18 1:30 PM 11/21/18 6:25 PM Arsenic 15.9 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:25 PM Barium 118 1.0 mg/Kg-dry 0.10 11/20/18 1:30 PM 11/21/18 6:25 PM Beryllium 1.10 mg/Kg-dry 1 5.0 11/21/18 6:25 PM Cadmium < 5.0 mg/Kg-dry 1 11/20/18 1:30 PM Chromium 27.0 5.0 11/20/18 1:30 PM 11/21/18 6:25 PM mg/Kg-dry 1 Cobalt 0.5 mg/Kg-dry 22.0 1 11/20/18 1:30 PM 11/21/18 6:25 PM Lead 20.8 20 mg/Kg-dry 11/20/18 1:30 PM 11/21/18 6:25 PM Lithium 13.2 1.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:25 PM Molybdenum < 2.0 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/21/18 6:25 PM Selenium < 2.0 2.0 mg/Kg-dry 11/20/18 1:30 PM 11/21/18 6:25 PM Thallium < 10.0 10.0 mg/Kg-dry 11/20/18 1:30 PM 11/21/18 6:25 PM Analyst: GXI **SPLP METALS FLUID #1 SM 3112 B EPA 7470** Mercury < 0.0001 0.0001 mg/L 11/19/18 11:32 AM 11/20/18 10:04 AM **SPLP METALS FLUID #1** Analyst: MXS **EPA 200.2 EPA 200.7** Antimony 0.05 0.05 U mg/L 11/19/18 11:25 AM 11/20/18 2:28 PM Arsenic 0.010 0.010 mg/L 1 11/19/18 11:25 AM 11/20/18 2:28 PM 0.073 0.005 11/19/18 11:25 AM 11/20/18 2:28 PM Barium mg/L Beryllium 0.0005 0.0005 U mg/L 11/19/18 11:25 AM 11/20/18 2:28 PM Cadmium 0.0010 0.0010 U mg/L 1 11/19/18 11:25 AM 11/20/18 2:28 PM Chromium 0.005 0.005 11/19/18 11:25 AM 11/20/18 2:28 PM U mg/L Cobalt 0.0020 0.0020 11/19/18 11:25 AM 11/20/18 2:28 PM U mg/L Lead 0.010 0.010 U mg/L 11/19/18 11:25 AM 11/20/18 2:28 PM 0.005 11/19/18 11:25 AM 11/20/18 2:28 PM Lithium 0.005 U mg/L 0.010 11/19/18 11:25 AM 11/20/18 2:28 PM Molybdenum 0.010 mg/L Selenium 0.010 0.010 mg/L 11/19/18 11:25 AM 11/20/18 2:28 PM U 0.010 U 11/19/18 11:25 AM 11/20/18 2:28 PM Thallium 0.010 mg/L **GAMMA SPECTROSCOPY** Analyst: AM **EPA 901.1** Radium-226 11/20/18 7:31 PM 0.58+/-0.0361 0.079 pCi/g 1 Radium-228 0.59+/-0.0562 0.077 pCi/g 1 11/20/18 7:31 PM

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Clien

Client Sample ID: UD-6 0-4

Sampled By:

Date: 21-Dec-18

APTIM

Lab Order: G1811860

Project: Conemaugh CCR IV SPLP

 Lab ID:
 G1811860-006
 Collection Date:
 11/13/2018 3:10:00 PM

 Matrix:
 SOLID
 Received Date:
 11/14/2018 7:39:08 PM

Analyses Result QL Q Units DF Date Prepared Date Analyzed

GAMMA SPECTROSCOPY Analyst: AM EPA 901.1

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

Ra-228 and Ac-228 are assumed to be in secular equilibrium. The results for Ra-228 are inferred from Ac-228.

SPLP RADIOLOGICAL PARAMETERS Analyst: SUB **EPA 903.1 MOD** 12/10/18 1:33 PM Radium 226 0.737+-0.668 1.0 pCi/L SPLP RADIOLOGICAL PARAMETERS Analyst: SUB **EPA 904.0 MOD** 12/10/18 1:12 PM Radium 228 0.320+-0.300 0.6 pCi/L **SPLP FLUID #1** Analyst: ALD **EPA 1312** Final pH Metals 4.11 S.U. 11/15/18 8:00 PM 1 SPLP FLUID #3 Analyst: MAG **EPA 1312** 11/15/18 9:16 AM Final pH Non Metals 7.16 S.U. 1

2005 N. Center Ave. Somerset, PA 15501

> 814/443-1671 814/445-6666 FAX: 814/445-6729

Wednesday, December 12, 2018

John Shimshock GENON - CONEMAUGH STATION CCR CONEMAUGH STATION PO BOX K NEW FLORENCE, PA 15944

RE: Conemaugh CCR IV SPLP Order No.: G1811867

Dear John Shimshock:

Geochemical Testing received 4 sample(s) on 11/15/2018 for the analyses presented in the following report.

There were no problems with the analyses and all QC data met NELAC, EPA, and laboratory specifications except where noted in the Case Narrative or Laboratory Results.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Timothy W. Bergstresser Director of Technical Services

Timoff W Ley truson

Leslie A. Nemeth Project Manager

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Project: Conemaugh CCR IV SPLP CASE NARRATIVE

Lab Order: G1811867

No problems were encountered during analysis of this workorder, except if noted in this report.

SAMPLE RECEIPT CHECKLIST

	Response
COC is present	Yes
COC is filled out in ink and legible	Yes
COC relinquished, signature, date, and time	Yes
Samples arrived within hold time	Yes
Containers properly preserved for the requested testing	Yes
Sample containers have legible labels	Yes
Sample preservation verified	Yes
Appropriate sample containers are used	Yes
Sample container(s) received at proper temperature	Yes
Zero headspace where required	Yes
Sufficient volume for all requested analyses	Yes

Comments on the above checklist: None

The radiological analysis (Radium 226 by EPA 903.1; Radium 228 by EPA 904.0) was subcontracted to Pace Analytical (PADEP 65-00282). A copy of the subcontractor's laboratory report is enclosed with this Analytical Report.

Legend: ND - Not Detected

J - Indicates an estimated value.

U - The analyte was not detected at or above the listed concentration, which is below the laboratory quantitation limit.

B - Analyte detected in the associated Method Blank

Q - Qualifier QL -Quantitation Limit

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

Date: 12-Dec-18

R - RPD outside accepted recovery limits

E - Value above quantitation range

** - Value exceeds Action Limit

H - Method Hold Time Exceeded

MCL - Contaminant Limit

Date: 12-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: UD-7 0-4

Lab Order: G1811867

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811867-001
 Collection Date:
 11/14/2018 9:30:00 AM

 Matrix:
 SOLID
 Received Date:
 11/15/2018 6:32:36 AM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
TOTAL METALS		Analyst:	RLI	<u>_</u>			EPA 7473
Mercury	0.26	0.010		mg/Kg-dry	1		11/20/18 2:36 PM
SPLP INORGANICS		Analyst:	МВ	G		EPA 300.0	EPA 300.0
Fluoride	0.51	0.05		mg/L	1	11/16/18 11:45 AM	1 11/16/18 2:33 PM
TOTAL METALS		Analyst:	MX	s		EPA 3050	EPA 6010
Antimony	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:46 PM
Arsenic	27.2	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:46 PM
Barium	149	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:46 PM
Beryllium	1.24	0.10		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:46 PM
Cadmium	< 5.0	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:46 PM
Chromium	31.5	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:46 PM
Cobalt	14.8	0.5		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:46 PM
Lead	22.1	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:46 PM
Lithium	17.2	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:46 PM
Molybdenum	1.2	2.0	J	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:46 PM
Selenium	2.2	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:46 PM
Thallium	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:46 PM
SPLP METALS FLUID #1		Analyst:	GX	l		SM 3112 B	EPA 7470
Mercury	< 0.0001	0.0001	J	mg/L	1	11/19/18 11:32 AM	1 11/20/18 10:06 AM
SPLP METALS FLUID #1		Analyst:	MX	S		EPA 200.2	EPA 200.7
Antimony	0.05	0.05	U	mg/L	1	11/19/18 11:25 AM	1 11/20/18 2:32 PM
Arsenic	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	1 11/20/18 2:32 PM
Barium	0.070	0.005		mg/L	1	11/19/18 11:25 AM	1 11/20/18 2:32 PM
Beryllium	0.0005	0.0005	U	mg/L	1	11/19/18 11:25 AM	1 11/20/18 2:32 PM
Cadmium	0.0010	0.0010	U	mg/L	1	11/19/18 11:25 AM	1 11/20/18 2:32 PM
Chromium	0.0050	0.0050	U	mg/L	1		1 11/20/18 2:32 PM
Cobalt	0.0020	0.0020	U	mg/L	1	11/19/18 11:25 AM	
Lead	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	
Lithium	0.005	0.005	U	mg/L	1		1 11/20/18 2:32 PM
Molybdenum	0.010	0.010	U	mg/L	1		1 11/20/18 2:32 PM
Selenium	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	
Thallium	0.010	0.010	U	mg/L	1		1 11/20/18 2:32 PM
GAMMA SPECTROSCOPY		Analyst:	ΑМ				EPA 901.1
Radium-226	0.71+/-0.0380	0.073		pCi/g	1		11/21/18 7:47 AM
Radium-228	0.90+/-0.0735	0.086		pCi/g	1		11/21/18 7:47 AM

Date: 12-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: UD-7 0-4

Lab Order: G1811867

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811867-001
 Collection Date:
 11/14/2018 9:30:00 AM

 Matrix:
 SOLID
 Received Date:
 11/15/2018 6:32:36 AM

Analyses Result QL Q Units DF Date Prepared Date Analyzed

GAMMA SPECTROSCOPY Analyst: AM EPA 901.1

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

Ra-228 and Ac-228 are assumed to be in secular equilibrium. The results for Ra-228 are inferred from Ac-228.

SPLP RADIOLOGICAL PARAMETERS Analyst: SUB **EPA 903.1 MOD** 12/06/18 9:43 PM Radium 226 0.132+-0.301 0.2 pCi/L SPLP RADIOLOGICAL PARAMETERS Analyst: SUB **EPA 904.0 MOD** 12/05/18 12:09 PM Radium 228 0.844+-0.439 8.0 pCi/L **SPLP FLUID #1** Analyst: ALD **EPA 1312** Final pH Metals 4.68 S.U. 11/15/18 8:00 PM 1 SPLP FLUID #3 Analyst: MAG **EPA 1312** 11/15/18 9:16 AM Final pH Non Metals 8.29 S.U. 1

Date: 12-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: UD-8 0-4

Lab Order: G1811867

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811867-003
 Collection Date:
 11/14/2018 9:50:00 AM

 Matrix:
 SOLID
 Received Date:
 11/15/2018 6:32:36 AM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
TOTAL METALS		Analyst: F	RLL				EPA 7473
Mercury	0.040	0.010		mg/Kg-dry	1		11/20/18 2:36 PM
SPLP INORGANICS		Analyst: I	мво	;		EPA 300.0	EPA 300.0
Fluoride	0.18	0.05		mg/L	1	11/16/18 11:45 Al	/ 11/16/18 2:51 PM
TOTAL METALS		Analyst: I	MXS	i		EPA 3050	EPA 6010
Antimony	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:51 PM
Arsenic	14.6	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:51 PM
Barium	135	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:51 PM
Beryllium	1.12	0.10		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:51 PM
Cadmium	< 5.0	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:51 PM
Chromium	31.8	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:51 PM
Cobalt	17.5	0.5		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:51 PM
Lead	23.0	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:51 PM
Lithium	17.7	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:51 PM
Molybdenum	< 2.0	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:51 PM
Selenium	2.4	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:51 PM
Thallium	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:51 PM
SPLP METALS FLUID #1		Analyst: (GXI			SM 3112 B	EPA 7470
Mercury	< 0.0001	0.0001	J	mg/L	1	11/19/18 11:32 Al	/ 11/20/18 10:26 AM
SPLP METALS FLUID #1		Analyst: I	MXS	;		EPA 200.2	EPA 200.7
Antimony	0.05	0.05	U	mg/L	1	11/19/18 11:25 Al	/ 11/20/18 2:46 PM
Arsenic	0.010	0.010	U	mg/L	1	11/19/18 11:25 Al	/ 11/20/18 2:46 PM
Barium	0.080	0.005		mg/L	1	11/19/18 11:25 Al	/ 11/20/18 2:46 PM
Beryllium	0.0005	0.0005		mg/L	1	11/19/18 11:25 Al	/ 11/20/18 2:46 PM
Cadmium	0.0010	0.0010	U	mg/L	1	11/19/18 11:25 Al	/ 11/20/18 2:46 PM
Chromium	0.0050	0.0050	U	mg/L	1	11/19/18 11:25 Al	/ 11/20/18 2:46 PM
Cobalt	0.0020	0.0020	U	mg/L	1	11/19/18 11:25 Al	/ 11/20/18 2:46 PM
Lead	0.010	0.010	U	mg/L	1	11/19/18 11:25 Al	/ 11/20/18 2:46 PM
Lithium	0.005	0.005		mg/L	1	11/19/18 11:25 Al	/ 11/20/18 2:46 PM
Molybdenum	0.010	0.010		mg/L	1	11/19/18 11:25 Al	/ 11/20/18 2:46 PM
Selenium	0.010			mg/L	1	11/19/18 11:25 Al	
Thallium	0.010			mg/L	1		/ 11/20/18 2:46 PM
GAMMA SPECTROSCOPY		Analyst: A	ΑМ				EPA 901.1
Radium-226	0.71+/-0.0385	0.074		pCi/g	1		11/21/18 8:20 PM
Radium-228	0.89+/-0.0732	0.083		pCi/g	1		11/21/18 8:20 PM
	0.00 1, 0.0102	0.000		r = " 9	•		, 2 i, io 0.20 i W

Date: 12-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: UD-8 0-4

Lab Order: G1811867

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811867-003
 Collection Date:
 11/14/2018 9:50:00 AM

 Matrix:
 SOLID
 Received Date:
 11/15/2018 6:32:36 AM

Analyses Result QL Q Units DF Date Prepared Date Analyzed

GAMMA SPECTROSCOPY Analyst: AM EPA 901.1

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

SPLP RADIOLOGICAL PARAMETERS		Analyst: S	UB		EPA 903.1 MOD	
Radium 226	0.0821+-0.581	1.2	pCi/L	1	12/07/18 12:08 PM	
SPLP RADIOLOGICAL PARA	DIOLOGICAL PARAMETERS		UB		EPA 904.0 MOD	
Radium 228	-0.217+-0.347	0.9	pCi/L	1	12/05/18 3:36 PM	
SPLP FLUID #1		Analyst: A		EPA 1312		
Final pH Metals	6.05		S.U.	1	11/15/18 8:00 PM	
SPLP FLUID #3			EPA 1312			
Final pH Non Metals	7.53		S.U.	1	11/15/18 9:16 AM	

Date: 12-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: LD-1 0-4

Lab Order: G1811867

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811867-005
 Collection Date:
 11/14/2018 10:05:00 A

 Matrix:
 SOLID
 Received Date:
 11/15/2018 6:32:36 AM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
TOTAL METALS	Analyst: RLL					EPA 7473	
Mercury	0.042	0.010		mg/Kg-dry	1		11/20/18 2:36 PM
SPLP INORGANICS		Analyst: MBG			EPA 300.0	EPA 300.0	
Fluoride	0.08	0.05	J	mg/L	1	11/16/18 11:45 AM	1 11/16/18 3:08 PM
TOTAL METALS		Analyst: MXS				EPA 3050	EPA 6010
Antimony	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:55 PM
Arsenic	24.5	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:55 PM
Barium	161	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:55 PM
Beryllium	1.20	0.10		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:55 PM
Cadmium	< 5.0	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:55 PM
Chromium	31.7	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:55 PM
Cobalt	16.9	0.5		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:55 PM
Lead	28.9	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:55 PM
Lithium	16.2	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:55 PM
Molybdenum	1.2	2.0	J	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:55 PM
Selenium	2.5	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:55 PM
Thallium	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:55 PM
SPLP METALS FLUID #1		Analyst: GXI				SM 3112 B	EPA 7470
Mercury	< 0.0001	0.0001	J	mg/L	1	11/19/18 11:32 AM	1 11/20/18 10:49 AM
SPLP METALS FLUID #1		Analyst: MXS			EPA 200.2	EPA 200.7	
Antimony	0.05	0.05	U	mg/L	1	11/19/18 11:25 AN	1 11/20/18 5:10 PM
Arsenic	0.010	0.010	U	mg/L	1	11/19/18 11:25 AN	1 11/20/18 5:10 PM
Barium	0.066	0.005		mg/L	1	11/19/18 11:25 AM	1 11/20/18 5:10 PM
Beryllium	0.0005	0.0005	U	mg/L	1	11/19/18 11:25 AN	1 11/20/18 5:10 PM
Cadmium	0.0010	0.0010	U	mg/L	1	11/19/18 11:25 AM	1 11/20/18 5:10 PM
Chromium	0.0050	0.0050	U	mg/L	1		1 11/20/18 5:10 PM
Cobalt	0.0020	0.0020	U	mg/L	1	11/19/18 11:25 AN	
Lead	0.010	0.010	U	mg/L	1	11/19/18 11:25 AN	
Lithium	0.005	0.005	U	mg/L	1		1 11/20/18 5:10 PM
Molybdenum	0.010	0.010	U	mg/L	1		1 11/20/18 5:10 PM
Selenium	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	
Thallium	0.010	0.010	U	mg/L	1		1 11/20/18 5:10 PM
GAMMA SPECTROSCOPY		Analyst: AM					EPA 901.1
Radium-226	1.11+/-0.0567	0.052		pCi/g	1		11/21/18 8:20 PM
Radium-228	1.39+/-0.0877	0.032			1		11/21/18 8:20 PM
Naululli-220	1.097/-0.007/	0.036		pCi/g	1		11/21/10 0.20 PIVI

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Client Sample ID: LD-1 0-4

Date: 12-Dec-18

Lab Order: G1811867

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811867-005
 Collection Date:
 11/14/2018 10:05:00 A

 Matrix:
 SOLID
 Received Date:
 11/15/2018 6:32:36 AM

Analyses Result QL Q Units DF Date Prepared Date Analyzed

GAMMA SPECTROSCOPY Analyst: AM EPA 901.1

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

Ra-228 and Ac-228 are assumed to be in secular equilibrium. The results for Ra-228 are inferred from Ac-228.

SPLP RADIOLOGICAL PARAMETERS Analyst: SUB **EPA 903.1 MOD** 12/06/18 10:00 PM Radium 226 0.349+-0.364 0.5 pCi/L SPLP RADIOLOGICAL PARAMETERS Analyst: SUB **EPA 904.0 MOD** 12/05/18 12:09 PM Radium 228 0.487+-0.402 8.0 pCi/L **SPLP FLUID #1** Analyst: ALD **EPA 1312** Final pH Metals 4.54 S.U. 11/17/18 1:00 PM 1 SPLP FLUID #3 Analyst: MAG **EPA 1312** 11/15/18 9:16 AM Final pH Non Metals 7.52 S.U. 1

Date: 12-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: LD-2 0-4

Lab Order: G1811867

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811867-007
 Collection Date:
 11/14/2018 10:55:00 A

 Matrix:
 SOLID
 Received Date:
 11/15/2018 6:32:36 AM

Analyses	Result	QL	Q Units	DF	Date Prepared	Date Analyzed
TOTAL METALS		Analyst: F	RLL			EPA 7473
Mercury	0.032	0.010	mg/Kg-dry	1		11/20/18 2:36 PM
SPLP INORGANICS		Analyst: N	MBG		EPA 300.0	EPA 300.0
Fluoride	0.39	0.05	mg/L	1	11/16/18 11:45 AM	11/16/18 3:26 PM
TOTAL METALS		Analyst: N	MXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:00 PM
Arsenic	11.9	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:00 PM
Barium	143	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:00 PM
Beryllium	1.14	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:00 PM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:00 PM
Chromium	31.4	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:00 PM
Cobalt	17.2	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:00 PM
Lead	23.8	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:00 PM
Lithium	15.8	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:00 PM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:00 PM
Selenium	2.2	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:00 PM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:00 PM
SPLP METALS FLUID #1		Analyst: (GXI		SM 3112 B	EPA 7470
Mercury	< 0.0001	0.0001	J mg/L	1	11/19/18 11:32 AM	11/20/18 11:17 AM
SPLP METALS FLUID #1		Analyst: N	MXS		EPA 200.2	EPA 200.7
Antimony	0.05	0.05	U mg/L	1	11/19/18 11:25 AM	11/20/18 6:52 PM
Arsenic	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	11/20/18 6:52 PM
Barium	0.069	0.005	mg/L	1	11/19/18 11:25 AM	11/20/18 6:52 PM
Beryllium	0.0005	0.0005	U mg/L	1	11/19/18 11:25 AM	11/20/18 6:52 PM
Cadmium	0.0010	0.0010	U mg/L	1	11/19/18 11:25 AM	11/20/18 6:52 PM
Chromium	0.0050	0.0050	U mg/L	1	11/19/18 11:25 AM	11/20/18 6:52 PM
Cobalt	0.0020	0.0020	U mg/L	1	11/19/18 11:25 AM	11/20/18 6:52 PM
Lead	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	11/20/18 6:52 PM
Lithium	0.005	0.005	U mg/L	1	11/19/18 11:25 AM	11/20/18 6:52 PM
Molybdenum	0.010		U mg/L	1		11/20/18 6:52 PM
Selenium	0.010		U mg/L	1	11/19/18 11:25 AM	
Thallium	0.010		U mg/L	1		11/20/18 6:52 PM
GAMMA SPECTROSCOPY		Analyst: 🖊	AM			EPA 901.1
Radium-226	0.64+/-0.0354	0.069	pCi/g	1		11/22/18 9:01 AM
Radium-228	0.83+/-0.0693	0.088	pCi/g	1		11/22/18 9:01 AM
	0.00 1/ 0.0000	0.000	P 0 " 9	•		

Date: 12-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: LD-2 0-4

Lab Order: G1811867

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811867-007
 Collection Date:
 11/14/2018 10:55:00 A

 Matrix:
 SOLID
 Received Date:
 11/15/2018 6:32:36 AM

Analyses Result QL Q Units DF Date Prepared Date Analyzed

GAMMA SPECTROSCOPY Analyst: AM EPA 901.1

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

Ra-228 and Ac-228 are assumed to be in secular equilibrium. The results for Ra-228 are inferred from Ac-228.

SPLP RADIOLOGICAL PARAMETERS Analyst: SUB **EPA 903.1 MOD** 12/07/18 12:08 PM Radium 226 0.477+-0.498 0.7 pCi/L SPLP RADIOLOGICAL PARAMETERS Analyst: SUB **EPA 904.0 MOD** 12/05/18 3:36 PM Radium 228 0.301+-0.570 1.2 pCi/L **SPLP FLUID #1** Analyst: ALD **EPA 1312** Final pH Metals S.U. 11/18/18 11:00 AM 3.67 1 SPLP FLUID #3 Analyst: MAG **EPA 1312** 11/15/18 9:16 AM Final pH Non Metals 10.7 S.U. 1

2005 N. Center Ave. Somerset, PA 15501

> 814/443-1671 814/445-6666 FAX: 814/445-6729

Wednesday, December 12, 2018

John Shimshock GENON - CONEMAUGH STATION CCR CONEMAUGH STATION PO BOX K NEW FLORENCE, PA 15944

RE: Conemaugh CCR IV SPLP Order No.: G1811869

Dear John Shimshock:

Geochemical Testing received 4 sample(s) on 11/15/2018 for the analyses presented in the following report.

There were no problems with the analyses and all QC data met NELAC, EPA, and laboratory specifications except where noted in the Case Narrative or Laboratory Results.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Timothy W. Bergstresser Director of Technical Services

Timoth W Bey trus

Leslie A. Nemeth Project Manager

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Project: Conemaugh CCR IV SPLP CASE NARRATIVE

Lab Order: G1811869

No problems were encountered during analysis of this workorder, except if noted in this report.

SAMPLE RECEIPT CHECKLIST

	Response
COC is present	Yes
COC is filled out in ink and legible	Yes
COC relinquished, signature, date, and time	Yes
Samples arrived within hold time	Yes
Containers properly preserved for the requested testing	Yes
Sample containers have legible labels	Yes
Sample preservation verified	Yes
Appropriate sample containers are used	Yes
Sample container(s) received at proper temperature	Yes
Zero headspace where required	Yes
Sufficient volume for all requested analyses	Yes

Comments on the above checklist: None

The radiological analysis (Radium 226 by EPA 903.1; Radium 228 by EPA 904.0) was subcontracted to Pace Analytical (PADEP 65-00282). A copy of the subcontractor's laboratory report is enclosed with this Analytical Report.

Legend: ND - Not Detected

J - Indicates an estimated value.

U - The analyte was not detected at or above the listed concentration, which is below the laboratory quantitation limit.

B - Analyte detected in the associated Method Blank

Q - Qualifier QL -Quantitation Limit

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

Date: 12-Dec-18

R - RPD outside accepted recovery limits

E - Value above quantitation range

** - Value exceeds Action Limit

- value exceeds Action Limit

H - Method Hold Time Exceeded

MCL - Contaminant Limit

Date: 12-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: LD-3 0-4

Lab Order: G1811869

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811869-001
 Collection Date:
 11/14/2018 11:15:00 A

 Matrix:
 SOLID
 Received Date:
 11/15/2018 6:58:38 AM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
TOTAL METALS		Analyst:	RL	<u>L</u>			EPA 7473
Mercury	0.040	0.010		mg/Kg-dry	1		11/20/18 2:36 PM
SPLP INORGANICS		Analyst:	МВ	G		EPA 300.0	EPA 300.0
Fluoride	0.09	0.05	J	mg/L	1	11/16/18 11:45 AM	11/16/18 4:20 PM
TOTAL METALS		Analyst:	MX	s		EPA 3050	EPA 6010
Antimony	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:09 PM
Arsenic	17.8	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:09 PM
Barium	147	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:09 PM
Beryllium	1.19	0.10		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:09 PM
Cadmium	< 5.0	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:09 PM
Chromium	32.6	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:09 PM
Cobalt	17.8	0.5		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:09 PM
Lead	24.1	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:09 PM
Lithium	17.4	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:09 PM
Molybdenum	1.0	2.0	J	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:09 PM
Selenium	2.0	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:09 PM
Thallium	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:09 PM
SPLP METALS FLUID #1		Analyst:	GX	I		SM 3112 B	EPA 7470
Mercury	< 0.0001	0.0001	J	mg/L	1	11/19/18 11:32 AM	11/20/18 11:16 AM
SPLP METALS FLUID #1		Analyst:	MX	s		EPA 200.2	EPA 200.7
Antimony	0.05	0.05	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:33 PM
Arsenic	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:33 PM
Barium	0.062	0.005		mg/L	1	11/19/18 11:25 AM	11/20/18 5:33 PM
Beryllium	0.0005	0.0005	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:33 PM
Cadmium	0.0010	0.0010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:33 PM
Chromium	0.0050	0.0050	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:33 PM
Cobalt	0.0020	0.0020	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:33 PM
Lead	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:33 PM
Lithium	0.005	0.005	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:33 PM
Molybdenum	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	
Selenium	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	
Thallium	0.010	0.010	Ü	mg/L	1	11/19/18 11:25 AM	
GAMMA SPECTROSCOPY		Analyst:	AM				EPA 901.1
Radium-226	0.97+/-0.0496	0.054		pCi/g	1		11/22/18 11:36 PM
Radium-228	1.3+/-0.0828	0.036		pCi/g	1		11/22/18 11:36 PM
	, 0.0320	0.000		r = "3	•		,

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Client Sample ID: LD-3 0-4

Sampled By:

Date: 12-Dec-18

APTIM

Lab Order: G1811869

Project: Conemaugh CCR IV SPLP

 Lab ID:
 G1811869-001
 Collection Date:
 11/14/2018 11:15:00 A

 Matrix:
 SOLID
 Received Date:
 11/15/2018 6:58:38 AM

Analyses Result QL Q Units DF Date Prepared Date Analyzed

GAMMA SPECTROSCOPY Analyst: AM EPA 901.1

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

Ra-228 and Ac-228 are assumed to be in secular equilibrium. The results for Ra-228 are inferred from Ac-228.

SPLP RADIOLOGICAL PARAMETE	RS	Analyst: SUB			EPA 903.1 MOD
Radium 226	0.155+-0.353	0.2	pCi/L	1	12/06/18 10:00 PM
SPLP RADIOLOGICAL PARAMETE	RS	Analyst: S	UB		EPA 904.0 MOD
Radium 228	0.360+-0.353	0.7	pCi/L	1	12/05/18 12:09 PM
SPLP FLUID #1		Analyst: A	LD		EPA 1312
Final pH Metals	3.71		S.U.	1	11/17/18 1:00 PM
SPLP FLUID #3		Analyst: N	IAG		EPA 1312
Final pH Non Metals	6.46		S.U.	1	11/15/18 9:16 AM

Date: 12-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: LD-4 0-4

Lab Order: G1811869

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811869-003
 Collection Date:
 11/14/2018 11:40:00 A

 Matrix:
 SOLID
 Received Date:
 11/15/2018 6:58:38 AM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
TOTAL METALS		Analyst:	RL	<u>L</u>			EPA 7473
Mercury	0.038	0.010		mg/Kg-dry	1		11/20/18 2:36 PM
SPLP INORGANICS		Analyst:	МВ	G		EPA 300.0	EPA 300.0
Fluoride	0.14	0.05		mg/L	1	11/16/18 11:45 AM	11/16/18 5:14 PM
TOTAL METALS		Analyst:	MX	s		EPA 3050	EPA 6010
Antimony	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:33 PM
Arsenic	17.6	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:33 PM
Barium	148	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:33 PM
Beryllium	1.39	0.10		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:33 PM
Cadmium	< 5.0	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:33 PM
Chromium	43.5	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:33 PM
Cobalt	21.6	0.5		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:33 PM
Lead	29.1	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:33 PM
Lithium	19.5	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:33 PM
Molybdenum	1.2	2.0	J	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:33 PM
Selenium	2.5	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:33 PM
Thallium	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 2:33 PM
SPLP METALS FLUID #1		Analyst:	GX	I		SM 3112 B	EPA 7470
Mercury	< 0.0001	0.0001	J	mg/L	1	11/19/18 11:32 AM	11/20/18 11:25 AM
SPLP METALS FLUID #1		Analyst:	MX	s		EPA 200.2	EPA 200.7
Antimony	0.05	0.05	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:37 PM
Arsenic	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:37 PM
Barium	0.074	0.005		mg/L	1	11/19/18 11:25 AM	11/20/18 5:37 PM
Beryllium	0.0005	0.0005	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:37 PM
Cadmium	0.0010	0.0010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:37 PM
Chromium	0.0050	0.0050	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:37 PM
Cobalt	0.0020	0.0020	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:37 PM
Lead	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:37 PM
Lithium	0.005	0.005	U	mg/L	1	11/19/18 11:25 AM	
Molybdenum	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:37 PM
Selenium	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:37 PM
Thallium	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:37 PM
GAMMA SPECTROSCOPY		Analyst:	ΑM				EPA 901.1
Radium-226	0.73+/-0.0407	0.070		pCi/g	1		11/22/18 11:37 PM
Radium-228	0.87+/-0.0732	0.094		pCi/g	1		11/22/18 11:37 PM

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Clien

Client Sample ID: LD-4 0-4

Sampled By:

Date: 12-Dec-18

APTIM

Lab Order: G1811869

Project: Conemaugh CCR IV SPLP

 Lab ID:
 G1811869-003
 Collection Date:
 11/14/2018 11:40:00 A

 Matrix:
 SOLID
 Received Date:
 11/15/2018 6:58:38 AM

Analyses Result QL Q Units DF Date Prepared Date Analyzed

GAMMA SPECTROSCOPY Analyst: AM EPA 901.1

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

Ra-228 and Ac-228 are assumed to be in secular equilibrium. The results for Ra-228 are inferred from Ac-228.

SPLP RADIOLOGICAL PARAMET	ERS	Analyst: SUB			EPA 903.1 MOD
Radium 226	-0.227+-0.394	1.0	pCi/L	1	12/07/18 12:08 PM
SPLP RADIOLOGICAL PARAMET	ERS	Analyst: S	UB		EPA 904.0 MOD
Radium 228	-0.074+-0.479	1.0	pCi/L	1	12/05/18 3:36 PM
SPLP FLUID #1		Analyst: A	LD		EPA 1312
Final pH Metals	3.81		S.U.	1	11/17/18 1:00 PM
SPLP FLUID #3		Analyst: N	IAG		EPA 1312
Final pH Non Metals	6.61		S.U.	1	11/15/18 9:16 AM

Date: 12-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: LD-5 0-4

Lab Order: G1811869

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811869-005
 Collection Date:
 11/14/2018 11:55:00 A

 Matrix:
 SOLID
 Received Date:
 11/15/2018 6:58:38 AM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
TOTAL METALS		Analyst:	RLI	L			EPA 7473
Mercury	0.057	0.010		mg/Kg-dry	1		11/20/18 2:36 PM
SPLP INORGANICS		Analyst:	МВ	G		EPA 300.0	EPA 300.0
Fluoride	0.05	0.05	U	mg/L	1	11/16/18 11:45 AM	11/16/18 5:32 PM
TOTAL METALS		Analyst:	MX	S		EPA 3050	EPA 6010
Antimony	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:10 PM
Arsenic	20.8	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:10 PM
Barium	141	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:10 PM
Beryllium	1.17	0.10		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:10 PM
Cadmium	< 5.0	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:10 PM
Chromium	27.7	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:10 PM
Cobalt	17.9	0.5		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:10 PM
Lead	27.8	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:10 PM
Lithium	16.0	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:10 PM
Molybdenum	1.8	2.0	J	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:10 PM
Selenium	2.5	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:10 PM
Thallium	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:10 PM
SPLP METALS FLUID #1		Analyst:	GX	I		SM 3112 B	EPA 7470
Mercury	< 0.0001	0.0001	J	mg/L	1	11/19/18 11:32 AM	11/20/18 11:26 AM
SPLP METALS FLUID #1		Analyst:	MX	S		EPA 200.2	EPA 200.7
Antimony	0.05	0.05	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:42 PM
Arsenic	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:42 PM
Barium	0.086	0.005		mg/L	1	11/19/18 11:25 AM	11/20/18 5:42 PM
Beryllium	0.0005	0.0005	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:42 PM
Cadmium	0.0010	0.0010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:42 PM
Chromium	0.0050	0.0050	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:42 PM
Cobalt	0.0020	0.0020	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:42 PM
Lead	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:42 PM
Lithium	0.005	0.005	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:42 PM
Molybdenum	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:42 PM
Selenium	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:42 PM
Thallium	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:42 PM
GAMMA SPECTROSCOPY		Analyst:	AM				EPA 901.1
Radium-226	0.74+/-0.0398	0.071		pCi/g	1		11/23/18 7:41 PM
Radium-228	0.81+/-0.0682	0.088		pCi/g	1		11/23/18 7:41 PM

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Client Sample ID: LD-5 0-4

Sampled By:

Date: 12-Dec-18

APTIM

Lab Order: G1811869

Project: Conemaugh CCR IV SPLP

 Lab ID:
 G1811869-005
 Collection Date:
 11/14/2018 11:55:00 A

 Matrix:
 SOLID
 Received Date:
 11/15/2018 6:58:38 AM

Analyses Result QL Q Units DF Date Prepared Date Analyzed

GAMMA SPECTROSCOPY Analyst: AM EPA 901.1

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

Ra-228 and Ac-228 are assumed to be in secular equilibrium. The results for Ra-228 are inferred from Ac-228.

SPLP RADIOLOGICAL PARAMETE	ETERS Analyst: SUB				EPA 903.1 MOD
Radium 226	0.379+-0.577	1.0	pCi/L	1	12/06/18 10:00 PM
SPLP RADIOLOGICAL PARAMETE	OGICAL PARAMETERS Analyst: SUB			EPA 904.0 MOD	
Radium 228	0.528+-0.438	0.9	pCi/L	1	12/05/18 12:10 PM
SPLP FLUID #1		Analyst: A	LD		EPA 1312
Final pH Metals	3.83		S.U.	1	11/17/18 1:00 PM
	0.00		0.0.	Į.	11/17/10 1:00 F W
SPLP FLUID #3	0.00	Analyst: M		'	EPA 1312

Date: 12-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: LD-6 0-4

Lab Order: G1811869

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811869-007
 Collection Date:
 11/14/2018 12:10:00 P

 Matrix:
 SOLID
 Received Date:
 11/15/2018 6:58:38 AM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
TOTAL METALS		Analyst:	RLI	<u>L</u> .			EPA 7473
Mercury	0.052	0.010		mg/Kg-dry	1		11/20/18 2:36 PM
SPLP INORGANICS		Analyst:	МВ	G		EPA 300.0	EPA 300.0
Fluoride	0.09	0.05	J	mg/L	1	11/16/18 11:45 AM	11/16/18 5:50 PM
TOTAL METALS		Analyst:	MX	s		EPA 3050	EPA 6010
Antimony	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:15 PM
Arsenic	18.5	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:15 PM
Barium	149	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:15 PM
Beryllium	1.25	0.10		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:15 PM
Cadmium	< 5.0	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:15 PM
Chromium	29.2	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:15 PM
Cobalt	18.6	0.5		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:15 PM
Lead	26.8	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:15 PM
Lithium	15.6	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:15 PM
Molybdenum	1.4	2.0	J	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:15 PM
Selenium	2.2	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:15 PM
Thallium	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:15 PM
SPLP METALS FLUID #1		Analyst:	GX	I		SM 3112 B	EPA 7470
Mercury	< 0.0001	0.0001	J	mg/L	1	11/19/18 11:32 AM	11/20/18 11:28 AM
SPLP METALS FLUID #1		Analyst:	MX	S		EPA 200.2	EPA 200.7
Antimony	0.05	0.05	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:46 PM
Arsenic	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:46 PM
Barium	0.086	0.005		mg/L	1	11/19/18 11:25 AM	11/20/18 5:46 PM
Beryllium	0.0005	0.0005	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:46 PM
Cadmium	0.0010	0.0010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:46 PM
Chromium	0.0050	0.0050	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:46 PM
Cobalt	0.0020	0.0020	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:46 PM
Lead	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:46 PM
Lithium	0.005	0.005	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:46 PM
Molybdenum	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:46 PM
Selenium	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:46 PM
Thallium	0.010	0.010	U	mg/L	1	11/19/18 11:25 AM	11/20/18 5:46 PM
GAMMA SPECTROSCOPY		Analyst:	ΑM				EPA 901.1
Radium-226	1.14+/-0.0570	0.054		pCi/g	1		11/23/18 7:43 PM
Radium-228	1.42+/-0.0895	0.035		pCi/g	1		11/23/18 7:43 PM

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sar

Client Sample ID: LD-6 0-4

Date: 12-Dec-18

APTIM

Lab Order: G1811869

Project: Conemaugh CCR IV SPLP Sampled By:

 Lab ID:
 G1811869-007
 Collection Date:
 11/14/2018 12:10:00 P

 Matrix:
 SOLID
 Received Date:
 11/15/2018 6:58:38 AM

Analyses Result QL Q Units DF Date Prepared Date Analyzed

GAMMA SPECTROSCOPY Analyst: AM EPA 901.1

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

Ra-228 and Ac-228 are assumed to be in secular equilibrium. The results for Ra-228 are inferred from Ac-228.

SPLP RADIOLOGICAL PARAMETE	ETERS Analyst: SUB				EPA 903.1 MOD
Radium 226	0.206+-0.386	8.0	pCi/L	1	12/07/18 12:08 PM
SPLP RADIOLOGICAL PARAMETE	RADIOLOGICAL PARAMETERS Analyst: SUB			EPA 904.0 MOD	
Radium 228	0.262+-0.421	0.9	pCi/L	1	12/05/18 3:36 PM
SPLP FLUID #1		Analyst: A	LD		EPA 1312
Final pH Metals	3.50		S.U.	1	11/18/18 11:00 AM
SPLP FLUID #3		Analyst: M	IAG		EPA 1312
Final pH Non Metals	7.20		S.U.	1	11/15/18 9:16 AM

2005 N. Center Ave. Somerset, PA 15501

> 814/443-1671 814/445-6666 FAX: 814/445-6729

Wednesday, December 12, 2018

John Shimshock GENON - CONEMAUGH STATION CCR CONEMAUGH STATION PO BOX K NEW FLORENCE, PA 15944

RE: Conemaugh CCR IV SPLP Order No.: G1811870

Dear John Shimshock:

Geochemical Testing received 2 sample(s) on 11/15/2018 for the analyses presented in the following report.

There were no problems with the analyses and all QC data met NELAC, EPA, and laboratory specifications except where noted in the Case Narrative or Laboratory Results.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Timothy W. Bergstresser Director of Technical Services

Timoth W Bey trus

Leslie A. Nemeth Project Manager

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Project: Conemaugh CCR IV SPLP CASE NARRATIVE

Lab Order: G1811870

No problems were encountered during analysis of this workorder, except if noted in this report.

SAMPLE RECEIPT CHECKLIST

	Response
COC is present	Yes
COC is filled out in ink and legible	Yes
COC relinquished, signature, date, and time	Yes
Samples arrived within hold time	Yes
Containers properly preserved for the requested testing	Yes
Sample containers have legible labels	Yes
Sample preservation verified	Yes
Appropriate sample containers are used	Yes
Sample container(s) received at proper temperature	Yes
Zero headspace where required	Yes
Sufficient volume for all requested analyses	Yes

Comments on the above checklist: None

The radiological analysis (Radium 226 by EPA 903.1; Radium 228 by EPA 904.0) was subcontracted to Pace Analytical (PADEP 65-00282). A copy of the subcontractor's laboratory report is enclosed with this Analytical Report.

Legend: ND - Not Detected

J - Indicates an estimated value.

U - The analyte was not detected at or above the listed concentration, which is below the laboratory quantitation limit.

B - Analyte detected in the associated Method Blank

Q - Qualifier QL -Quantitation Limit

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

Date: 12-Dec-18

R - RPD outside accepted recovery limits

E - Value above quantitation range

** - Value exceeds Action Limit

H - Method Hold Time Exceeded

MCL - Contaminant Limit

Date: 12-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: LD-7 0-4

Lab Order: G1811870

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811870-001
 Collection Date:
 11/14/2018 12:30:00 P

 Matrix:
 SOLID
 Received Date:
 11/15/2018 7:21:44 AM

Analyses	Result	QL (Q Units	DF	Date Prepared	Date Analyzed
TOTAL METALS		Analyst: F	RLL			EPA 7473
Mercury	0.046	0.010	mg/Kg-dry	1		11/20/18 2:36 PM
SPLP INORGANICS		Analyst: N	ИBG		EPA 300.0	EPA 300.0
Fluoride	0.0917	0.0500	J mg/L	1	11/16/18 11:45 AM	11/16/18 6:28 PM
TOTAL METALS		Analyst: N	MXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:38 PM
Arsenic	12.8	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:38 PM
Barium	99.0	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:38 PM
Beryllium	0.94	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:38 PM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:38 PM
Chromium	30.1	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:38 PM
Cobalt	13.0	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:38 PM
Lead	20.2	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:38 PM
Lithium	12.6	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:38 PM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:38 PM
Selenium	2.6	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:38 PM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:38 PM
SPLP METALS FLUID #1		Analyst: G	SXI		SM 3112 B	EPA 7470
Mercury	< 0.0001	0.0001	J mg/L	1	11/19/18 11:32 AM	11/20/18 11:30 AM
SPLP METALS FLUID #1		Analyst: N	MXS		EPA 200.2	EPA 200.7
Antimony	0.050	0.050	U mg/L	1	11/19/18 11:25 AM	11/20/18 5:51 PM
Arsenic	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	11/20/18 5:51 PM
Barium	0.047	0.005	mg/L	1	11/19/18 11:25 AM	11/20/18 5:51 PM
Beryllium	0.0005	0.0005	U mg/L	1	11/19/18 11:25 AM	11/20/18 5:51 PM
Cadmium	0.0010	0.0010	U mg/L	1	11/19/18 11:25 AM	11/20/18 5:51 PM
Chromium	0.005	0.005	U mg/L	1	11/19/18 11:25 AM	11/20/18 5:51 PM
Cobalt	0.0020	0.0020	U mg/L	1	11/19/18 11:25 AM	11/20/18 5:51 PM
Lead	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	11/20/18 5:51 PM
Lithium	0.005	0.005	U mg/L	1	11/19/18 11:25 AM	
Molybdenum	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	11/20/18 5:51 PM
Selenium	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	11/20/18 5:51 PM
Thallium	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	11/20/18 5:51 PM
GAMMA SPECTROSCOPY		Analyst: A	M			EPA 901.1
Radium-226	0.57+/-0.0333	0.069	pCi/g	1		11/24/18 11:54 PM
Radium-228	0.81+/-0.0699	0.093	pCi/g	1		11/24/18 11:54 PM
	2.2. , 0.0000		r3			

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Client Sample ID: LD-7 0-4

Sampled By:

Date: 12-Dec-18

APTIM

Lab Order: G1811870

Project: Conemaugh CCR IV SPLP

 Lab ID:
 G1811870-001
 Collection Date:
 11/14/2018 12:30:00 P

 Matrix:
 SOLID
 Received Date:
 11/15/2018 7:21:44 AM

Analyses Result QL Q Units DF Date Prepared Date Analyzed

GAMMA SPECTROSCOPY Analyst: AM EPA 901.1

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

Ra-228 and Ac-228 are assumed to be in secular equilibrium. The results for Ra-228 are inferred from Ac-228.

SPLP RADIOLOGICAL PARA	METERS	Analyst: S	UB		EPA 903.1 MOD
Radium 226	0.205+-0.355	0.6	pCi/L	1	12/06/18 10:42 AM
SPLP RADIOLOGICAL PARA	METERS	Analyst: S	SUB		EPA 904.0 MOD
Radium 228	-0.237+-0.379	0.9	pCi/L	1	12/05/18 12:09 PM
SPLP FLUID #1		Analyst: 🗚	LD		EPA 1312
Final pH Metals	3.60		S.U.	1	11/17/18 1:00 PM
SPLP FLUID #3		Analyst: N	IAG		EPA 1312
Final pH Non Metals	8.63		S.U.	1	11/15/18 9:16 AM

Date: 12-Dec-18

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: LD-8 0-4

Lab Order: G1811870

Project: Conemaugh CCR IV SPLP Sampled By: APTIM

 Lab ID:
 G1811870-003
 Collection Date:
 11/14/2018 12:55:00 P

 Matrix:
 SOLID
 Received Date:
 11/15/2018 7:21:44 AM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
TOTAL METALS		Analyst:	RLI	<u>L</u> .			EPA 7473
Mercury	0.095	0.010		mg/Kg-dry	1		11/20/18 2:36 PM
SPLP INORGANICS		Analyst:	МВ	G		EPA 300.0	EPA 300.0
Fluoride	0.27	0.05		mg/L	1	11/16/18 11:45 AM	11/16/18 6:45 PM
TOTAL METALS		Analyst:	мх	s		EPA 3050	EPA 6010
Antimony	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:43 PM
Arsenic	18.8	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:43 PM
Barium	137	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:43 PM
Beryllium	1.32	0.10		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:43 PM
Cadmium	< 5.0	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:43 PM
Chromium	30.7	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:43 PM
Cobalt	21.5	0.5		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:43 PM
Lead	23.2	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:43 PM
Lithium	11.7	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:43 PM
Molybdenum	< 2.0	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:43 PM
Selenium	2.6	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:43 PM
Thallium	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 3:43 PM
SPLP METALS FLUID #1		Analyst:	GX	I		SM 3112 B	EPA 7470
Mercury	< 0.0001	0.0001	J	mg/L	1	11/19/18 11:32 AM	11/20/18 11:32 AM
SPLP METALS FLUID #1		Analyst:	JE	<		EPA 200.2	EPA 200.7
Antimony	0.05	0.05	U	mg/L	1	11/19/18 12:05 PM	11/20/18 2:06 PM
Arsenic	0.010	0.010	U	mg/L	1	11/19/18 12:05 PM	11/20/18 2:06 PM
Barium	0.062	0.005		mg/L	1	11/19/18 12:05 PM	11/20/18 2:06 PM
Beryllium	0.0005	0.0005	U	mg/L	1	11/19/18 12:05 PM	11/20/18 2:06 PM
Cadmium	0.0010	0.0010	U	mg/L	1	11/19/18 12:05 PM	11/20/18 2:06 PM
Chromium	0.005	0.005	U	mg/L	1	11/19/18 12:05 PM	11/20/18 2:06 PM
Cobalt	0.0020	0.0020	U	mg/L	1	11/19/18 12:05 PM	11/20/18 2:06 PM
Lead	0.010	0.010	U	mg/L	1	11/19/18 12:05 PM	11/20/18 2:06 PM
Lithium	0.005	0.005	U	mg/L	1	11/19/18 12:05 PM	11/20/18 2:06 PM
Molybdenum	0.010	0.010	U	mg/L	1	11/19/18 12:05 PM	11/20/18 2:06 PM
Selenium	0.010	0.010	U	mg/L	1	11/19/18 12:05 PM	
Thallium	0.010	0.010	U	mg/L	1	11/19/18 12:05 PM	11/20/18 2:06 PM
GAMMA SPECTROSCOPY		Analyst:	AM				EPA 901.1
Radium-226	1.08+/-0.0552	0.059		pCi/g	1		11/25/18 12:08 AM
Radium-228	1.53+/-0.0971	0.040		pCi/g	1		11/25/18 12:08 AM

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Client Sample ID: LD-8 0-4

Sampled By:

Date: 12-Dec-18

APTIM

Lab Order: G1811870

Project: Conemaugh CCR IV SPLP

 Lab ID:
 G1811870-003
 Collection Date:
 11/14/2018 12:55:00 P

 Matrix:
 SOLID
 Received Date:
 11/15/2018 7:21:44 AM

Analyses Result QL Q Units DF Date Prepared Date Analyzed

GAMMA SPECTROSCOPY Analyst: AM EPA 901.1

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

Ra-228 and Ac-228 are assumed to be in secular equilibrium. The results for Ra-228 are inferred from Ac-228.

SPLP RADIOLOGICAL PARAMETE	RS	Analyst: S	UB		EPA 903.1 MOD		
Radium 226	0.792+-0.627	0.9	pCi/L	1	12/07/18 12:08 PM		
SPLP RADIOLOGICAL PARAMETE	RS	Analyst: S	UB		EPA 904.0 MOD		
Radium 228	0.427+-0.397	8.0	pCi/L	1	12/05/18 3:36 PM		
SPLP FLUID #1		Analyst: A	LD		EPA 1312		
Final pH Metals	5.14		S.U.	1	11/18/18 11:00 AM		
SPLP FLUID #3		Analyst: N	IAG		EPA 1312		
Final pH Non Metals	9.56		S.U.	1	11/15/18 9:16 AM		

CHAIN OF CUSTODY

Geochemical Testing

Silling Client: <u>GENOA</u> Address: <u>(ONEMA</u>		 -	Con e-ma	tact (Cor	npany	i: APMM	Pho	one: (412) 380 -	62.72
City: NOW PORENCE	東京 A	Zip: //5	* * * * *	pled by:	Fati	h Andrison and	Fax	· · · · · · · · · · · · · · · · · · ·	i i.e.
vo#:61811860			Proje	 _	₹ 5/384	Evan Schledel		te Sampled: // /Quote#:	
ample Matrix: GW Ground Wample Type: G Grab	/ater SW Surface V C Composite		/ Potable Water Distribution/DW	WW Waste	water	SO Soil SL Sludge S Special/DW O Other		ardous / HZ Hazardous	PCBs
Sample Location/ Description **NOTE: IF multiple	Lab Number a analytes from one i	Sample Matrix	Date	Time (Military)	Sample Type	**Analyses Regu	ested	Remarks/ Preservatives,	Number of Container
B-9 0-4		50	ii lia lia			N list separately on one line UNL	ESS LISTED O	ON ATTACHED FIELD LOG)
	7	70	11/13/18	1200	6	SEE BOTTE		riela Fliterea: Y / N	C-
69 4-8		50	11/13/18	1202	6	7		Field Filtered: Y / N	į
<u>B-10</u> 0-4		SO	11/13/18	1205	6			Field Filtered: Y / N	
B-10 4-6		SO	11/13/18	1207	G		<u> </u>	Field Filtered; Y / N	P.
UD-1 0-4	00/	S0	14/18/18	1330	Ġ			Field Filtered: Y / N	3
UD-1 4-8	and the second	50	11/13/18	1335	6			Field Filtered: Y / N	3
UD-2 0-4	007	SO	113/18	1345	69		and they seem to be a second or the second of the second o	Field Filfered: Y / N	and the second
10-2 4-6 e Deficiencies Here:	and the second second	SO	u 13/18	1300	6			Field Filtered: Y / N	
			,		ģ				
Relinquished by (Company			2	e (Military)	R	eceived by (Company & Si	gnature).	Date	Time (Military)
KIIN THAMA INTHO	Mildry	4/13	18 /k	,15	9/	nn			1939
MPLES MUST BE PRI	COCDVED OF								1

CHAIN OF CUSTODY

Geochemical Testing

orm F-5002, 12.16

Geod	chemical Test	ting • 2005 N	orth C	enter Aven	ue • So	merse	et PA 1550	1 • (814) 4	143-1671	• Fax (814)	445-6729	12.10
Billing Clien Address: City: NEW	t: GENON CONEMA	ug H	p: 15°	Cont e-ma	act (Com	ipany)	: APTIM andrison(th Andrs	aptim.co	p m F	hone: (412) 3 ax: () tate Sampled:		12
WO#: 618	11860			Proje			van Schle			O/Quote#:	11	
Sample Matrix: Sample Type:	GW Ground Wa	ter SW Surface Wa	_	Potable Water istribution/DW	WW Waste		SO Soil S Special/DW	SL Sludge O Other		lazardous / HZ Hazar	dous PCB	5
Desc	Location/ ription NOTE: IF multiple	Lab Number	Sample Matrix	Date	Time (Military)	Sample Type	Ai	nalyses Requ			narks/ atives, etc	Number of Containers
UD-3	0-4	093	50	11/13/18	1405	6		BOTTLES		Field Filtered; Y /		3
u 0 -3	4-8	_	50	11/13/18	1410	G		1		Field Filtered: Y /	V	3
uD-4	0-4	004	SO	11/13/18	420	6				Field Filtered: Y / I	V	3
UD-4	4-8		50	11/13/18	1425	6				Field Filtered: Y / I	V	3
UD-5	0-4	005	50	11/13/18	1500	6				Field Filtered: Y / I	1	3
UD-5	46 4-8	-	50	11/13/18	1505	6				Field Filtered: Y / I	1	3
40-6	0-4	006	50	11/13/18	1510	6				Field Filtered: Y / N		3
UD-6.	4-8		SO	11/13/18	1520	6		+		Field Filtered: Y / N	i -	3
Note Deficienc	ies Here:					-						
/	atuua M ()				ne (Military)	SZ	Received by	(Company &	Signature)			e (Military) 3 9
SAMPLES N	/UST BE PR	ESERVED OF	N ICE.		1		ent on receipt: le Receiving (1			cooler Temp (°C) or ient Support (2nd F		

CHAIN OF CUSTODY

Geochemical Testing

Geoch	nemical Testin	ng • 2005 N	orth C	enter A	venue • S	omers	et PA 15501 · (814) 443-167	'1 • Fax (814) 445-6729	. 12.16	
Address: CONFMAUGH City: New MORENCE State: A Zip: WO#: G[8]1867					ontact (Con- mail: ampled by: roject:	PA	TI ANDRISON HND	Phone: (4 2) 380 - 4272 Fax: () State Sampled: PA PO/Quote#:		
Sample Matrix: Sample Type:	GW Ground Water	C Composite		Potable Wa	717		SO Soil SL Sludge nHZ Not S Special/DW O Other	Hazardous / HZ Hazardous PCBs		
Sample L Descri	ption	Lab Number	Sample Matrix	Date	Time (Military	Sample	**Analyses Requested	Remarks/ Preservatives, etc	Number of Containers	
UD-7	5-4	CC	50	11 14	18 0930	alyte, THI	N list separately on one line UNLESS LIST	ED ON ATTACHED FIELD LOG Field Filtered: Y / N	2	
UD-7.	4-8	-cc2			0935		HOLD	Field Filtered: Y / N	3	
UD-8	9-4	C03			0950	6	SEE BOTTLES	Field Filtered; Y / N	3	
UD-8 -	4-8	-004			1950	6	HOLD	Field Filtered: Y / N	3	
10-1	04	Cos			1005	6	SEEBOTTLES	Field Filtered: Y / N	3	
LD-1 4	1-8	-006		1	1015	6	POLD	Field Filtered: Y / N	3	
W-2 0	1-4	207			1055	6	SEE BOTTLES	Field Filtered: Y / N	3	
10-2	4-6	_ 008	V	V	1100	9	HOLD	Field Filtered: Y / N	3	
Note Deficiencie	es Here:									
17.	1 by (Company 8 M Andreson			0ate 4 18	Time (Military)	Received by (Company & Signature	- 0	(Military) 32	
SAMPLES M	UST BE PRE	SERVED O	N ICE.			Ice presi	The state of the s	Cooler Temp (°C) on receipt: 上		

CHAIN OF CUSTODY

Geochemical Testing

Geochem	ical Testir	ng • 2005 N	orth C	enter Aver	nue • So	merse	et PA 15501 · (814) 443-16	71 • F	ax (814) 445-6	729
	GENON				tact (Com	_		T	: (4/2)380-	1772
Address: (OA	1em Aug	H O			-mail: Fax: ()					
City: NEW Fu	RENCE S	State: A Zi	o:	Sam	pled by:	P	ATTI ANDRISON AND		Sampled:	PA
WO#:	WO#: 61811869						EVAN SHEGA	PO/Qu		111
Sample Matrix: GW Ground Water SW Surface Water PW Potable					WW Waster				us / HZ Hazardous	PCBs
Sample Type: G G		C Composite	D Di	stribution/DW	R Raw/DW		S Special/DW O Other			1.000
Sample Locat Description	1	Lab Number	Sample Matrix	Date	Time (Military)	Sample Type	**Analyses Requested		Remarks/ Preservatives,	Number of Containers
**NOTE	: IF multiple a		ttle, OR i	f multiple bottle	s for one ana	yte, THE	N list separately on one line UNLESS LIS	TED ON A	TTACHED FIELD LOG	
LD-3 0	-4	001	50	11/14/18	1115	6	SEE BOTTLES	ľ	ield Filtered: Y / N	3
LO-3 4	8	-002	1	1	1120		HOLD	F	ield Filtered: Y / N	3
LD-4 C	1-4	α3			1140		SEE BOTTLES	F	ield Filtered: Y / N	3
LD-4 4	B	- 004			1145		HOLD	F	ield Filtered: Y / N	3
LD-5 0	1-4	005			1155		SEE BOTTLES	F	ield Filtered: Y / N	3
10-5 4	-8	- 006			1200		HOLD	F	ield Filtered; Y / N	3
10-6 C	1-4	007			1210		SEE BOTTLES	Fi	eld Filtered; Y / N	3
LD-6 4	B	- 008	V	V	1215	V	HOLD	Fi	eld Filtered: Y / N	3
Note Deficiencies He	ere:									
Relinquished by	(Company 8	& Signature)	,D	ate Tir	me (Military)		Received by (Company & Signatu	re):	Date	Time (Military)
Jahua M6	mille	APTIM	11/12	7/18 1	400		Jental		11-15-18	6:58
*			-							
SAMPLES MUST	BE PRE	SERVED ON	I ICE.		10	ce prese	ent on receipt: YYes or No	Cooler 7	emp (°C) on receipt	. <

Sample Receiving (1st Review): Client Support (2nd Review):

CHAIN OF CUSTODY

Geochemical Testing

rm F-5002, 12,16

Geoc	hemical Tes	ting • 2005 N	orth C	enter Aven	ue • So	merse	et PA 15501 • (814) 443-	-1671 •	Fax (814) 445-6	729	
Billing Client	: GENON	4.4		Cont e-ma		pany	: APTIM		ne: (412) 380 -	4272	
City: NEW F		V A	p:	-		Pre	in Donners and DAID	Fax:			
WO#:	De Roll-or	61811	10.000 1000	Proje	Sampled by: AM ANDRISON AND State Sampled:						
Sample Matrix:	GW Ground Wa						EVAN SCHLEGEL		Quote#:		
Sample Type:	G Grab	C Composite		Potable Water istribution/DW	WW Waster R Raw/DW	water	SO Soil SL Sludge nH. S Special/DW O Other	Z Not Hazar	rdous / HZ Hazardous	PCBs	
Sample L Descr	ription	Lab Number	Sample Matrix	Date	Time (Military)	Sample Type	**Analyses Requeste		Remarks/ Preservatives,	Number of Containers	
16 7	NOTE: IF multiple	analytes from one bo	ottle, OR i	f multiple bottles	s for one anal	yte, THE	EN list separately on one line UNLESS	LISTED OF			
10-1	0-4	001	50	11/14/18	1230	6	SEE BOTTLES		Field Filtered: Y / N	3	
40-7	4-8	-002	50		1240	1	HOLD		Field Filtered: Y / N	3	
LD-8	0-4	as	50		1255		Sex Bornes		Field Filtered: Y / N	3	
40-8	4-8	_	50	~	-	-	PMP HOLD NOSA	MPLES	Field Filtered: Y / N	0	
							,		Field Filtered: Y / N		
									Field Filtered: Y / N		
									Field Filtered: Y / N		
									Field Filtered: Y / N		
Note Deficienci											
111	d by (Company				ne (Military)		Received by Company & Sign	ature):	Date	Time (Military)	
fatrica M.	quible	APTIM	14/4	/18	1400		Jen Ilu		11-14-18	7:21	
SAMPLES IV	IUST BE PR	ESERVED O	N ICE.		le		ent on receipt:Yes orNo		F Temp (°C) on receipt Support (2nd Review):		

(724)850-5600

December 06, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

RE: Project: G1811860

Pace Project No.: 30272445

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 21, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carin a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: G1811860 Pace Project No.: 30272445

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification

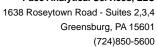
Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051

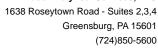

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

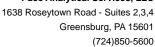
Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



SAMPLE SUMMARY

Project: G1811860
Pace Project No.: 30272445

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
30272445001	G1811860-001	Water	11/15/18 09:16	11/21/18 09:30	
30272445002	G1811860-003	Water	11/15/18 09:16	11/21/18 09:30	
30272445003	G1811860-005	Water	11/15/18 09:16	11/21/18 09:30	



SAMPLE ANALYTE COUNT

Project: G1811860
Pace Project No.: 30272445

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272445001	G1811860-001	EPA 903.1	MK1	1
		EPA 904.0	JLW	1
30272445002	G1811860-003	EPA 903.1	MK1	1
		EPA 904.0	JLW	1
30272445003	G1811860-005	EPA 903.1	MK1	1
		EPA 904.0	JLW	1

PROJECT NARRATIVE

Project: G1811860
Pace Project No.: 30272445

Method: EPA 903.1

Description:903.1 Radium 226Client:Geochemical TestingDate:December 06, 2018

General Information:

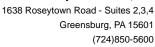
3 samples were analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G1811860
Pace Project No.: 30272445

Method: EPA 904.0

Description:904.0 Radium 228Client:Geochemical TestingDate:December 06, 2018

General Information:

3 samples were analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: G1811860 Pace Project No.: 30272445

Sample: G1811860-001 Lab ID: 30272445001 Collected: 11/15/18 09:16 Received: 11/21/18 09:30 Matrix: Water

PWS: Site ID: Sample Type:

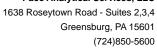
Comments: • Sample date on Chain of Custody is SPLP extraction date, no extraction time listed.

Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual EPA 903.1 0.366 ± 0.382 (0.539) Radium-226 pCi/L 12/06/18 10:42 13982-63-3 C:NA T:91% -0.149 ± 0.331 (0.802) Radium-228 EPA 904.0 pCi/L 12/05/18 12:09 15262-20-1 C:74% T:90%

Sample: G1811860-003 Lab ID: 30272445002 Collected: 11/15/18 09:16 Received: 11/21/18 09:30 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Sample date on Chain of Custody is SPLP extraction date, no extraction time listed.


Parameters Method Act ± Unc (MDC) Carr Trac Units Qual Analyzed CAS No. 0.394 ± 0.410 (0.611) EPA 903.1 Radium-226 pCi/L 12/06/18 10:42 13982-63-3 C:NA T:95% EPA 904.0 Radium-228 $0.280 \pm 0.460 \quad (0.999)$ pCi/L 12/05/18 12:09 15262-20-1 C:78% T:82%

Sample: G1811860-005 Lab ID: 30272445003 Collected: 11/15/18 09:16 Received: 11/21/18 09:30 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Sample date on Chain of Custody is SPLP extraction date, no extraction time listed.

Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual EPA 903.1 $0.564 \pm 0.527 \quad (0.748)$ Radium-226 pCi/L 12/06/18 10:42 13982-63-3 C:NA T:86% EPA 904.0 $0.502 \pm 0.418 \quad (0.836)$ Radium-228 pCi/L 12/05/18 12:09 15262-20-1 C:74% T:85%

QUALITY CONTROL - RADIOCHEMISTRY

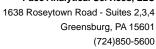
Project: G1811860

Pace Project No.: 30272445

QC Batch: 321860 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Associated Lab Samples: 30272445001, 30272445002, 30272445003


METHOD BLANK: 1569350 Matrix: Water

Associated Lab Samples: 30272445001, 30272445002, 30272445003

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 0.236 ± 0.358 (0.774) C:81% T:77% pCi/L 12/05/18 12:08

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: G1811860 Pace Project No.: 30272445

QC Batch: 321859 QC Batch Method: EPA 903.1 Analysis Method:

EPA 903.1

Analysis Description:

903.1 Radium-226

Associated Lab Samples: 30272445001, 30272445002, 30272445003

METHOD BLANK: 1569347

Matrix: Water

Associated Lab Samples:

30272445001, 30272445002, 30272445003

Parameter

Act ± Unc (MDC) Carr Trac

Units pCi/L Analyzed

Qualifiers

Radium-226

0.234 ± 0.459 (0.839) C:NA T:91%

12/06/18 09:57

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: G1811860 Pace Project No.: 30272445

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 12/06/2018 02:48 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

CHAIN OF CUSTODY

Geochemical Testing

G Number of Containers Time (Military) GT Lab PO/Quote#: PSDIS - SSIGL Sampler Cooler Temp (°C) on receipt: NA Geochemical Testing • 2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729 Preservatives, etc Client Phone: (814) 443-1671 "NOTE: IF multiple analytes from one bottle, OR if multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG Remarks/ Fax: (814) 445-6729 nHZ Not Hazardous / HZ Hazardous 1121118 Date Preservatives by Field Filtered: Y / N Field Filtered: Y / N Field Filtered; Y / N Field Fiftered; Y / N ield Filtered: Y / N eld Filtered: Y / N eld Filtered: Y / N Containers Supplied by: HN03 HN03 HN03 Received by (Company & Signature) "*Analyses Requested Yes or No SPLP Radium 226, 228 SPLP Radium 226, 228 SPLP Radium 226, 228 30272445 SL Sludge S Special/DW 0 Other Contact (Company): Leslie Nemeth Ice present on receipt: e-mail: Inemeth@geo-ces.com Imalva GW Ground Water SW Surface Water PW Potable Water WW Wastewater SO Soil 30272445 Sampled by: Client Sample (Military) Type Ö Ø Ø D Distribution/DW R Raw/DW Time (Military) Time 8:00:00 9:16 9:16 9:16 Project: SPLP Ext Date 11/15/2018 11/15/2018 11/15/2018 10 Day Rush Please - If Possible 11/20/2018 Date State: PA Zip: 15501 Sample SAMPLES MUST BE PRESERVED ON ICE. Matrix TH / ZHU THZ / HZ ZH / ZHU ZH / ZHU ZH / "ZHL 7HZ / HZ ZH / ZHU C Composite Geochemical Testing Relinquished by (Company & Signature) Address: 2005 North Center Avenue Number Lab Sample Location/ G Grab Note Deficiencies Here: Description City: Somerset Billing Client: eslie Nemeth Sample Matrix: Sample Type: G1811860-003 G1811860-005 G1811860-001 WO#:

500

550

603

Client Support (2nd Review):

Sample Receiving (1st Review):_

Pittsburgh Lab Sample Colluit	י ווטוו ע	ppol	ı Ke	
Face Analytical Client Name:	G	201	<u> </u>	∠ <u>~</u> Projec ₩ -3027244
Courier: Fed Ex JUPS SPS Schent Tracking #: 7 544 067 034734	ا 99 م	omme: 347	rcial	Pace Other Label US
Custody Seal on Cooler/Box Present: yes	Zn			s intact: yes no
Thermometer Used	1			Blue Vone
Cooler Temperature Observed Temp	rys. The same of t	°C	Corre	ection Factor: °C Final Temp: °C
Temp should be above freezing to 6°C				
				pH paper Lot# Date and Initials of person examining contents: 117 (14
Comments:	Yes	No	N/A	1002981 contents: 11125/18 3 43
Chain of Custody Present:				1.
Chain of Custody Filled Out:				2.
Chain of Custody Relinquished:				3.
Sampler Name & Signature on COC:			[4.
Sample Labels match COC:			<u> </u>	5. date on samples is 11.16.14/
-Includes date/time/ID Matrix:	WI			no time on any samples
Samples Arrived within Hold Time:				6.
Short Hold Time Analysis (<72hr remaining):				7.
Rush Turn Around Time Requested:				8.
Sufficient Volume:				9.
Correct Containers Used:				10.
-Pace Containers Used:				
Containers Intact:				11.
Orthophosphate field filtered				12.
Hex Cr Aqueous Compliance/NPDES sample field filtered				13.
Organic Samples checked for dechlorination:				14.
Filtered volume received for Dissolved tests				15.
All containers have been checked for preservation.		•		16.
All containers needing preservation are found to be in compliance with EPA recommendation.				16. PHLZ
·	· · · · · ·			Initial when Dis Date/time of
exceptions: VOA, coliform, TOC, O&G, Phenolics				completed preservation Lot # of added
				preservative
Headspace in VOA Vials (>6mm):				17.
Trip Blank Present:				18.
Trip Blank Custody Seals Present			/	
Rad Aqueous Samples Screened > 0.5 mrem/hr				Initial when COB Date: 112018
Client Notification/ Resolution:				
Person Contacted:		1	Date/T	ime: Contacted By:
Comments/ Resolution:				1
COMPONENT STATES				
				·

A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

(724)850-5600

December 17, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

RE: Project: G1811860

Pace Project No.: 30272707

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 27, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carin a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

CERTIFICATIONS

Project: G1811860 Pace Project No.: 30272707

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification

Indiana Certification lowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221

KY WW Permit #: KY0000221

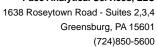
Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

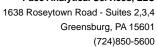

New Jersey/TNI Certification #: PA051

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

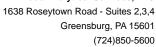
Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



SAMPLE SUMMARY

Project: G1811860
Pace Project No.: 30272707

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
30272707001	G1811860-002	Water	11/15/18 09:16	11/27/18 13:40	
30272707002	G1811860-004	Water	11/15/18 09:16	11/27/18 13:40	



SAMPLE ANALYTE COUNT

Project: G1811860
Pace Project No.: 30272707

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272707001	G1811860-002	EPA 903.1	MK1	1
		EPA 904.0	VAL	1
30272707002	G1811860-004	EPA 903.1	MK1	1
		EPA 904.0	VAL	1

PROJECT NARRATIVE

Project: G1811860
Pace Project No.: 30272707

Method: EPA 903.1

Description:903.1 Radium 226Client:Geochemical TestingDate:December 17, 2018

General Information:

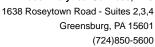
2 samples were analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G1811860
Pace Project No.: 30272707

Method: EPA 904.0

Description:904.0 Radium 228Client:Geochemical TestingDate:December 17, 2018

General Information:

2 samples were analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

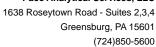
ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: G1811860 Pace Project No.: 30272707

Sample: G1811860-002 Lab ID: 30272707001 Collected: 11/15/18 09:16 Received: 11/27/18 13:40 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Sample collection dates and times were not present on the sample containers.


Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual EPA 903.1 0.503 ± 0.523 (0.778) Radium-226 pCi/L 12/14/18 22:03 13982-63-3 C:NA T:84% EPA 904.0 $0.244 \pm 0.301 \quad (0.636)$ Radium-228 pCi/L 12/14/18 14:12 15262-20-1 C:77% T:84%

Sample: G1811860-004 Lab ID: 30272707002 Collected: 11/15/18 09:16 Received: 11/27/18 13:40 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Sample collection dates and times were not present on the sample containers.

Parameters Method Act ± Unc (MDC) Carr Trac Units CAS No. Qual Analyzed EPA 903.1 $0.148 \pm 0.409 \quad (0.794)$ Radium-226 pCi/L 12/14/18 22:03 13982-63-3 C:NA T:90% EPA 904.0 Radium-228 -0.0576 ± 0.299 (0.705) pCi/L 12/14/18 14:12 15262-20-1 C:83% T:86%

QUALITY CONTROL - RADIOCHEMISTRY

Project:

G1811860

Pace Project No.:

30272707

QC Batch:

322728

Analysis Method:

EPA 904.0

QC Batch Method:

EPA 904.0

Analysis Description:

904.0 Radium 228

Associated Lab Samples:

30272707001, 30272707002

METHOD BLANK: 1572965

Matrix: Water

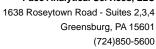
Associated Lab Samples:

30272707001, 30272707002

Parameter

Act ± Unc (MDC) Carr Trac

Units pCi/L Analyzed


Qualifiers

Radium-228

-0.260 ± 0.319 (0.788) C:82% T:79%

12/14/18 14:11

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:

G1811860

Pace Project No.:

30272707

QC Batch:

322685

Analysis Method:

EPA 903.1

QC Batch Method: EPA 903.1

903.1 Radium-226

Associated Lab Samples:

30272707001, 30272707002

METHOD BLANK: 1572868

Matrix: Water

Analysis Description:

Associated Lab Samples:

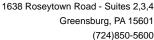
30272707001, 30272707002

Parameter

Act ± Unc (MDC) Carr Trac

Units pCi/L Analyzed

Qualifiers


Radium-226

0.0834 ± 0.490 (1.00) C:NA T:88%

12/14/18 21:48

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: G1811860 Pace Project No.: 30272707

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 12/17/2018 01:48 PM

Shuttle/Cooler ID#:

CHAIN OF CUSTODY

Geochemical Testing

Geochemical Testing • 2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729

Number of Containers , 183, Time (Military 5 200 GT Lab of 1340 Cooler Temp (°C) on receipt: 14/14 Sampler PCBs 8~1-38-118 Preservatives, etc 11-2827-18 *NOTE: IF multiple analytes from one bottle, OR if multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG **Phone:** (814) 443-1671 Client Remarks/ nHZ Not Hazardous / HZ Hazardous
Containers Supplied by: (814) 445-6729 Dolg Date 40#:30272707 Field Filtered: Y / N Preservatives by ield Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Field Filtered; Y / N arti-PO/Quote#: HN03 HNO3 Fax: Received by (Company & Signature): *Analyses Requested SPLP Radium 226, 228 SPLP Radium 226, 228 SL Sludge S Special/DW O Other Leslie Nemeth Inemeth@geo-ces.com lios Os Contact (Company): Sample Client (Military) Type GW Ground Water SW Surface Water PW Potable Water WW Wastewater G Grab C Composite D Distribution/DW R Raw/DW b G G Time (Military) Sampled by: 8:00:00 4.4 9:16 9:16 Project: e-mail: 11/15/2018 Extraction Date 11/15/2018 11/15/2018 11/21/2018 Date 15501 Sample SAMPLES MUST BE PRESERVED ON ICE. WW Matrix HZ / HZ HZ / HZ ZH / ZHu 10 Day Rush Please PA ZH / ZHU . 마시 / HZ 건 / 건L ZH / ZHU **> >** Zip: Geochemical Testing Relinquished by (Company & Signature) 2005 North Center Avenue State: PA Number Lab 9 Sample Location/ Note Deficiencies Here: Description 6191360 00G Somerset Billing Client: eslie Nemeth Sample Matrix: G1811860-002 G1811860-004 Sample Type: Address: #0M City:

Client Support (2nd Review):__

Yes or No

ice present on receipt:

Sample Receiving (1st Review):

Píttsburgh Lab Sample Condi	tion	Upor	ı Re	eceipt	
Face Analytical Client Name:			oe (schem	Project# - 302727
Courier: ☐ Fed Ex ☐ UPS ☐ USPS ☐ Clien Tracking #: 17 544 € 07 03 4748			rcial	Pace Other _	Label &M LIMS Login &M
Custody Seal on Cooler/Box Present:yes Thermometer Used	Type	of Ice:		s intact: yes [no
Cooler Temperature Observed Temp Temp should be above freezing to 6°C	<u> </u>	- °C	Corr	pH paper Lot#	°C Final Temp: °C Date and Initials of person examining
Comments:	Yes	No	N/A	1 m N -001	contents: <u>RIM 11-27-18</u>
Chain of Custody Present:	1/	4		1.	-
Chain of Custody Filled Out:		<u> </u>		2.	
Chain of Custody Relinquished:				3.	
Sampler Name & Signature on COC:				4	
Sample Labels match COC:		/		5.No date o	Ttime on Samples.
-Includes date/time/ID Matrix:	W	T			
Samples Arrived within Hold Time:				6.	
Short Hold Time Analysis (<72hr remaining):				7.	
Rush Turn Around Time Requested:				8.	
Sufficient Volume:	/			9.	
Correct Containers Used:	/			10.	
-Pace Containers Used:					
Containers Intact:	17			11.	
Orthophosphate field filtered			//	12.	
Hex Cr Aqueous Compliance/NPDES sample field filtered				13.	·
Organic Samples checked for dechlorination:			7,	14.	
Filtered volume received for Dissolved tests	,		/	15.	
All containers have been checked for preservation.				16.	7
All containers needing preservation are found to be in compliance with EPA recommendation.				Ph.	*
exceptions: VOA, coliform, TOC, O&G, Phenolics				Initial when completed BLM Lot # of added preservative	Date/time of preservation
Headspace in VOA Vials (>6mm):				17.	
Trip Blank Present:				18.	
Trip Blank Custody Seals Present			/		
Rad Aqueous Samples Screened > 0.5 mrem/hr	·			Initial when completed: BUM	Date: 11-28-18
Client Notification/ Resolution:					
Person Contacted:	 		Date/T	îme:	Contacted By:
Comments/ Resolution:					

A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

(724)850-5600

December 11, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

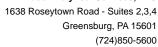
RE: Project: G1811860

Pace Project No.: 30272858

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 29, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Carin a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

CERTIFICATIONS

Project: G1811860 Pace Project No.: 30272858

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

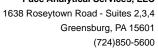
Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1

New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

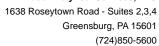

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

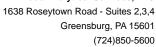
Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



SAMPLE SUMMARY

Project: G1811860 Pace Project No.: 30272858

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30272858001	G1811860-006	Water	11/15/18 00:01	11/29/18 10:15



SAMPLE ANALYTE COUNT

Project: G1811860 Pace Project No.: 30272858

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272858001	G1811860-006	EPA 903.1	MK1	1
		EPA 904.0	VAL	1

PROJECT NARRATIVE

Project: G1811860
Pace Project No.: 30272858

Method: EPA 903.1

Description:903.1 Radium 226Client:Geochemical TestingDate:December 11, 2018

General Information:

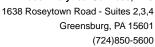
1 sample was analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G1811860
Pace Project No.: 30272858

Method: EPA 904.0

Description:904.0 Radium 228Client:Geochemical TestingDate:December 11, 2018

General Information:

1 sample was analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

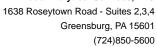
Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

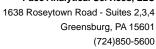

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.



ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: G1811860 Pace Project No.: 30272858

Sample: G1811860-006 Lab ID: 30272858001 Collected: 11/15/18 00:01 Received: 11/29/18 10:15 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.737 ± 0.668 (0.984) C:NA T:96%	pCi/L	12/10/18 13:33	13982-63-3	
Radium-228	EPA 904.0	0.320 ± 0.300 (0.607) C:77% T:84%	pCi/L	12/10/18 13:12	15262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

Project:

G1811860

Pace Project No.:

30272858

QC Batch:

322748

Analysis Method:

EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description:

904.0 Radium 228

Associated Lab Samples:

30272858001

METHOD BLANK: 1573038

Matrix: Water

Associated Lab Samples:

30272858001

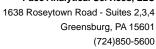
Parameter

Act ± Unc (MDC) Carr Trac

Units

Analyzed

Qualifiers


Radium-228

-0.00649 ± 0.285 (0.668) C:75% T:88%

pCi/L

12/10/18 13:10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:

G1811860

Pace Project No.:

30272858

QC Batch:

322747

QC Batch Method:

Analysis Method:

EPA 903.1

EPA 903.1

Analysis Description:

903.1 Radium-226

Associated Lab Samples:

30272858001

METHOD BLANK: 1573037

Matrix: Water

Associated Lab Samples:

30272858001

Parameter

Act ± Unc (MDC) Carr Trac

Units pCi/L Analyzed

Qualifiers

Radium-226

0.380 ± 0.528 (0.882) C:NA T:87%

12/10/18 13:07

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: G1811860 Pace Project No.: 30272858

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 12/11/2018 02:06 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Shuttle/Cooler ID#:

CHAIN OF CUSTODY

Geochemical Testing

Form F-5002, 04.13 Geochemical Testing • 2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729

Billing Client: Geochemical Testing	Cor	Contact (Company):	Leslie Nemeth	Phone: (814) 443-1671
Address: 2005 North Center Avenue	e-mail:	iail: <u>Inemeth@geo-ces.com</u>		Fax: (814) 445-6729
City: Somerset State: PA Zip:	15501	Sampled by: Client		Preservatives bySampler_GT
WO#:	Pro	Project:	Δ.	PO/Quote#: Pap 1名 - 9の4
Sample Matrix: GW Ground Water SW Surface Water PW Potable Water WW Wastewater	er PW Potable Wate	er WW Wastewater SO Soi	SL Sludge	nHZ Not Hazardous // HZ Hazardous PCBs
	D Distribution/DW	22		Containers Supplied by: Client GT Lab
on/ Lab	Sample SPLP Ext	t Time Sample	**Analyses Requested	Remarks/ Number of Containers
Description Number ************************************	ttle, OR if multiple bot	tles for one analyte, THEN fit	st separately on one line UNLESS LISTE	اد
G1811860-006 File File File File File File File File	nH2 / H2 WW 11/15/2018	O	SPLP Radium 226, 228	Field Fittered: Y / N HNO3
	7 HZ / HZ		· white a district · ·	Field Filtered: Y / N
	ZH / ZHu		WO#: 30272858	N
	ZH / ZHu			Z,
	7 HZ			Z
	DHZ / HZ			Field Filtered: Y / N
	ZH / ZHu			Field Filtered: Y / N
	ZH / ZHu			Field Filtered: Y / N
Note Deficiencies Here: 10 Day Rush Please	se PA			
Relinquished by (Company & Signature)	Date	Time (Military)	Received by (Company & Signature):	15.00 15.00
Leslie Nemeth	11/27/2018	8:00:00 CN	amy of PAC	5 11-29-18 1015
SAMPLES MUST BE PRESERVED ON ICE.	N ICE.	Ice present	ice present on receipt: Yes or No	Cooler Temp (°C) on receipt:

Client Support (2nd Review):_

lce present on receipt: ___Yes or __No Sample Receiving (1st Review):_____

Pittsburgh Lab Sample Condition Upon Receipt Client Name: Geo Chlm Project # # 30272858 Courier: Fed Ex JUPS USPS Client Commercial Pace Other Label ET LIMS Login E Tracking #: 12 544 607 03 4612 5856 Custody Seal on Cooler/Box Present: yes no Seals intact: Type of ice: Wet Blue (None Thermometer Used Final Temp: °C Correction Factor: Observed Temp Cooler Temperature Temp should be above freezing to 6°C Date and Initials of person examining contents: モナリーとター) & pH paper Lot# 1007981 Yes No N/A Comments: Chain of Custody Present: Chain of Custody Filled Out: Chain of Custody Relinquished: Sampler Name & Signature on COC: 5. Sample Labels match COC: Matrix: -Includes date/time/ID Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr remaining): Rush Turn Around Time Requested: 9. Sufficient Volume: 10. Correct Containers Used: -Pace Containers Used: Containers Intact: 12. Orthophosphate field filtered 13. Hex Cr Aqueous Compliance/NPDES sample field filtered 14. Organic Samples checked for dechlorination: 15. Filtered volume received for Dissolved tests DHLZ All containers have been checked for preservation. 16. All containers needing preservation are found to be in compliance with EPA recommendation. Date/time of Initial when exceptions: VOA, coliform, TOC, O&G, Phenolics preservation completed Lot # of added preservative Headspace in VOA Vials (>6mm): 18. Trip Blank Present: Trip Blank Custody Seals Present Initial when Rad Aqueous Samples Screened > 0.5 mrem/hr 11-29-18 completed: Client Notification/ Resolution: Contacted By: Person Contacted:

Comments/ Resolution:

A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LiMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

(724)850-5600

December 07, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

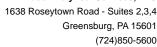
RE: Project: G1811867

Pace Project No.: 30272447

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 21, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Carin a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

CERTIFICATIONS

Project: G1811867 Pace Project No.: 30272447

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification

Indiana Certification
Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

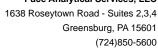
Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

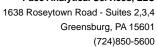

New Jersey/TNI Certification #: PA051

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

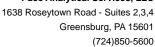
Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



SAMPLE SUMMARY

Project: G1811867
Pace Project No.: 30272447

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30272447001	G1811867-001	Water	11/15/18 09:16	11/21/18 09:30
30272447002	G1811867-005	Water	11/15/18 09:16	11/21/18 09:30



SAMPLE ANALYTE COUNT

Project: G1811867
Pace Project No.: 30272447

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272447001	G1811867-001	EPA 903.1	MK1	1
		EPA 904.0	JLW	1
30272447002	G1811867-005	EPA 903.1	MK1	1
		EPA 904.0	JLW	1

PROJECT NARRATIVE

Project: G1811867
Pace Project No.: 30272447

Method: EPA 903.1

Description:903.1 Radium 226Client:Geochemical TestingDate:December 07, 2018

General Information:

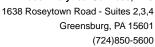
2 samples were analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G1811867
Pace Project No.: 30272447

Method: EPA 904.0

Description:904.0 Radium 228Client:Geochemical TestingDate:December 07, 2018

General Information:

2 samples were analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

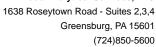
Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

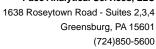
ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: G1811867 Pace Project No.: 30272447

Sample: G1811867-001 Lab ID: 30272447001 Collected: 11/15/18 09:16 Received: 11/21/18 09:30 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Sample date on Chain of Custody is SPLP extraction date, no extraction time listed.


Method **Parameters** Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual EPA 903.1 0.132 ± 0.301 (0.179) Radium-226 pCi/L 12/06/18 21:43 13982-63-3 C:NA T:90% EPA 904.0 $0.844 \pm 0.439 \quad (0.782)$ Radium-228 pCi/L 12/05/18 12:09 15262-20-1 C:73% T:91%

Sample: G1811867-005 Lab ID: 30272447002 Collected: 11/15/18 09:16 Received: 11/21/18 09:30 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Sample date on Chain of Custody is SPLP extraction date, no extraction time listed.

Parameters Method Act ± Unc (MDC) Carr Trac Units CAS No. Qual Analyzed EPA 903.1 $0.349 \pm 0.364 \quad (0.513)$ Radium-226 pCi/L 12/06/18 22:00 13982-63-3 C:NA T:90% EPA 904.0 Radium-228 $0.487 \pm 0.402 \quad (0.803)$ pCi/L 12/05/18 12:09 15262-20-1 C:73% T:82%

QUALITY CONTROL - RADIOCHEMISTRY

Project: G1811867

QC Batch:

Pace Project No.: 30272447

321860

Analysis Method:

EPA 904.0

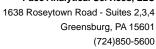
QC Batch Method: EPA 904.0

30272447001, 30272447002

904.0 Radium 228

Associated Lab Samples:

METHOD BLANK: 1569350 Matrix: Water


Associated Lab Samples: 30272447001, 30272447002

> Act ± Unc (MDC) Carr Trac Qualifiers Parameter Units Analyzed

Analysis Description:

Radium-228 $0.236 \pm 0.358 \quad (0.774) \text{ C:}81\% \text{ T:}77\%$ pCi/L 12/05/18 12:08

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

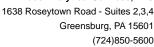
QUALITY CONTROL - RADIOCHEMISTRY

Project: G1811867 Pace Project No.: 30272447

QC Batch: 321861 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Associated Lab Samples: 30272447001, 30272447002


METHOD BLANK: 1569351 Matrix: Water

Associated Lab Samples: 30272447001, 30272447002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.278 ± 0.387 (0.646) C:NA T:93%
 pCi/L
 12/06/18 21:43

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: G1811867 Pace Project No.: 30272447

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 12/07/2018 11:01 AM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Shuttle/Cooler ID#:

CHAIN OF CUSTODY

Geochemical Testing

Sol B G Number o Containen Time (Military) GT Lab 0930 PO/Quote#: 752 DAS -4596 \$ Preservatives by __Sampler_ PCBs Geochemical Testing • 2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729 Preservatives, etc Cooler Temp (°C) on receipt: Client **NOTE: IF multiple analytes from one bottle. OR if multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG Client Support (2nd Review): Phone: (814) 443-1671 Remarks/ Fax: (814) 445-6729 nHZ Not Hazardous / HZ Hazardous Date ield Filtered: Y / N Field Filtered: Y / N Field Filtered; Y / N Filtered: Y / N Filtered: Y / N Filtered: Y / N Teld Filtered: Y / N Containers Supplied by: HN03 HN03 Received by (Company & Signature): **Analyses Requested JO#:30272447 ટ SPLP Radium 226, 228 SPLP Radium 226, 228 Yes or 🖊 Sample Receiving (1st Review):_ SL Sludge S Special/DW 0 Other Leslie Nemeth ce present on receipt: e-mail: Inemeth@geo-ces.com SO Soil Contact (Company): Sampled by: Client Type Sample GW Ground Water SW Surface Water PW Potable Water WW Wastewater O Ø D Distribution/DW R Raw/DW (Military) Time (Military) Time 8:00:00 9:16 9:16 Project: SPLP Ext Date 11/15/2018 11/15/2018 10 Day Rush Please - If Possible 11/20/2018 Date 15501 Sample SAMPLES MUST BE PRESERVED ON ICE. Matrix ZH / ZHU ZH / ZHU 7HZ / HZ THZ / HZ 7H / ZH State: PA Zip: C Composite Geochemical Testing 2005 North Center Avenue Relinquished by (Company & Signature) Number Sample Location/ Note Deficiencies Here: G Grab Description City: Somerset Billing Client: eslie Nemeth Sample Matrix: G1811867-005 G1811867-001 Sample Type: Address: #OM

Pittsburgh Lab Sample Condi	tion I	Upo	n Re	eceipt
Face Analytical Client Name:	G	20	U	Projec## 302724
Courier: Fed Ex DUPS USPS Client Tracking #: 17 544 067 03473	p 9	Comme	ercial 7	Label Label Lims Login
Custody Seal on Cooler/Box Present: yes	∠ r	10	Seal	s intact: yes no
Thermometer Used NA	Type	of Ice	: We	et Blue None
Cooler Temperature Observed Temp	-	c	Corr	rection Factor: C Final Temp: C
Temp should be above freezing to 6°C	***	•		
				pH paper Lot# Date and Initials of person examining contents: 11 7 7 10
Comments:	Yes	No	N/A	
Chain of Custody Present:				1.
Chain of Custody Filled Out:				2.
Chain of Custody Relinquished:				3.
Sampler Name & Signature on COC:	1.			4.
Sample Labels match COC:			1	5. date on samples is 11,6.18/
-Includes date/time/ID Matrix:	W	T		5. dateon samples is 1116.18/
Samples Arrived within Hold Time:				6.
Short Hold Time Analysis (<72hr remaining):			1	7.
Rush Turn Around Time Requested:				8.
Sufficient Volume:				9.
Correct Containers Used:				10.
-Pace Containers Used:				
Containers Intact:				11.
Orthophosphate field filtered				12.
Hex Cr Aqueous Compliance/NPDES sample field filtered				13.
Organic Samples checked for dechlorination:				14.
Filtered volume received for Dissolved tests				15.
All containers have been checked for preservation.				16. 0117
All containers needing preservation are found to be in compliance with EPA recommendation.				16. PM12
exceptions: VOA, coliform, TOC, O&G, Phenolics				Initial when Completed Date/time of preservation Lot # of added preservative
Headspace in VOA Vials (>6mm):				17.
Trip Blank Present:				18.
Trip Blank Custody Seals Present	[
Rad Aqueous Samples Screened > 0.5 mrem/hr		/		Initial when OVB Date: WWW.
Client Notification/ Resolution:	,			
Person Contacted:			Date/1	Fime: Contacted By:

A check in this box indicates that additional information has been stored in ereports.

Comments/ Resolution:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

(724)850-5600

December 10, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

RE: Project: G1811867

Pace Project No.: 30272705

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 27, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carin a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

CERTIFICATIONS

Project: G1811867 Pace Project No.: 30272705

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification

Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358

Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

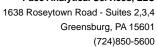
Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190

Ohio EPA Rad Approval: #41249

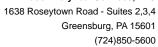

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

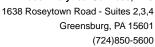
Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



SAMPLE SUMMARY

Project: G1811867
Pace Project No.: 30272705

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30272705001	G1811867-003	Water	11/15/18 09:16	11/27/18 13:40
30272705002	G1811867-007	Water	11/15/18 09:16	11/27/18 13:40



SAMPLE ANALYTE COUNT

Project: G1811867
Pace Project No.: 30272705

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272705001	G1811867-003	EPA 903.1	KAC	1
		EPA 904.0	VAL	1
30272705002	G1811867-007	EPA 903.1	KAC	1
		EPA 904.0	VAL	1

PROJECT NARRATIVE

Project: G1811867
Pace Project No.: 30272705

Method: EPA 903.1

Description:903.1 Radium 226Client:Geochemical TestingDate:December 10, 2018

General Information:

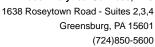
2 samples were analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G1811867
Pace Project No.: 30272705

Method: EPA 904.0

Description:904.0 Radium 228Client:Geochemical TestingDate:December 10, 2018

General Information:

2 samples were analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

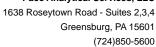
ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: G1811867 Pace Project No.: 30272705

Sample: G1811867-003 Lab ID: 30272705001 Collected: 11/15/18 09:16 Received: 11/27/18 13:40 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Sample collection dates and times were not present on the sample containers.


Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual EPA 903.1 0.0821 ± 0.581 (1.16) Radium-226 pCi/L 12/07/18 12:08 13982-63-3 C:NA T:84% EPA 904.0 -0.217 ± 0.347 (0.854) Radium-228 pCi/L 12/05/18 15:36 15262-20-1 C:73% T:79%

Sample: G1811867-007 Lab ID: 30272705002 Collected: 11/15/18 09:16 Received: 11/27/18 13:40 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Sample collection dates and times were not present on the sample containers.

Parameters Method Act ± Unc (MDC) Carr Trac Units CAS No. Qual Analyzed EPA 903.1 0.477 ± 0.498 (0.702) Radium-226 pCi/L 12/07/18 12:08 13982-63-3 C:NA T:68% EPA 904.0 Radium-228 0.301 ± 0.570 (1.25) pCi/L 12/05/18 15:36 15262-20-1 C:70% T:57%

QUALITY CONTROL - RADIOCHEMISTRY

Project:

G1811867

Pace Project No.:

30272705

QC Batch:

322128

Analysis Method:

EPA 903.1

QC Batch Method:

EPA 903.1

Analysis Description:

903.1 Radium-226

Associated Lab Samples:

30272705001, 30272705002

METHOD BLANK: 1570359

Matrix: Water

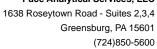
Associated Lab Samples:

30272705001, 30272705002

Parameter

Act ± Unc (MDC) Carr Trac

Units pCi/L Analyzed


Qualifiers

Radium-226

0.279 ± 0.434 (0.752) C:NA T:94%

12/07/18 12:08

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: G18

G1811867

Pace Project No.:

30272705

QC Batch:

322129

Analysis Method:

EPA 904.0

QC Batch Method:

EPA 904.0

Analysis Description:

904.0 Radium 228

Associated Lab Samples:

30272705001, 30272705002

METHOD BLANK: 1570360

·

Matrix: Water

Associated Lab Samples:

30272705001, 30272705002

Parameter

Act ± Unc (MDC) Carr Trac

Units pCi/L Analyzed

Qualifiers

Radium-228

0.115 ± 0.366 (0.825) C:74% T:77%

12/05/18 15:35

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: G1811867 Pace Project No.: 30272705

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 12/10/2018 10:41 AM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Shuttle/Cooler ID#:

CHAIN OF CUSTODY

Geochemical Testing

2 003 Containers Time (Military Number of 200 5 GT Lab 1300 7 35130 Sampler PCBs Geochemical Testing • 2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729 Preservatives, etc Cooler Temp (°C) on receipt: Phone: (814) 443-1671 **NOTE: IF multiple analytes from one bottle, OR if multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG Client PO/Quote#: 79018 Remarks/ (814) 445-6729 11-27-18 nHZ Not Hazardous / HZ Hazardous Date Preservatives by Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Field Fittered: Y / N Containers Supplied by: HN03 HN03 MO#:30272705 Fax: Received by (Company & Signature): **Analyses Requested Yes or ANo SPLP Radium 226, 228 SPLP Radium 226, 228 SL Sludge S Special/DW O Other Leslie Nemeth Ice present on receipt: Inemeth@geo-ces.com GW Ground Water SW Surface Water PW Potable Water WW Wastewater SO Soil G Grab C Composite D Distribution/DW R Raw/DW S Special Contact (Company): Sample Client Type Ö ø (Military) Time (Military) Sampled by: 8:00:00 9:16 9:16 e-mail: Project: Extraction Date 11/15/2018 11/15/2018 11/21/2018 Date 15501 SAMPLES MUST BE PRESERVED ON ICE. Sample Matrix 7HZ / HZ NHZ / HZ 7H / ZHC 10 Day Rush Please PA HZ / HZ nHZ / HZ 거 / 건년 **% %**% Zib: C Composite Geochemical Testing Relinquished by (Company & Signature) 2005 North Center Avenue State: PA Number Lab Sample Location/ Note Deficiencies Here: Description Somerset Billing Client: eslie Nemeth Sample Matrix: G1811867-003 Sample Type: G1811867-007 Address: City: WO#:

Client Support (2nd Review):

Sample Receiving (1st Review):_

Pittsburgh Lab Sample Co	ondition	Upor	n Re	eceipt	
Face Analytical Client Name	e: <u></u>	(<u> 20</u> 0	schem	Project # · 3 0 2 7 2 7
Courier: Fed Ex DUPS USPS Tracking #: 17 544 007 03 47	48 042	5	ercial	Deace Other	Label &M LIMS Login &M
Custody Seal on Cooler/Box Present: Thermometer Used	Тур		: We	s intact: yes et Blue None	no
Cooler Temperature Observed Temp Temp should be above freezing to 6°C	NA	- °c	Сог	pH paper Lot#	
Comments:	Ye	s No	N/A	1 6 -001	Date and Initials of person examining contents: <u>BLM 11-27-18</u>
Chain of Custody Present:	- 6		ļ	1.	-
Chain of Custody Filled Out:	/			2.	
Chain of Custody Relinquished:				3.	
Sampler Name & Signature on COC:		/		4.	
Sample Labels match COC:				5. No date	or time on samples
-Includes date/time/ID Matrix	c u)T			· · · · · ·
Samples Arrived within Hold Time:	/			6.	
Short Hold Time Analysis (<72hr remaining	1):	1		7.	
Rush Turn Around Time Requested:				8.	
Sufficient Volume:	/			9.	
Correct Containers Used:	7			10.	
-Pace Containers Used:		/			
Containers Intact:				11.	
Orthophosphate field filtered			1	12.	
Hex Cr Aqueous Compliance/NPDES sample field	filtered		/	13.	
Organic Samples checked for dechlorinat			1	14.	
Filtered volume received for Dissolved tests				15.	
All containers have been checked for preservation.				16.	
All containers needing preservation are found to be compliance with EPA recommendation.	in /			Phu	Z
exceptions: VOA, coliform, TOC, O&G, Phen	olics		,	Initial when completed BLA Lot # of added preservative	Date/time of preservation
Headspace in VOA Vials (>6mm):				17.	
Trip Blank Present:			/	18.	
Trip Blank Custody Seals Present			/		
Rad Aqueous Samples Screened > 0.5 mre	m/hr			Initial when BLM completed:	Date: 11-28~18
Client Notification/ Resolution:				- 	
Person Contacted:			Date/	Time:	Contacted By:
Comments/ Resolution:					1

☐ A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

(724)850-5600

December 07, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

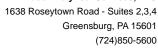
RE: Project: G1811869

Pace Project No.: 30272448

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 21, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Carin a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

CERTIFICATIONS

Project: G1811869 Pace Project No.: 30272448

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

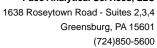
Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

KY WW Permit #: KY0000221

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888

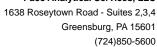

New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

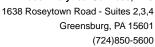
Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



SAMPLE SUMMARY

Project: G1811869 Pace Project No.: 30272448

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
30272448001	G1811869-001	Water	11/15/18 09:16	11/21/18 09:30	
30272448002	G1811869-005	Water	11/15/18 09:16	11/21/18 09:30	



SAMPLE ANALYTE COUNT

Project: G1811869 Pace Project No.: 30272448

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272448001	G1811869-001	EPA 903.1	MK1	1
		EPA 904.0	JLW	1
30272448002	G1811869-005	EPA 903.1	MK1	1
		EPA 904.0	JLW	1

PROJECT NARRATIVE

Project: G1811869
Pace Project No.: 30272448

Method: EPA 903.1

Description:903.1 Radium 226Client:Geochemical TestingDate:December 07, 2018

General Information:

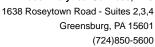
2 samples were analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G1811869
Pace Project No.: 30272448

Method: EPA 904.0

Description:904.0 Radium 228Client:Geochemical TestingDate:December 07, 2018

General Information:

2 samples were analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

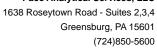
ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: G1811869 Pace Project No.: 30272448

Sample: G1811869-001 Lab ID: 30272448001 Collected: 11/15/18 09:16 Received: 11/21/18 09:30 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Sample date on Chain of Custody is SPLP extraction date, no extraction time listed.


Method **Parameters** Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual EPA 903.1 0.155 ± 0.353 (0.209) Radium-226 pCi/L 12/06/18 22:00 13982-63-3 C:NA T:84% EPA 904.0 $0.360 \pm 0.353 \quad (0.721)$ Radium-228 pCi/L 12/05/18 12:09 15262-20-1 C:74% T:84%

Sample: G1811869-005 Lab ID: 30272448002 Collected: 11/15/18 09:16 Received: 11/21/18 09:30 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Sample date on Chain of Custody is SPLP extraction date, no extraction time listed.

Parameters Method Act ± Unc (MDC) Carr Trac Units CAS No. Qual Analyzed EPA 903.1 $0.379 \pm 0.577 \quad (0.993)$ Radium-226 pCi/L 12/06/18 22:00 13982-63-3 C:NA T:91% EPA 904.0 Radium-228 $0.528 \pm 0.438 \quad (0.883)$ pCi/L 12/05/18 12:10 15262-20-1 C:77% T:82%

QUALITY CONTROL - RADIOCHEMISTRY

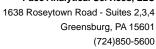
Project: G1811869 Pace Project No.: 30272448

1 400 1 10,000 140... 00272440

QC Batch: 321860 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Associated Lab Samples: 30272448001, 30272448002


METHOD BLANK: 1569350 Matrix: Water

Associated Lab Samples: 30272448001, 30272448002

 Parameter
 Act \pm Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.236 \pm 0.358 (0.774) C:81% T:77%
 pCi/L
 12/05/18 12:08

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: G1811869 Pace Project No.: 30272448

QC Batch: 321861 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Associated Lab Samples: 30272448001, 30272448002

METHOD BLANK: 1569351 Matrix: Water

Associated Lab Samples: 30272448001, 30272448002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.278 ± 0.387 (0.646) C:NA T:93%
 pCi/L
 12/06/18 21:43

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: G1811869 Pace Project No.: 30272448

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 12/07/2018 11:01 AM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Shuttle/Cooler ID#:

CHAIN OF CUSTODY

Geochemical Testing

Number of Containers Time (Military Preservatives by __Sampler__GT C630 GT Lab PO/Quote#: 72015-4996 \$ 4 nHZ Not Hazardous / HZ Hazardous PCBs Geochemical Testing • 2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729 Preservatives, etc Cooler Temp (°C) on receipt: Client Support (2nd Review): Phone: (814) 443-1671 **NOTE: IF multiple analytes from one bottle, OR if multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG Client Remarks/ Fax: (814) 445-6729 Date Field Filtered: Y / N Field Filtered: Y / N ield Fittered: Y / N Field Filtered: Y / N Field Filtered: Y / N ield Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Containers Supplied by: HN03 HN03 Received by (Company & Signature): **Analyses Requested Yes or No SPLP Radium 226, 228 SPLP Radium 226, 228 Sample Receiving (1st Review):__ JO#:30272448 SL Sludge S Special/DW 0 Other Contact (Company): Leslie Nemeth lce present on receipt: e-mail: Inemeth@geo-ces.com GW Ground Water SW Surface Water PW Potable Water WW Wastewater SO Soil 3 Sampled by: Client Sample Type Ø O D Distribution/DW R Raw/DW (Military) Time (Military) Time 8:00:00 9:16 9:16 Project: SPLP EX Date 11/15/2018 11/15/2018 10 Day Rush Please - If Possible 11/20/2018 Date Zip: 15501 SAMPLES MUST BE PRESERVED ON ICE. Sample Matrix ZH / ZHU HZ / HZ ZH / ZHU HZ / HZ 77 / TZ 1HZ / HZ 건 / 건부 C Composite Geochemical Testing State: PA Relinquished by (Company & Signature) Address: 2005 North Center Avenue Number Lab Sample Location/ G Grab Note Deficiencies Here: Description City: Somerset Billing Client: Leslie Nemeth Sample Matrix: Sample Type: G1811869-005 G1811869-001 WO#:

Pittsburgh Lab Sample Condit	tion l	Jpor	ı Re	ceipt	
FaceAnalytical Client Name:	6	lo	<u> </u>	ルm Project # 302724	
Courier: Fed Ex JUPS Susps Sclient Tracking #: 17 549 067 03 473	ا 90 م	comme S47	rcial	Pace Other Label Lims Login	
Custody Seal on Cooler/Box Present: yes	Zn			s intact: yes no	
Thermometer Used NA	Type	of Ice:	Wei	t Blue None	
Cooler Temperature Observed Temp	ALL STREET	c		ection Factor: C Final Temp: C	
Temp should be above freezing to 6°C		_			
				pH paper Lot# Date and Initials of person examining contents: 11 2 21 0	
Comments:	Yes	No	N/A		
Chain of Custody Present:		<u>]</u>		1.	
Chain of Custody Filled Out:		<u> </u>		2.	
Chain of Custody Relinquished:		<u> </u>	ļ	3.	
Sampler Name & Signature on COC:				4.	
Sample Labels match COC:			<u> </u>	5. date un samples 13 11.16.18/	
-Includes date/time/ID Matrix:	_~/	<u>T</u>	7	5. date un samples is 11.16.18/	
Samples Arrived within Hold Time:				6.	
Short Hold Time Analysis (<72hr remaining):				7.	
Rush Turn Around Time Requested:				8.	
Sufficient Volume:				9.	
Correct Containers Used:		<u> </u>		10.	
-Pace Containers Used:			<u> </u>		
Containers Intact:				11.	
Orthophosphate field filtered				12.	
Hex Cr Aqueous Compliance/NPDES sample field filtered				13.	
Organic Samples checked for dechlorination:				14.	
Filtered volume received for Dissolved tests				15.	
All containers have been checked for preservation.				16.	
All containers needing preservation are found to be in compliance with EPA recommendation.				16. PHLZ	
exceptions: VOA, coliform, TOC, O&G, Phenolics				Initial when completed Date/time of preservation	
exceptions. VOA, comonn, 100, 000, 1 nonello				Lot # of added	
		ı	/	preservative	
Headspace in VOA Vials (>6mm):				17.	
Trip Blank Present:	<u> </u>			18.	
Trip Blank Custody Seals Present Rad Aqueous Samples Screened > 0.5 mrem/hr			<u>'</u>	Initial when	
Rad Aqueous Samples Screened > 0.5 mremini			,	completed: V3 Date: W3	
Client Notification/ Resolution:				· •	
Person Contacted: Date/Time: Contacted By:					
Comments/ Resolution:					
		·····			
	·		<u></u>		
			-		
A check in this box indicates that additi	ional i	nform	iation	has been stored in ereports.	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

(724)850-5600

December 06, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

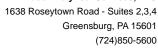
RE: Project: G1811870

Pace Project No.: 30272446

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 21, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Carin a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

CERTIFICATIONS

Project: G1811870 Pace Project No.: 30272446

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification

Indiana Certification lowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

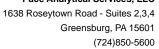
Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082

Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

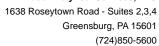

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

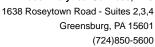
Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



SAMPLE SUMMARY

Project: G1811870
Pace Project No.: 30272446

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30272446001	G1811870-001	Water	11/15/18 09:16	11/21/18 09:30



SAMPLE ANALYTE COUNT

Project: G1811870
Pace Project No.: 30272446

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272446001	G1811870-001	EPA 903.1	MK1	1
		EPA 904.0	JLW	1

PROJECT NARRATIVE

Project: G1811870
Pace Project No.: 30272446

Method: EPA 903.1

Description:903.1 Radium 226Client:Geochemical TestingDate:December 06, 2018

General Information:

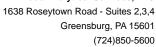
1 sample was analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G1811870
Pace Project No.: 30272446

Method: EPA 904.0

Description:904.0 Radium 228Client:Geochemical TestingDate:December 06, 2018

General Information:

1 sample was analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

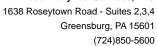
Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

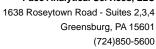
Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY


Project: G1811870
Pace Project No.: 30272446

Sample: G1811870-001 Lab ID: 30272446001 Collected: 11/15/18 09:16 Received: 11/21/18 09:30 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Sample date on Chain of Custody is SPLP extraction date, no extraction time listed.

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.205 ± 0.355 (0.634) C:NA T:92%	pCi/L	12/06/18 10:42	13982-63-3	
Radium-228	EPA 904.0	-0.237 ± 0.379 (0.933) C:68% T:83%	pCi/L	12/05/18 12:09	15262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

Project:

G1811870

Pace Project No.:

30272446

QC Batch:

321860

Analysis Method:

EPA 904.0

QC Batch Method:

EPA 904.0

Analysis Description:

904.0 Radium 228

Associated Lab Samples:

30272446001

METHOD BLANK: 1569350

Matrix: Water

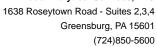
Associated Lab Samples:

30272446001

Parameter

Act ± Unc (MDC) Carr Trac

Units pCi/L Analyzed


Qualifiers

Radium-228

 $0.236 \pm 0.358 \quad (0.774) \text{ C:}81\% \text{ T:}77\%$

12/05/18 12:08

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:

G1811870

Pace Project No.:

30272446

QC Batch:

321859

Analysis Method:

EPA 903.1

QC Batch Method:

EPA 903.1

Analysis Description:

903.1 Radium-226

Associated Lab Samples:

30272446001

Matrix: Water

Associated Lab Samples:

METHOD BLANK: 1569347

30272446001

Parameter

Act ± Unc (MDC) Carr Trac

Units pCi/L Analyzed

Qualifiers

Radium-226

0.234 ± 0.459 (0.839) C:NA T:91%

12/06/18 09:57

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: G1811870 Pace Project No.: 30272446

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 12/06/2018 02:49 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Shuttle/Cooler ID#:

CHAIN OF CUSTODY

Geochemical Testing

Number of Containers Sampler GT Time (Military GT Lab 0850 PO/Quote#: アタロパートイクロ1。 2 PCBs Geochemical Testing • 2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729 Preservatives, etc Cooler Temp (°C) on receipt: Phone: (814) 443-1671 "NOTE: IF multiple analytes from one bottle, OR if multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG Client nHZ Not Hazardous / HZ Hazardous Remarks/ Fax: (814) 445-6729 Preservatives by __ 12118 Date Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Containers Supplied by: HN03 Received by (Company & Signature): **Analyses Requested Yes or V No SPLP Radium 226, 228 WO#:30272446 SL Sludge S Special/DW 0 Other Contact (Company): Leslie Nemeth ce present on receipt: e-mail: Inemeth@geo-ces.com GW Ground Water SW Surface Water PW Potable Water WW Wastewater SO Soil Mrs. Sampled by: Client Sample Туре Ø (Military) D Distribution/DW R Raw/DW Time (Military) Time 8:00:00 9:16 Project: SPLP Ext Date 11/15/2018 10 Day Rush Please - If Possible 11/20/2018 Date 15501 Sample SAMPLES MUST BE PRESERVED ON ICE. nHZ / HZ Matrix ZH / ZHU State: PA Zip: C Composite Geochemical Testing 2005 North Center Avenue Relinquished by (Company & Signature) Number Sample Location/ G Grab Note Deficiencies Here: Description City: Somerset Billing Client: Leslie Nemeth Sample Matrix: Address: G1811870-001 Sample Type: #OM

<u></u>

Client Support (2nd Review):

Sample Receiving (1st Review):_

Pittsburgh Lab Sample Condition Upon Receipt Client Name: Geo Mem Project #_# Courier: Fed Ex UPS USPS Client Commercial Pace Other Label Tracking #: (2 544 D67 034726 9547 LIMS Login Seals intact: Type of Ice: Wet Blue Thermometer Used Final Temp Correction Factor: Cooler Temperature Observed Temp Temp should be above freezing to 6°C pH paper Lot# Date and Initials of person examining contents: 11 25/1-8 UD2981 No N/A Comments: Yes Chain of Custody Present: Chain of Custody Filled Out: Chain of Custody Relinquished: Sampler Name & Signature on COC: 5. dateon Samples is 11.16.14/ notine un samples Sample Labels match COC: Matrix: -Includes date/time/ID Samples Arrived within Hold Time: 6. 7. Short Hold Time Analysis (<72hr remaining): 8. Rush Turn Around Time Requested: 9. Sufficient Volume: 10. Correct Containers Used: -Pace Containers Used: Containers Intact: 11. 12. Orthophosphate field filtered 13. Hex Cr Aqueous Compliance/NPDES sample field filtered Organic Samples checked for dechlorination: 14. Filtered volume received for Dissolved tests 15. All containers have been checked for preservation. 16. All containers needing preservation are found to be in compliance with EPA recommendation. Initial when Date/time of exceptions: VOA, coliform, TOC, O&G, Phenolics completed preservation Lot # of added preservative Headspace in VOA Vials (>6mm): 17 Trip Blank Present: 18. Trip Blank Custody Seals Present Rad Aqueous Samples Screened > 0.5 mrem/hr Initial when Date: completed: Client Notification/ Resolution:

Person Contacted:	Date/Time:	Contacted By:
Comments/ Resolution:		1
-		

A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workprder Edit Screen.

(724)850-5600

December 10, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

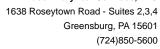
RE: Project: G1811870

Pace Project No.: 30272661

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 27, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Carin a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

CERTIFICATIONS

Project: G1811870
Pace Project No.: 30272661

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221

KY WW Permit #: KY0000221

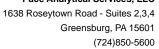
Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14

Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457

New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

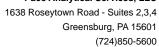

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

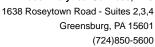
Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



SAMPLE SUMMARY

Project: G1811870
Pace Project No.: 30272661

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30272661001	G1811870-003	Water	11/15/18 09:16	11/27/18 13:40



SAMPLE ANALYTE COUNT

Project: G1811870
Pace Project No.: 30272661

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272661001	G1811870-003	EPA 903.1	KAC	1
		EPA 904.0	VAL	1

PROJECT NARRATIVE

Project: G1811870
Pace Project No.: 30272661

Method: EPA 903.1

Description:903.1 Radium 226Client:Geochemical TestingDate:December 10, 2018

General Information:

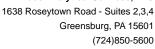
1 sample was analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G1811870
Pace Project No.: 30272661

Method: EPA 904.0

Description:904.0 Radium 228Client:Geochemical TestingDate:December 10, 2018

General Information:

1 sample was analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

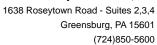
Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

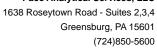
Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY


Project: G1811870
Pace Project No.: 30272661

Sample: G1811870-003 Lab ID: 30272661001 Collected: 11/15/18 09:16 Received: 11/27/18 13:40 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Sample collection dates and times were not present on the sample containers.

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.792 ± 0.627 (0.852) C:NA T:85%	pCi/L	12/07/18 12:08	13982-63-3	
Radium-228	EPA 904.0	0.427 ± 0.397 (0.808) C:75% T:82%	pCi/L	12/05/18 15:36	15262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

Project:

G1811870

Pace Project No.:

30272661

QC Batch:

322128

Analysis Method:

EPA 903.1

QC Batch Method: EPA 903.1

Analysis Description:

903.1 Radium-226

Associated Lab Samples:

30272661001

METHOD BLANK: 1570359

Matrix: Water

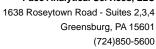
Associated Lab Samples:

30272661001

Parameter

Act ± Unc (MDC) Carr Trac

Units pCi/L Analyzed


Qualifiers

Radium-226

0.279 ± 0.434 (0.752) C:NA T:94%

12/07/18 12:08

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:

G1811870

Pace Project No.:

30272661

QC Batch:

322129

Analysis Method:

EPA 904.0

QC Batch Method:

EPA 904.0

Analysis Description:

904.0 Radium 228

Associated Lab Samples:

30272661001

METHOD BLANK: 1570360

Matrix: Water

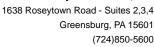
Associated Lab Samples:

30272661001

Parameter

Act ± Unc (MDC) Carr Trac

Units pCi/L Analyzed


Qualifiers

Radium-228

0.115 ± 0.366 (0.825) C:74% T:77%

12/05/18 15:35

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: G1811870 Pace Project No.: 30272661

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 12/10/2018 10:40 AM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Shuttle/Cooler ID#:

CHAIN OF CUSTODY

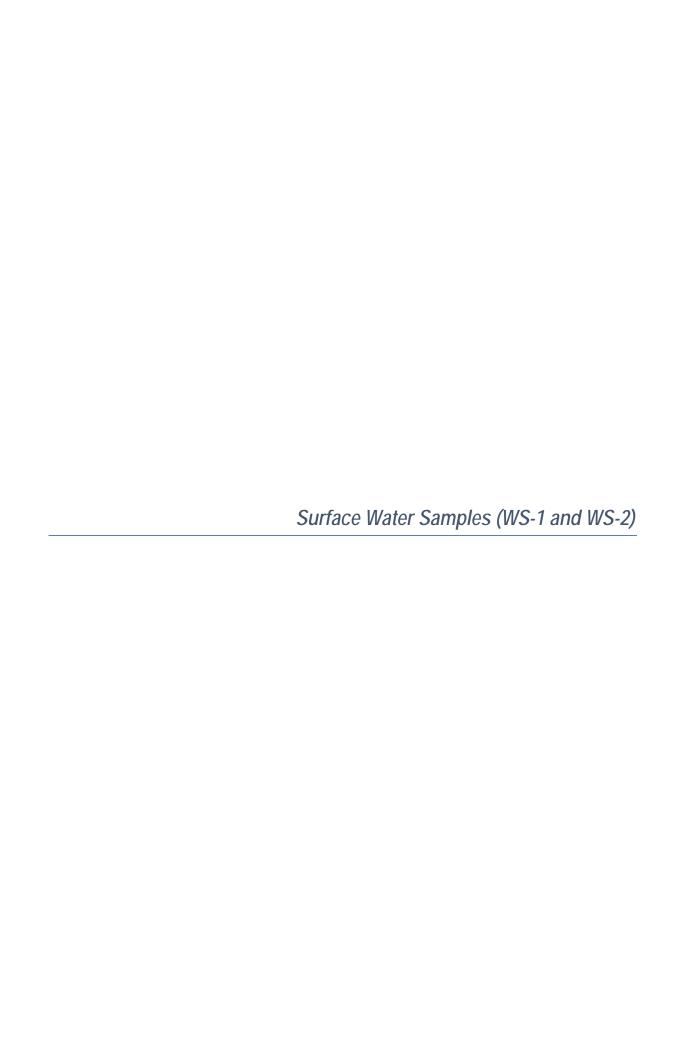
Geochemical Testing

Number of Containers Time (Military) <u>6</u> GT Lab 1340 Cooler Temp (°C) on receipt: 11/17 Sampler Geochemical Testing • 2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729 Client Phone: (814) 443-1671 Remarks/ (814) 445-6729 PO/Quote#: 122019 nHZ Not Hazardous / HZ Hazardous Date Preservatives by Field Filtered: Y / N Field Filtered: Y / N Filtered: Y / N Filtered: Y / N Filtered: Y / N ield Filtered: Y / N Field Filtered: Y / N Containers Supplied by: HN03 Fax: Received by (Company & Signature): *Analyses Requested MO#:30272661 SPLP Radium 226, 228 SL Sludge S Special/DW O Other Leslie Nemeth Inemeth@geo-ces.com SO Soil Contact (Company): Sample Client GW Ground Water SW Surface Water PW Potable Water WW Wastewater Q D Distribution/DW R Raw/DW Time (Military) Sampled by: Time 8:00:00 9:16 Project: e-mail: Extraction 11/15/2018 11/21/2018 Date 15501 Sample SAMPLES MUST BE PRESERVED ON ICE. ZH / ZHU 10 Day Rush Please PA 2H / ZHu 7H / ZH 저 / 거드 MΜ Zip: C Composite Geochemical Testing Relinquished by (Company & Signature) 2005 North Center Avenue Lab State: Sample Location/ G Grab Note Deficiencies Here: Description Somerset Billing Client: eslie Nemeth Sample Matrix: G1811870-003 Sample Type: Address: **WO#**: City:

Client Support (2nd Review);

Yes or No

lce present on receipt:


Sample Receiving (1st Review):

Pittsburgh Lab Sample Condi	tion	opo	11 176	ceipi		
Face Analytical Client Name:	·····	(ر مور	schen	1	Project # # ⁷ 3 0 2 7
Courier: Fed Ex UPS USPS Client		`	oroial	Пасс	ther	Label E
Tracking #: 17 544 607 03 4748 (ercial	L-ace C		LIMS Login ET
Custody Seal on Cooler/Box Present:			Soal	ls intact:]yes [Ino
Λ / / Λ				et Blue No		Jilo
Λ .				\		°C Final Temp: °C
Cooler Temperature Observed Temp //// Temp should be above freezing to 6°C		-	COI	ection act	۱۱ <u>. </u>	i iliai i criip.
				pH paper Lo		Date and Initials of person examining contents: BLM 11-27-18
Comments:	Yes	No	N/A	1 10 D	2981	Contents
Chain of Custody Present:				1.		-
Chain of Custody Filled Out:				2.		
Chain of Custody Relinquished:				3.		
Sampler Name & Signature on COC:			_	4.		
Sample Labels match COC:	,			_ 5. <i>NO ∂</i>	date	or time on sample
-Includes date/time/ID Matrix:	W					
Samples Arrived within Hold Time:	/			6.		
Short Hold Time Analysis (<72hr remaining):				7.		
Rush Turn Around Time Requested:	<u>l</u>		<u> </u>	8.		
Sufficient Volume:				9.		
Correct Containers Used:				10.		
-Pace Containers Used:						
Containers Intact:				11.		
Orthophosphate field filtered			/	12.		
Hex Cr Aqueous Compliance/NPDES sample field fittered			1	13.		AND AND AND AND AND AND AND AND AND AND
Organic Samples checked for dechlorination:			//	14.		
Filtered volume received for Dissolved tests			/	15.		
All containers have been checked for preservation.			<u></u>	16.	~ .	_
All containers needing preservation are found to be in compliance with EPA recommendation.	/				Phi	
exceptions: VOA, coliform, TOC, O&G, Phenolics				Initial when completed	BLM	Date/time of preservation
e controller of the controller to the controller				Lot # of added	1	
			/	preservative		
leadspace in VOA Vials (>6mm):			/	17.		
Frip Blank Present:		<u> </u>	//	18.		
Trip Blank Custody Seals Present Rad Aqueous Samples Screened > 0.5 mrem/hr	. ,	,	/ ·	Initial when	Duna	11 22 10
ran Udaeone gambies oneened - en menum				completed:	BLM	Date: 11-27-18
Client Notification/ Resolution:						
Person Contacted:			Date/	Гime:		Contacted By:
Comments/ Resolution:						

A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e., out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen,

2005 N. Center Ave. Somerset, PA 15501

> 814/443-1671 814/445-6666 FAX: 814/445-6729

Friday, December 21, 2018

John Shimshock GENON - CONEMAUGH STATION CCR CONEMAUGH STATION PO BOX K NEW FLORENCE, PA 15944

RE: Conemaugh CCR App IV Order No.: G1811841

Dear John Shimshock:

Geochemical Testing received 2 sample(s) on 11/14/2018 for the analyses presented in the following report.

There were no problems with the analyses and all QC data met NELAC, EPA, and laboratory specifications except where noted in the Case Narrative or Laboratory Results.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Timothy W. Bergstresser Director of Technical Services

Timoth W Bey trus

Leslie A. Nemeth Project Manager

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR

Project: Conemaugh CCR App IV CASE NARRATIVE

Lab Order: G1811841

No problems were encountered during analysis of this workorder, except if noted in this report.

SAMPLE RECEIPT CHECKLIST

	Response
COC is present	Yes
COC is filled out in ink and legible	Yes
COC relinquished, signature, date, and time	Yes
Samples arrived within hold time	Yes
Containers properly preserved for the requested testing	Yes
Sample containers have legible labels	Yes
Sample preservation verified	Yes
Appropriate sample containers are used	Yes
Sample container(s) received at proper temperature	Yes
Zero headspace where required	Yes
Sufficient volume for all requested analyses	Yes

Comments on the above checklist: None

The radiological analysis (Radium 226 by EPA 903.1; Radium 228 by EPA 904.0) was subcontracted to Pace Analytical (PADEP 65-00282). A copy of the subcontractor's laboratory report is enclosed with this Analytical Report.

Legend: ND - Not Detected

J - Indicates an estimated value.

U - The analyte was not detected at or above the listed concentration, which is below the laboratory quantitation limit.

B - Analyte detected in the associated Method Blank

Q - Qualifier QL -Quantitation Limit

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

Date: 21-Dec-18

R - RPD outside accepted recovery limits

E - Value above quantitation range

** - Value exceeds Action Limit

H - Method Hold Time Exceeded

MCL - Contaminant Limit

Laboratory Results

Date: 21-Dec-18

Ash Disposal Site

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: WS-1

Lab Order: G1811841

Project: Conemaugh CCR App IV Sampled By: Aptim

 Lab ID:
 G1811841-001
 Collection Date:
 11/14/2018 10:45:00 A

 Matrix:
 AQUEOUS
 Received Date:
 11/14/2018 5:15:27 PM

Analyses	Result	QL	Q Units	DF	Date Prepared	Date Analyzed
INORGANIC NON-METALS		Analyst: I	MBG		EPA 300.0	EPA 300.0
Fluoride	< 0.1	0.1	mg/L	1	11/15/18 10:15 AM	11/15/18 8:43 PM
INORGANIC METALS		Analyst: I	LXM		EPA 200.2	EPA 200.8
Antimony	< 0.001	0.001	mg/L	1	11/19/18 12:05 PM	11/20/18 10:58 AM
Arsenic	< 0.001	0.001	mg/L	1	11/19/18 12:05 PM	11/20/18 10:58 AM
Lead	< 0.001	0.001	mg/L	1	11/19/18 12:05 PM	11/20/18 10:58 AM
Selenium	< 0.001	0.001	mg/L	1	11/19/18 12:05 PM	11/20/18 10:58 AM
Thallium	< 0.0002	0.0002	mg/L	1	11/19/18 12:05 PM	11/20/18 10:58 AM
INORGANIC METALS		Analyst: (GXI		SM 3112 B	SM 3112 B
Mercury	< 0.0002	0.0002	mg/L	1	11/16/18 9:20 AM	11/16/18 1:48 PM
INORGANIC METALS		Analyst: 、	JEK		EPA 200.2	EPA 200.7
Barium	0.03	0.01	mg/L	1	11/19/18 12:05 PM	11/20/18 5:08 PM
Beryllium	< 0.001	0.001	mg/L	1	11/19/18 12:05 PM	11/20/18 5:08 PM
Cadmium	< 0.002	0.002	mg/L	1	11/19/18 12:05 PM	11/20/18 5:08 PM
Chromium	< 0.01	0.01	mg/L	1	11/19/18 12:05 PM	11/20/18 5:08 PM
Cobalt	< 0.005	0.005	mg/L	1	11/19/18 12:05 PM	11/20/18 5:08 PM
Lithium	< 0.01	0.01	mg/L	1	11/19/18 12:05 PM	11/20/18 5:08 PM
Molybdenum	< 0.02	0.02	mg/L	1	11/19/18 12:05 PM	11/20/18 5:08 PM
RADIOLOGICAL PARAMETERS		Analyst: \$	SUB			EPA 903.1
Radium 226	0.336+-0.350	0.494	pCi/L	1		12/11/18 8:59 PM
RADIOLOGICAL PARAMETERS		Analyst: \$	SUB			EPA 904.0
Radium 228	0.0474+-0.371	0.853	pCi/L	1		12/10/18 11:41 AM

Laboratory Results

Date: 21-Dec-18

Ash Disposal Site

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR Client Sample ID: WS-2

Lab Order: G1811841

Project: Conemaugh CCR App IV Sampled By: Aptim

 Lab ID:
 G1811841-002
 Collection Date:
 11/14/2018 1:10:00 PM

 Matrix:
 AQUEOUS
 Received Date:
 11/14/2018 5:15:27 PM

Analyses	Result	QL	Q Units	DF	Date Prepared	Date Analyzed
INORGANIC NON-METALS		Analyst: I	MBG		EPA 300.0	EPA 300.0
Fluoride	< 0.1	0.1	mg/L	1	11/15/18 10:15 AM	11/15/18 9:01 PM
INORGANIC METALS		Analyst: I	LXM		EPA 200.2	EPA 200.8
Antimony	< 0.001	0.001	mg/L	1	11/19/18 12:05 PM	11/20/18 11:07 AM
Arsenic	< 0.001	0.001	mg/L	1	11/19/18 12:05 PM	11/20/18 11:07 AM
Lead	< 0.001	0.001	mg/L	1	11/19/18 12:05 PM	11/20/18 11:07 AM
Selenium	< 0.001	0.001	mg/L	1	11/19/18 12:05 PM	11/20/18 11:07 AM
Thallium	< 0.0002	0.0002	mg/L	1	11/19/18 12:05 PM	11/20/18 11:07 AM
INORGANIC METALS		Analyst:	GXI		SM 3112 B	SM 3112 B
Mercury	< 0.0002	0.0002	mg/L	1	11/16/18 9:20 AM	11/16/18 1:50 PM
INORGANIC METALS		Analyst:	JEK		EPA 200.2	EPA 200.7
Barium	0.03	0.01	mg/L	1	11/19/18 12:05 PM	11/20/18 5:12 PM
Beryllium	< 0.001	0.001	mg/L	1	11/19/18 12:05 PM	11/20/18 5:12 PM
Cadmium	< 0.002	0.002	mg/L	1	11/19/18 12:05 PM	11/20/18 5:12 PM
Chromium	< 0.01	0.01	mg/L	1	11/19/18 12:05 PM	11/20/18 5:12 PM
Cobalt	< 0.005	0.005	mg/L	1	11/19/18 12:05 PM	11/20/18 5:12 PM
Lithium	< 0.01	0.01	mg/L	1	11/19/18 12:05 PM	11/20/18 5:12 PM
Molybdenum	< 0.02	0.02	mg/L	1	11/19/18 12:05 PM	11/20/18 5:12 PM
RADIOLOGICAL PARAMETERS		Analyst:	SUB			EPA 903.1
Radium 226	0.134+-0.306	0.493	pCi/L	1		12/11/18 8:59 PM
RADIOLOGICAL PARAMETERS		Analyst:	SUB			EPA 904.0
Radium 228	0.662+-0.431	0.816	pCi/L	1		12/10/18 11:41 AM

Shuttle/Cooler ID#:

CHAIN OF CUSTODY

Geochemical Testing

Number o Time (Military PCBs Geochemical Testing • 2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729 Preservatives, etc **NOTE: IF multiple analytes from one bottle, OR if multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG Remarks/ Phone: (1/2) 38() nHZ Not Hazardous / HZ Hazardous 11 14/18 ield Filtered: Y //N leld Filtered: Y / N Date Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N State Sampled: PO/Quote#: Fax: Received by (Opmpany & Signature): **Analyses Requested SEE BOTHER milk SL Sludge MVDRISON S Special/DW O Other VAN SEIDED \$ 思 SO Soil Contact (Company): Sample Type U 2 SW Surface Water | PW Potable Water | WW Wastewater (Military) 1045 R Raw/DW Time (Military) Sampled by: Time K Project: e-mail: 00 D Distribution/DW Date 1114 8/4/11 Date Sample Matrix SE SW SAMPLES MUST BE PRESERVED ON ICE. Zip: C Composite Number Relinquished by (Company & Signature) Lab 690 8 Plu + LINKEN EState: ONEMPHENT **GW** Ground Water 508C G181184 Sample Location/ G Grab Note Deficiencies Here: Description Billing Client: Sample Matrix: Sample Type: Address: WO#: City:

Cooler Temp (°C) on receipt: 5
Client Support (2nd Review):

Sample Receiving (1st Review):

Yes or

ice present on receipt:

(724)850-5600

December 12, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

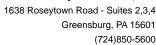
RE: Project: G1811841

Pace Project No.: 30272256

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 20, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Carin a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

CERTIFICATIONS

Project: G1811841 Pace Project No.: 30272256

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734 **Arkansas Certification**

California Certification #: 04222CA

Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

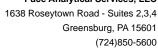
Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457

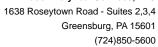

New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

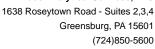
Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



SAMPLE SUMMARY

Project: G1811841
Pace Project No.: 30272256

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30272256001	G1811841-001	Water	11/14/18 10:45	11/20/18 11:00
30272256002	G1811841-002	Water	11/14/18 13:10	11/20/18 11:00



SAMPLE ANALYTE COUNT

Project: G1811841
Pace Project No.: 30272256

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272256001	G1811841-001	EPA 903.1	MK1	1
		EPA 904.0	JLW	1
30272256002	G1811841-002	EPA 903.1	MK1	1
		EPA 904.0	JLW	1

PROJECT NARRATIVE

Project: G1811841 Pace Project No.: 30272256

Method: EPA 903.1

Description:903.1 Radium 226Client:Geochemical TestingDate:December 12, 2018

General Information:

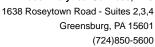
2 samples were analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G1811841
Pace Project No.: 30272256

Method: EPA 904.0

Description:904.0 Radium 228Client:Geochemical TestingDate:December 12, 2018

General Information:

2 samples were analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

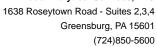
Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

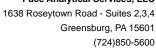

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.



ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: G1811841
Pace Project No.: 30272256

Sample: G1811841-001 PWS:	Lab ID: 3027 Site ID:	2256001 Collected: 11/14/18 10:45 Sample Type:	Received:	11/20/18 11:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.336 ± 0.350 (0.494) C:NA T:91%	pCi/L	12/11/18 20:59	13982-63-3	
Radium-228	EPA 904.0	0.0474 ± 0.371 (0.853) C:81% T:75%	pCi/L	12/10/18 11:41	I 15262-20-1	
Sample: G1811841-002 PWS:	Lab ID: 30272 Site ID:	2256002 Collected: 11/14/18 13:10 Sample Type:	Received:	11/20/18 11:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.134 ± 0.306 (0.493) C:NA T:89%	pCi/L	12/11/18 20:59	13982-63-3	
Radium-228	EPA 904.0	0.662 ± 0.431 (0.816) C:79% T:75%	pCi/L	12/10/18 11:41	15262-20-1	

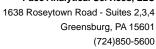
QUALITY CONTROL - RADIOCHEMISTRY

Project: G1811841
Pace Project No.: 30272256

QC Batch: 321886 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Associated Lab Samples: 30272256001, 30272256002


METHOD BLANK: 1569415 Matrix: Water

Associated Lab Samples: 30272256001, 30272256002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.298 ± 0.463 (0.802) C:NA T:85%
 pCi/L
 12/11/18 20:44

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: G1811841

Pace Project No.: 30272256

QC Batch: 321887 Analysis Method:

EPA 904.0

QC Batch Method: EPA 904.0

Analysis Description:

904.0 Radium 228

Associated Lab Samples:

30272256001, 30272256002

Matrix: Water

Associated Lab Samples:

METHOD BLANK: 1569416

30272256001, 30272256002

Parameter

Act ± Unc (MDC) Carr Trac

Units pCi/L Analyzed

Qualifiers

Radium-228

-0.220 ± 0.311 (0.763) C:84% T:83%

12/10/18 11:40

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: G1811841 Pace Project No.: 30272256

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 12/12/2018 02:30 PM

Shuttle/Cooler ID#:

CHAIN OF CUSTODY

Geochemical Testing

Time (Military) Number of G Container GT Lab - 89AC 8 Sampler PCBs Geochemical Testing • 2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729 Preservatives, etc Phone: (814) 443-1671 nHZ Not Hazardous / HZ Hazardous
Containers Supplied by: **NOTE: IF multiple analytes from one bottle, OR if multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG Remarks/ (814) 445-6729 81-08-11 Date Peld Filtered: Y / N Preservatives by Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N ield Filtered: Y / N PO/Quote#: HN03 HN03 Fax: Received by (Company & Signature): **Analyses Requested MO#:30272256 Radium 226, 228 Radium 226, 228 SL Sludge Special/DW O Other Leslie Nemeth Inemeth@geo-ces.com SO Soil Contact (Company): Sample Client GW Ground Water SW Surface Water PW Potable Water WW Wastewater G Grab C Composite D Distribution/DW R Raw/DW Ü G (Military) Time (Military) Sampled by: Time 8:00:00 10:45 1:10 Project: e-mail: Date 11/14/2018 11/14/2018 11/15/2018 Date 15501 Sample Matrix nHZ / HZ ZH / ZHu THZ / HZ ZH / ZH^u 7HZ / HZ ZH / ZH 7H / 7H2 NHZ / HZ ഗ ഗ Zip: Geochemical Testing Relinquished by (Company & Signature) 2005 North Center Avenue ΡĀ Number ap State: PA Sample Location/ Note Deficiencies Here: Description City: Somerset Billing Client: Leslie Nemeth Sample Matrix: Sample Type: G1811841-002 G1811841-001 Address: WO#:

 $\mathcal{G}_{\mathcal{J}}$

8

SAMPLES MUST BE PRESERVED ON ICE.

Cooler Temp (°C) on receipt:

Yes or No

lce present on receipt:

Sample Receiving (1st Review):

Client Support (2nd Review):

Pittsburgh Lab Sample Condition Upon Receipt Face Analytical Client Name: <u>Geochem</u> Project ## , 30272256 Courier: Fed Ex UPS USPS Client Commercial Pace Other Label ET Tracking #: 12 544 007 03 4854 4524 LIMS Login 🖯 Seals intact: yes no Type of Ice: Wet Blue None Thermometer Used Observed Temp N/A °C Correction Factor: °C Final Temp: Cooler Temperature Temp should be above freezing to 6°C Date and Initials of person examining contents: ALM // - 20 -/8 pH paper Lot# 1002981 No N/A Yes∤ Comments: Chain of Custody Present: Chain of Custody Filled Out: Chain of Custody Relinquished: Sampler Name & Signature on COC: Sample Labels match COC: -Includes date/time/ID Matrix: Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr remaining): 8. Rush Turn Around Time Requested: 9. Sufficient Volume: 10. Correct Containers Used: -Pace Containers Used: 11. Containers Intact: 12. Orthophosphate field filtered 13. Hex Cr Aqueous Compliance/NPDES sample field filtered Organic Samples checked for dechlorination: 15. Filtered volume received for Dissolved tests All containers have been checked for preservation. 16. All containers needing preservation are found to be in compliance with EPA recommendation. Date/time of Initial when nreservation exceptions: VOA, coliform, TOC, O&G, Phenolics completed Lot # of added preservative 17. Headspace in VOA Vials (>6mm): 18. Trip Blank Present: Trip Blank Custody Seals Present -20-18 Rad Aqueous Samples Screened > 0.5 mrem/hr completed: Client Notification/ Resolution:

Comments/ Resolution:

A check in this box indicates that additional information has been stored in ereports.

Person Contacted:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Contacted By:

Mr. Andrew Wheeler, Administrator, US EPA December 2020

ATTACHMENT 4E

Groundwater Monitoring and Corrective Action Annual Report Calendar Year 2019

CCR COMPLIANCE GROUNDWATER MONITORING AND CORRECTIVE ACTION ANNUAL REPORT ASH FILTER PONDS AND ASH/REFUSE DISPOSAL SITE

Prepared for:

Keystone-Conemaugh Projects, LLC Conemaugh Generating Station New Florence, Pennsylvania

Prepared by:

January 2020

Table of Contents_

List of	Tables		ij
List of	Figure	S	ii
1.0	Introd	uction	1
2.0	Ash F	ilter Ponds	:
	2.1	Groundwater Monitoring Network	
	2.2	Summary of Previously-Reported Monitoring Activities	3
	2.3	2019 Data Collection	
	2.4	2019 Monitoring Program Transitions	
	2.5	2019 Corrective Actions	
	2.6	2020 Projected Activities	4
3.0	Ash D	pisposal Site	Ę
	3.1	Groundwater Monitoring Network	
	3.2	Summary of Previously-Reported Monitoring Activities	Ę
	3.3	2019 Data Collection	6
	3.4	2019 Monitoring Program Transitions	
	3.5	2019 Corrective Actions	
	3.6	2020 Projected Activities	6

Tables

Figures

List of Ta	nbles
Table 1 Table 2 Table 3 Table 4	Ash Filter Ponds Groundwater Analytical Data Summary—Appendix III Constituents Ash Filter Ponds Groundwater Analytical Data Summary—Appendix IV Constituents Ash Disposal Site Groundwater Analytical Data Summary—Appendix III Constituents Ash Disposal Site Groundwater Analytical Data Summary—Appendix IV Constituents
List of Fig	gures

Figure 1 Ash Filter Ponds—Location and Groundwater Monitoring System Map
Figure 2 Ash Disposal Site—Location and Groundwater Monitoring System Map

1.0 Introduction

Title 40 Code of Federal Regulations (CFR) §257.90 mandates that existing Coal Combustion Residuals (CCR) landfills and surface impoundments, also known as CCR units, be subject to groundwater monitoring and corrective action requirements as further detailed in §257.91 through §257.98. These requirements are part of the overall CCR Rule (or Rule) which was published in the Federal Register on April 17, 2015 and which became effective on October 19, 2015. Specific obligations for Owners and Operators of existing CCR units regarding the preparation of "Annual Groundwater Monitoring and Corrective Action Reports (Annual Report)" are outlined in §257.90(e)(1-5). The first of these Annual Reports was completed no later than January 31, 2018, and provided information to address the following aspects for the preceding calendar year:

- Document the status of the groundwater monitoring and corrective action program for the respective CCR units;
- Summarize key actions completed;
- Describe any problems encountered and actions taken to resolve the problems; and
- Offer a projection of key activities for the upcoming year.

At a minimum, the Annual Report must contain the following information to the extent applicable and available:

- A map, aerial image, or diagram showing the CCR unit and all background/upgradient and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program;
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
- In addition to all the monitoring data obtained under §257.90 through §257.98, a summary including the number of groundwater samples that were collected for analysis for each background/upgradient and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;
- A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and
- Any other information required to be included as specified in §257.90 through §257.98.

Keystone-Conemaugh Projects, LLC – Conemaugh Generating Station, is an electric generating station located in New Florence, Pennsylvania. The Station operates two coal-fired boilers each with a steam turbine-driven electric generator that provides electricity to the regional electric grid. The Rule applies to this facility due to the management/disposal of CCR materials that are generated from the combustion of coal. CCR units associated with Station operations include the Conemaugh Ash/Refuse Disposal Site and four Ash Filter Ponds (Ponds "A," "B," "C," and "D") used for the management of bottom ash. Each of these CCR units has a dedicated groundwater monitoring system that was originally installed to comply with Commonwealth of Pennsylvania Residual Waste Regulations, and was subsequently evaluated and modified (as needed) for use under the CCR program. Additionally, in accordance with the provisions of §257.91(d) of the Rule, the groundwater monitoring system for the Ash Filter Ponds has been designated to provide coverage in the context of a multiunit system encompassing all four ponds collectively.

In summary, this third Annual Report has been prepared to comply with the requirements of §257.90(e), addressing each of the Station's CCR Units with respect to the groundwater monitoring and corrective actions undertaken during Calendar Year 2019. This Annual Report and all subsequent reports thereto will be placed in the Station's operating record per §257.105(h)(1), noticed to the State Director per §257.106(h)(1), and posted to the publicly accessible internet site per §257.107(h)(1).

2.1 Groundwater Monitoring Network

The CCR groundwater monitoring system for the Ash Filter Ponds is comprised of five wells, including Wells MW-1B and MW-2 (upgradient), and Wells MW-3, MW-4, and MW-23 (downgradient). All five wells communicate with the alluvium, which is the uppermost aquifer. The locations of the groundwater monitoring wells are shown on Figure 1, along with depiction of the generalized groundwater flow direction in the area of the ponds. Each of these wells was already existing, and no new wells were added nor were any existing wells abandoned/replaced during the 2019 reporting period.

2.2 Summary of Previously-Reported Monitoring Activities

In accordance with the Detection Monitoring requirements under §257.94(b) for existing CCR surface impoundments, a minimum of eight independent samples from each background and downgradient well were collected and analyzed for the constituents listed in Appendices III and IV of the Rule prior to October 17, 2017. The results from these samples, which were collected during the period from December 2015 through July 2017, were presented in the first Annual Report issued in January 2018. In addition, a ninth round of samples was collected (October 1-4, 2017) and analyzed for Appendix III constituents only. The results from these samples served as the initial point of comparison to determine if concentrations in any of the downgradient wells were at levels representing a statistically significant increase (SSI) over the background concentrations established in the upgradient well(s).

During January 2018, the results from the October 1-4, 2017 Detection Monitoring event were reviewed, and subsequent determination made that one downgradient well (MW-4) showed an Appendix III constituent (sulfate) at levels representing an SSI above corresponding background concentrations. Accordingly, and per the provisions of §257.94(e)(2), efforts were undertaken to conduct an Alternate Source Demonstration in an attempt to identify a potential source other than the Ash Filter Ponds which was responsible for the observed SSI. This Alternate Source Demonstration (April 2018) was ultimately successful and determined that incidental gypsum deposition in the area of Well MW-4 was causing the elevated sulfate readings in the localized groundwater. As a result, the Ash Filter Ponds were deemed to remain in the CCR Detection Monitoring Program, and were additionally sampled in May 2018 and October 2018 with continuing observations of SSIs only for sulfate in Well MW-4. These results, along with the detailed findings and conclusions from the Alternate Source Demonstration, were presented in the second Annual Report issued in January 2019.

2.3 2019 Data Collection

The Ash Filter Ponds remained in the CCR Detection Monitoring Program during the 2019 reporting period, and were subjected to sampling for Appendix III constituents as part of monitoring events conducted in April, July, and October 2019 (the required monitoring frequency "shall be at least semiannual" for the Appendix III constituents). As shown in Table 1, the results from each of the 2019 events again consistently showed SSIs for sulfate in downgradient Well MW-4. For the October 2019 event, a SSI for calcium was also observed in Well MW-4. Recognizing that the principal components of gypsum are calcium and sulfate, this SSI can be logically and defensibly linked to the gypsum handling operations, which continue to serve as the identified alternate source for this well. Related discussions regarding elevated calcium in Well MW-4 are, in fact, contained in the above-noted April 2018 Alternate Source Demonstration, offering affirmation that the ponds are not contributing to the observations at this well location. In addition, each of the other downgradient wells (MW-3 and MW-23) continue to show all Appendix III constituent concentrations at levels below the calculated background values. Consequently, based on review of the collective 2019 analytical data and continued relevance/applicability of the previously completed Alternate Source Demonstration, the Ash Filter Ponds will remain in the CCR Detection Monitoring Program in calendar year 2020.

2.4 2019 Monitoring Program Transitions

During 2019, there were no transitions between monitoring programs, with the Ash Filter Ponds remaining in the CCR Detection Monitoring Program.

2.5 2019 Corrective Actions

During 2019, there were no problems identified or corrective actions undertaken.

2.6 2020 Projected Activities

As noted, it is anticipated that Detection Monitoring activities will continue for the Ash Filter Ponds during 2020, with continued review of Appendix III constituent concentrations and comparison with the calculated background values.

3.0 Ash Disposal Site

3.1 Groundwater Monitoring Network

The CCR groundwater monitoring system for the Ash Disposal Site is comprised of four wells, including Well MW-31 (upgradient) and Wells MW-9, MW-10, and MW-11 (downgradient). Monitoring Wells MW-9 and MW-11 communicate with the shallow unconfined groundwater in bedrock and Monitoring Wells MW-10 and MW-31 communicate with shallow groundwater across the soil/bedrock interface. Hence, all four wells monitor the uppermost aquifer in the area of the Ash Disposal Site. The locations of the groundwater monitoring wells are shown on Figure 2, along with depiction of the generalized groundwater flow direction in the area of the disposal site. Each of these wells was already existing, and no new wells were added nor were any existing wells abandoned/replaced during the 2019 reporting period.

3.2 Summary of Previously-Reported Monitoring Activities

In accordance with the Detection Monitoring requirements under §257.94(b) for existing CCR landfills, a minimum of eight independent samples from each background and downgradient well were collected and analyzed for the constituents listed in Appendices III and IV of the Rule prior to October 17, 2017. The results from these samples, which were collected during the period from December 2015 through July 2017, were presented in the first Annual Report issued in January 2018. In addition, a ninth round of samples was collected (October 2-3, 2017) and analyzed for Appendix III constituents only. The results from these samples served as the initial point of comparison to determine if concentrations in any of the downgradient wells were at levels representing an SSI over the background concentrations established in the upgradient well(s).

During January 2018, the results from the October 2017 Detection Monitoring event were reviewed, and subsequent determination made that all three downgradient wells showed several Appendix III constituents at levels representing an SSI above corresponding background concentrations. Accordingly, the Ash Disposal Site was transitioned into the CCR Assessment Monitoring Program, and an initial round of samples covering all Appendix IV constituents was collected in March 2018 per §257.95(b). From these results, the detected Appendix IV constituents were carried forward and analyzed during continued Assessment Monitoring events conducted in May 2018 and October 2018. As was observed, none of the Appendix IV constituents from any of the 2018 sampling events were measured at concentrations representing a statistically significant level (SSL) above the corresponding site-specific groundwater protection standards. All analytical results from the 2018 Assessment Monitoring were presented in the second Annual Report issued in January 2019.

It is additionally noted that the May 2018 Assessment Monitoring event yielded an erroneous result for Radium-226/228 in downgradient Well MW-9. The initially reported value (103.6 pCi/L) was generated via an incorrect laboratory analytical method. Following this determination, a new sample (for Radium analysis only) was collected from MW-9 in July 2018 and reanalyzed using the correct analytical method. The revised result (0.32 pCi/L) from the July 2018 sampling aligns with the historical values detected in this well, and correspondingly remains below background and the groundwater protection standard.

3.3 2019 Data Collection

Following its transition in early-2018, the Ash Disposal Site continued in the CCR Assessment Monitoring Program during the 2019 reporting period. Accordingly, samples were collected and analyzed for Appendix III and Appendix IV constituents as required, during the April, July and October 2019 monitoring events (similar to the monitoring frequency for the Appendix III constituents, the required monitoring frequency is "on at least a semiannual basis" for the Appendix IV constituents following completion of the initial sampling event for the Assessment Monitoring Program). Results from the 2019 sampling events are summarized in Tables 3 and 4, covering Appendix III and Appendix IV, respectively. As shown in Table 4, none of the Appendix IV constituents from the 2019 sampling events were measured at concentrations representing a SSL above the corresponding groundwater protection standards. Detected concentrations of at least one Appendix IV constituent (total barium) as well as several Appendix III constituents; however, do remain above calculated background, and thus providing the basis for continued Assessment Monitoring into 2020.

3.4 2019 Monitoring Program Transitions

During 2019, there were no transitions between monitoring programs, with the Ash Disposal Site remaining in the CCR Assessment Monitoring Program.

3.5 2019 Corrective Actions

During 2019, there were no problems identified or corrective actions undertaken.

3.6 2020 Projected Activities

As noted, it is anticipated that Assessment Monitoring activities will continue for the Ash Disposal Site during 2020, with continued review of Appendix III/Appendix IV constituent concentrations and comparison against calculated background and established groundwater protection standards.

Table 1 Conemaugh Generating Station Ash Filter Ponds--Groundwater Analytical Data **CCR Appendix III Constituents**

		1		OOK Append	iix iii Constituei	its				
Monitoring Well	Date Sampled	Groundwater Elevation	Total Boron (mg/L)	Total Calcium (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Dissolved Solids (mg/L)	Sulfate (mg/L)	pH (S.U.)	
	Sampleu	(ft. MSL)			Cal	Iculated Background				
			0.58	376	1560	0.20	6975	788	4.59-7.42	
	17-Dec-15	1070.99	0.29	333	1540	< 0.1	3620	544	5.49	
	27-Jan-16	1071.19	0.31	288	1280	< 0.1	3180	583	5.87	
	20-Apr-16	1071.69	0.28	170	652	< 0.5	2410	729	6.09	
	19-Jul-16	1071.69	0.36	208	1310	0.1	2760	575	5.79	
	11-Oct-16 17-Jan-17	1072.99 1072.54	0.46 0.43	192 198	1010 1030	0.2 < 0.1	2640 2650	438 427	6.56 5.87	
MW-1B	24-Apr-17	1072.69	0.43	166	988	< 0.1	2470	548	5.27	
(Upgradient)	20-Jul-17	1072.04	0.39	345	1560	< 0.1	3740	388	5.00	
	1-Oct-17	1070.84	0.36	430	2040	< 0.1	4930	427	5.68	
	22-May-18	1074.94	0.39	120	640	< 0.1	1680	364	5.91	
	18-Oct-18	1074.69	0.89	53	288	3.1	1340	543	7.56	
	17-Apr-19 18-Jul-19	1073.69	0.47 0.44	122 155	467	0.3 < 0.1	1300	369	6.00 5.60	
	3-Oct-19	1073.79 1072.49	0.44	190	638 848	< 0.1	1630 1930	303 300	5.33	
	11-Oct-16	1072.72	0.30	191	251	< 0.1	1200	348	6.28	
	16-Nov-16	1072.42	0.31	176	94	0.1	868	416	6.95	
	21-Dec-16	1073.02	0.41	176	101	0.2	1050	519	7.03	
	25-Jan-17	1073.72	0.21	137	68	0.2	726	316	6.93	
	21-Mar-17	1073.82	0.33	158	75	0.1	828	387	6.40	
	25-Apr-17	1072.92	0.29	136	69	< 0.1	792	373	6.28	
MW-2	13-Jun-17	1073.02	0.30	150	60	< 0.1	768	369	6.15	
(Upgradient)	27-Jul-17	1072.57	0.28	133	67	< 0.1	684	310	6.45	
	4-Oct-17	1071.17	0.32	138	58	< 0.1	768	330	6.80	
	29-May-18	1075.57	0.10	98	22	0.4	606	185	7.10	
	23-Oct-18	1075.37	0.18	105	21	0.4	550	192	6.97	
	15-Apr-19	1074.12	0.15	99	21	0.4	508	169	7.13	
	30-Jul-19	1074.47	0.15	101	19	0.3	572	194	6.80	
	9-Oct-19	1072.62	0.26	116	54	0.1	564	304	6.19	
	16-Dec-15	1065.24	< 0.05	123	363	< 0.1	882	227	5.74	
	26-Jan-16	1065.89	< 0.05	132	392	< 0.1	970	250	5.94	
	25-Apr-16	1066.14	< 0.05	203	505	< 0.1	1460 972	288	6.52 5.72	
	25-Jul-16 24-Oct-16	1064.99 1066.19	< 0.05 < 0.05	115 123	343 304	< 0.1	902	225 211	6.01	
	17-Jan-17	1066.94	< 0.05	113	370	< 0.1	976	245	5.95	
MW-3	25-Apr-17	1067.09	< 0.05	181	552	< 0.1	1740	314	5.57	
(Downgradient)	25-Jul-17	1065.99	< 0.05	151	389	< 0.1	1270	256	5.47	
	1-Oct-17	1064.89	< 0.05	135	387	< 0.1	1140	255	6.30	
	23-May-18	1067.79	< 0.05	175	455	< 0.1	1330	276	6.07	
	23-Oct-18	1068.29 1067.09	< 0.05 < 0.05	152 181	440 553	< 0.1	1150	293 353	5.75 5.97	
	22-Apr-19 30-Jul-19	1067.59	< 0.05 < 0.05	170	497	< 0.1 < 0.1	1440 1720	291	5.66	
	21-Oct-19	1066.29	< 0.05	143	432	< 0.1	1110	261	5.54	
	21-Dec-15	1069.53	0.15	301	643	< 0.1	2470	874	5.77	
	4-Feb-16	1069.73	0.13	316	654	< 0.1	2580	870	5.83	
	26-Apr-16	1070.08	0.13	426	932	< 0.1	3390	965	6.19	
	25-Jul-16	1068.98	0.12	346	874	< 0.1	3120	1090	5.82	
	26-Oct-16	1070.08 1070.88	0.17 0.15	310 301	670 736	< 0.1	2530 2740	865 895	6.27 6.12	
MW-4	30-Jan-17 26-Apr-17	1070.88	0.15	392	863	< 0.1 < 0.1	3310	996	6.68	
(Downgradient)	27-Jul-17	1070.23	0.19	403	977	< 0.1	3350	1170	5.63	
1	4-Oct-17	1068.83	0.14	335	814	< 0.2	3200	1050	6.02	
	29-May-18	1070.53	0.13	345	842	< 0.1	3280	1010	5.96	
	24-Oct-18	1071.93	0.14	290	589	< 0.1	2550	927	5.99	
	22-Apr-19	1070.88	0.10	316	800	< 0.1	2470	892	5.98	
	31-Jul-19 21-Oct-19	1071.03 1070.33	0.12 0.16	292 401	650 831	< 0.1	2430 3030	854 1150	5.62 5.80	
	20-Dec-15	10/0.33	< 0.05	182	388	< 0.1	1580	653	5.59	
	2-Feb-16	1069.08	< 0.05	176	344	< 0.1	1520	576	5.98	
	25-Apr-16	1069.38	< 0.05	175	329	< 0.1	1540	557	5.16	
	21-Jul-16	1067.93	0.34	173	371	< 0.1	1600	591	5.63	
	24-Oct-16	1068.83	< 0.05	173	327	< 0.1	1540	509	6.14	
A 814/ 00	18-Jan-17	1070.13	0.11	165	368	< 0.1	1550	543	5.79	
MW-23	24-Apr-17	1069.68	< 0.05	164	383	< 0.1	1520	558	5.21	
(Downgradient)	24-Jul-17 1-Oct-17	1069.18 1067.98	< 0.05 < 0.05	183 172	378 313	< 0.1	1530 1520	532 575	5.15 6.25	
	22-May-18	1067.98	< 0.05	172	313	< 0.1 < 0.1	1460	5/5	5.63	
	22-IVIAY-16 22-Oct-18	1071.18	< 0.05	165	355	< 0.1	1450	538	5.70	
	17-Apr-19	1070.28	< 0.05	153	346	< 0.1	1320	527	5.52	
	18-Jul-19	1070.73	< 0.05	164	309	< 0.1	1330	469	5.54	
	9-Oct-19	1068.48	< 0.05	143	350	< 0.1	1320	534	5.69	

- Notes:

 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.

 2. Background values based on statistical evaluation of initial eight rounds (Dec. 2015 thru July 2017) of groundwater sampling data for Wells MW-1B and MW-2.

Table 2 **Conemaugh Generating Station** Ash Filter Ponds--Groundwater Analytical Data CCR Appendix IV Constituents

	Con Appendix IV Constituents															
		Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Cadmium (mg/L)	Total Chromium (mg/L)	Total Cobalt (mg/L)	Total Fluoride (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Selenium (mg/L)	Total Thallium (mg/L)	Total Radium-226 and 228 (pCi/L)
Monitorina Well	Data Campled							С	alculated Backgroun	d						
Monitoring Well	Date Sampled	0.001	0.001	0.04	0.001	0.005	0.01	0.013	0.2	0.001	0.03	0.0002	0.02	0.001	0.0002	4.24
								Ground	dwater Protection Sta	andard						
		MCL	MCL	MCL	MCL	MCL	MCL	RSL	MCL	RSL	RSL	MCL	RSL	MCL	MCL	MCL
		0.006	0.01	2	0.004	0.005	0.1	0.006	4.0	0.015	0.04	0.002	0.10	0.05	0.002	5
	47.0 45															
	17-Dec-15	< 0.001	< 0.001	0.04	< 0.001	0.005	< 0.01	0.012	< 0.1	< 0.001	0.03	< 0.0002	< 0.02	< 0.001	< 0.0002	4.24
	27-Jan-16	< 0.001	< 0.001	0.03	< 0.001	0.005	< 0.01	< 0.005	< 0.1	< 0.001	0.02	< 0.0002	< 0.02	< 0.001	< 0.0002	0.29
	20-Apr-16	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.5	< 0.001	0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.72
MW-1B (Upgradient)	19-Jul-16	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	0.006	0.1	< 0.001	0.02	< 0.0002	< 0.02	< 0.001	< 0.0002	1.31
(13 ,	11-Oct-16	< 0.001	< 0.001	0.02	< 0.001	0.002	< 0.01	< 0.005	0.2	< 0.001	0.02	< 0.0002	< 0.02	< 0.001	< 0.0002	0.78
	17-Jan-17	< 0.001	< 0.001	0.02	< 0.001	0.002	< 0.01	0.005	< 0.1	< 0.001	0.02	< 0.0002	< 0.02	< 0.001	< 0.0002	0.24
	24-Apr-17	< 0.001	< 0.001	0.02	< 0.001	0.002	< 0.01	0.005	< 0.1	< 0.001	0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.77
	20-Jul-17	< 0.001	< 0.001	0.03	< 0.001	0.005	< 0.01	0.013	< 0.1	< 0.001	0.02	< 0.0002	< 0.02	< 0.001	< 0.0002	1.03
	11-Oct-16	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.69
	16-Nov-16	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.44
	21-Dec-16	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	0.2	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.43
MM/2 (Ungradient)	25-Jan-17	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	0.2	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.88
MW-2 (Upgradient)	21-Mar-17	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.09
	25-Apr-17	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.35
	13-Jun-17	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	0.001	< 0.0002	0.80
	27-Jul-17	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.14
	16-Dec-15	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	0.009	< 0.1	< 0.001	0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.44
	26-Jan-16	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	0.011	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.86
	25-Apr-16	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	0.014	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.60
	25-Jul-16	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	0.009	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.46
MW-3 (Downgradient)	24-Oct-16	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	0.012	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	1.34
	17-Jan-17	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	0.008	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.28
	25-Apr-17	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	0.013	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.45
	25-Jul-17	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	0.010	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	1.33
	21-Dec-15	< 0.001	< 0.001	0.01	< 0.001	0.002	< 0.01	0.039	< 0.1	< 0.001	0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	1.20
	4-Feb-16	< 0.001	< 0.001	0.01	< 0.001	0.002	< 0.01	0.037	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.47
	26-Apr-16	< 0.001	< 0.001	0.02	< 0.001	0.003	< 0.01	0.039	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	1.15
	25-Jul-16	< 0.001	< 0.001	0.01	< 0.001	0.003	< 0.01	0.035	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.43
MW-4 (Downgradient)	26-Oct-16	< 0.001	< 0.001	0.01	< 0.001	0.003	< 0.01	0.037	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.72
	30-Jan-17	< 0.001	< 0.001	0.01	< 0.001	0.003	< 0.01	0.034	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.09
	26-Apr-17	< 0.001	< 0.001	0.01	< 0.001	0.004	< 0.01	0.041	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.73
	27-Jul-17	< 0.001	< 0.001	0.01	< 0.001	0.003	< 0.01	0.039	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	1.24
	20-Dec-15	< 0.001	< 0.001	0.01	< 0.001	0.002	< 0.01	0.114	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	6.87
	2-Feb-16	< 0.001	< 0.001	0.02	< 0.001	0.002	< 0.01	0.106	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	1.03
	25-Apr-16	< 0.001	0.001	0.02	< 0.001	0.002	< 0.01	0.123	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.56
MW-23	21-Jul-16	< 0.001	< 0.001	0.01	< 0.001	0.002	< 0.01	0.114	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.65
(Downgradient)	24-Oct-16	< 0.001	0.001	0.02	< 0.001	< 0.003	< 0.01	0.099	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.12
(Downgradion)	18-Jan-17	< 0.001	< 0.001	0.02	< 0.001	0.002	< 0.01	0.100	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.66
	24-Apr-17	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	0.097	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.40
	24-Jul-17	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	0.095	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.21
	∠¬ Jul-17	· 0.001	. 0.001	0.01	, J.001	· 0.002	, U.U.I	0.073	· U.1	· 0.001	· 0.01	· 0.000Z	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	· 0.001	· 0.000Z	V.Z I

- Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.
 Background values based on statistical evaluation of initial eight rounds (Dec. 2015 thru July 2017) of groundwater sampling data for Wells MW-1B and MW-2.
 As indicated, Groundwater Protection Standards are either published MCLs or risk-based Regional Screening Levels (RSLs). For constituents where calculated background exceeds either the MCL or RSL, the background value is used.

Table 3 Conemaugh Generating Station Ash Disposal Site--Groundwater Analytical Data CCR Appendix III Constituents

Monitoring Well	Date Sampled	Groundwater Elevation	Total Boron (mg/L)	Total Calcium (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Dissolved Solids (mg/L)	Sulfate (mg/L)	pH (S.U.)
3	·	(ft. MSL)			Calc	culated Background			
			0.05	8.86	1	0.1	96.2	4	4.07-6.81
	20-Dec-15	1435.54	< 0.05	6.2	1	< 0.1	50	4	6.15
	1-Feb-16	1438.04	< 0.05	7.1	1	< 0.1	34	4	6.42
	20-Apr-16	1439.54	< 0.05	7.8	< 1	< 0.1	44	4	6.45
MW-31 (Upgradient)	20-Jul-16	1435.89	< 0.05	6.3	1	< 0.1	58	4	6.24
	25-Oct-16	1436.24	< 0.05	6.7	1	< 0.1	70	4	5.82
	19-Jan-17	1438.74	< 0.05	6.4	1	< 0.1	64	3	6.19
	12-Apr-17	1439.74	< 0.05	6.2	1	< 0.1	52	4	5.75
(13 /	25-Jul-17	1437.24	< 0.05	7.4	1	< 0.1	72	4	5.62
	3-Oct-17	1434.49	< 0.05	6.6	1	< 0.1	32	4	6.36
	24-May-18 22-Oct-18	1441.64 1439.94	< 0.05 < 0.05	6.2 84.9	1	< 0.1	58 40	4	6.29 6.17
	18-Apr-19	1440.19	< 0.05	6.0	1	< 0.1	32	4	6.01
	25-Jul-19	1438.14	< 0.05	5.7	1	< 0.1	54	4	5.74
	2-Oct-19	1435.54	< 0.05	6.3	1	< 0.1	44	4	5.36
	17-Dec-15	1100.47	< 0.05	102	83	0.1	426	72	7.08
•	28-Jan-16	1100.57	0.09	102	97	0.1	424	63	7.20
	21-Apr-16	1099.77	< 0.05	96	81	0.1	398	65	7.38
	20-Jul-16	1098.97	0.05	99	93	< 0.1	466	62	7.57
	16-Nov-16	1099.82	< 0.05	104	94	< 0.1	466	55	7.05
	23-Jan-17	1100.77	< 0.05	96	92	< 0.1	406	65	7.27
MW-9 (Downgradient)	12-Apr-17	1099.47	< 0.05	96	96	< 0.1	446	77	6.74
WW-7 (Downgraulent)	24-Jul-17	1099.82	< 0.05	104	98	< 0.1	456	79	6.60
	2-Oct-17	1099.67	< 0.05	94	92	< 0.1	430	75	7.41
	23-May-18	1100.17	< 0.05	104	112	< 0.1	456	84	7.29
	17-Oct-18	1100.32	< 0.05	102	109	< 0.1	472	67	7.09
	23-Apr-19	1100.07	0.31	106	118	0.1	472	73	7.12
	23-Jul-19 8-Oct-19	1099.97 1099.02	< 0.05 < 0.05	107 116	120 116	0.1	520 500	72 72	7.15 7.35
	16-Dec-15	1103.26	< 0.05	106	90	< 0.1 0.1	444	97	7.35
	1-Feb-16	1103.26	< 0.05	102	100	0.1	416	107	7.71
	19-Apr-16	1103.06	< 0.05	102	95	0.1	454	99	7.45
İ	25-Jul-16	1102.16	< 0.05	100	91	0.1	476	114	7.25
1	25-Oct-16	1102.16	< 0.05	117	84	0.1	522	113	7.50
	25-Jan-17	1103.86	< 0.05	94	105	< 0.1	482	110	7.21
MW-10	13-Apr-17	1102.86	< 0.05	97	99	< 0.1	460	97	6.77
(Downgradient)	26-Jul-17	1102.66	0.05	108	94	< 0.1	508	127	6.75
-	3-Oct-17	1102.61	< 0.05	111	91	0.1	490	130	7.38
	29-May-18	1104.76	< 0.05	99	99	0.1	492	106	7.14
	17-Oct-18	1103.66	< 0.05	98	89	0.1	456	106	7.10
	18-Apr-19	1103.46	< 0.05	85	103	< 0.1	388	103	7.06
	25-Jul-19	1102.86	< 0.05	108	94	0.1	476	120	7.07
	8-Oct-19	1102.06	< 0.05	110	84	< 0.1	470	123	7.35
	21-Dec-15	1102.68	0.08	180	55	0.1	814	223	6.77
	27-Jan-16	1103.38	0.09	169	48	< 0.1	776	191	7.02
	21-Apr-16 21-Jul-16	1102.63 1101.68	0.07 0.14	161 156	46 52	< 0.1	754 754	170 208	7.31 7.37
	21-Jul-16 20-Oct-16	1101.93	0.14	166	48	0.1	754	199	6.97
	23-Jan-17	1103.63	< 0.05	164	51	0.1	770	207	6.98
MW-11	13-Apr-17	1103.28	0.07	170	49	< 0.1	774	183	6.65
(Downgradient)	26-Jul-17	1102.33	0.10	150	60	< 0.1	700	182	6.35
,	2-Oct-17	1102.48	0.07	151	61	0.1	732	210	7.20
	24-May-18	1103.08	< 0.05	139	54	0.1	736	192	7.02
	18-Oct-18	1102.93	0.07	169	60	0.1	750	194	6.94
	23-Apr-19	1102.88	0.37	159	58	0.2	758	213	6.58
	23-Jul-19	1102.73	0.06	153	59	0.1	714	185	6.73
}	8-Oct-19	1101.78	0.08	165	60	< 0.1	700	181	6.74

- Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.
 Background values based on statistical evaluation of initial eight rounds (Dec. 2015 thru July 2017) of groundwater sampling data for Well MW-31.

Table 4 **Conemaugh Generating Station** Ash Disposal Site--Groundwater Analytical Data CCR Appendix IV Constituents

							CCR A	Appendix IV Con	stituents							
		Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Cadmium (mg/L)	Total Chromium (mg/L)	Total Cobalt (mg/L)	Total Fluoride (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Selenium (mg/L)	Total Thallium (mg/L)	Total Radium-226 and 228 (pCi/L)
Manadan a Mali	Date							C	alculated Backgroun	nd						
Monitoring Well	Sampled	0.001	0.001	0.02	0.001	0.002	0.01	0.005	0.1	0.001	0.01	0.0002	0.02	0.001	0.0002	1.89
		1101	140	1 1101	1 1101	140	1401		lwater Protection Sta		l poi	1401	D.01	1401	1401	1101
		MCL	MCL	MCL	MCL	MCL	MCL	RSL	MCL	RSL	RSL	MCL	RSL	MCL	MCL	MCL
	20 Dec 15	0.006	0.01	2	0.004	0.005	0.1	0.006	4.0	0.15	0.04	0.002	0.10	0.05	0.002	5
	20-Dec-15 1-Feb-16	< 0.001 < 0.001	< 0.001 < 0.001	0.02 0.01	< 0.001 < 0.001	< 0.002 < 0.002	< 0.01 < 0.01	< 0.005 < 0.005	< 0.1	< 0.001 < 0.001	< 0.01 < 0.01	< 0.0002 < 0.0002	< 0.02 < 0.02	< 0.001 < 0.001	< 0.0002 < 0.0002	14.1 0.08
	20-Apr-16	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.75
	20-Jul-16	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.77
	25-Oct-16 19-Jan-17	< 0.001 < 0.001	< 0.001 < 0.001	0.01	< 0.001 < 0.001	< 0.002 < 0.002	< 0.01 < 0.01	< 0.005 < 0.005	< 0.1	< 0.001 < 0.001	< 0.01 < 0.01	< 0.0002 < 0.0002	< 0.02 < 0.02	< 0.001 < 0.001	< 0.0002 < 0.0002	0.42
1.01/04/11 11 1)	12-Apr-17	< 0.001	< 0.001	< 0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.51
MW-31 (Upgradient)	25-Jul-17	< 0.001	< 0.001	< 0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	-0.05
	28-Mar-18	< 0.001	< 0.001 Not Analyzed	< 0.01 < 0.01	< 0.001	< 0.002 Not Analyzed	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01 Not Analyzed	< 0.0002	< 0.02	< 0.001	< 0.0002	0.63 0.40
	24-May-18 22-Oct-18	Not Analyzed Not Analyzed	Not Analyzed	0.01	Not Analyzed Not Analyzed	Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	< 0.1	Not Analyzed Not Analyzed	Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	0.40
	18-Apr-19	< 0.001	< 0.001	< 0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.30
	25-Jul-19	Not Analyzed	Not Analyzed	0.01	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	< 0.1	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.88
	2-Oct-19 17-Dec-15	Not Analyzed < 0.001	Not Analyzed < 0.001	0.01 0.17	Not Analyzed< 0.001	Not Analyzed< 0.002	Not Analyzed < 0.01	Not Analyzed< 0.005	< 0.1 0.1	Not Analyzed < 0.001	Not Analyzed 0.01	Not Analyzed< 0.0002	Not Analyzed < 0.02	Not Analyzed < 0.001	Not Analyzed< 0.0002	-0.50 3.66
	28-Jan-16	< 0.001	< 0.001	0.05	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.18
	21-Apr-16	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	3.90
	20-Jul-16	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	-0.05
	16-Nov-16 23-Jan-17	< 0.001 < 0.001	< 0.001 < 0.001	0.05 0.04	< 0.001 < 0.001	< 0.002 < 0.002	< 0.01 < 0.01	< 0.005 < 0.005	< 0.1	< 0.001 < 0.001	< 0.01 < 0.01	< 0.0002 < 0.0002	< 0.02 < 0.02	< 0.001 < 0.001	< 0.0002 < 0.0002	0.78 0.70
MM O (Downson diam)	12-Apr-17	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.03
MW-9 (Downgradient)	24-Jul-17	< 0.001	< 0.001	0.05	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.74
	28-Mar-18 23-May-18	< 0.001 Not Analyzed	< 0.001 Not Analyzed	0.05 0.04	< 0.001 Not Analyzed	< 0.002 Not Analyzed	< 0.01 Not Analyzed	< 0.005 Not Analyzed	0.1 < 0.1	< 0.001 Not Analyzed	< 0.01 Not Analyzed	< 0.0002 Not Analyzed	< 0.02 Not Analyzed	< 0.001 Not Analyzed	< 0.0002 Not Analyzed	0.37 0.32
	17-Oct-18	Not Analyzed	Not Analyzed	0.05	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	< 0.1	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.67
	23-Apr-19	< 0.001	< 0.001	0.05	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.92
	23-Jul-19	Not Analyzed	Not Analyzed	0.06	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.1	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	1.60
	8-Oct-19 16-Dec-15	Not Analyzed0.001	Not Analyzed < 0.001	0.06 0.06	Not Analyzed< 0.001	Not Analyzed < 0.002	Not Analyzed < 0.01	Not Analyzed < 0.005	< 0.1 0.1	Not Analyzed < 0.001	Not Analyzed < 0.01	Not Analyzed < 0.0002	Not Analyzed < 0.02	Not Analyzed < 0.001	Not Analyzed < 0.0002	0.54 -0.04
	1-Feb-16	< 0.001	< 0.001	0.06	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.25
	19-Apr-16	< 0.001	< 0.001	0.10	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.68
	25-Jul-16 25-Oct-16	< 0.001 < 0.001	< 0.001 < 0.001	0.06 0.06	< 0.001 < 0.001	< 0.002 < 0.002	< 0.01 < 0.01	< 0.005 < 0.005	0.1 0.1	< 0.001 < 0.001	< 0.01 < 0.01	< 0.0002 < 0.0002	< 0.02 < 0.02	< 0.001 < 0.001	< 0.0002 < 0.0002	0.55 0.62
	25-Oct-16 25-Jan-17	< 0.001	< 0.001	0.05	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.02
MW-10	13-Apr-17	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.34
(Downgradient)	26-Jul-17	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	1.05
	29-Mar-18 29-May-18	< 0.001 Not Analyzed	< 0.001 Not Analyzed	0.04	< 0.001 Not Analyzed	< 0.002 Not Analyzed	< 0.01 Not Analyzed	< 0.005 Not Analyzed	0.1 0.1	< 0.001 Not Analyzed	< 0.01 Not Analyzed	< 0.0002 Not Analyzed	< 0.02 Not Analyzed	< 0.001 Not Analyzed	< 0.0002 Not Analyzed	0.29
	17-Oct-18	Not Analyzed	Not Analyzed	0.04	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.1	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.48
	18-Apr-19	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.79
	25-Jul-19 8-Oct-19	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	0.03 0.04	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	< 0.1	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	0.05 1.15
	21-Dec-15	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	2.21
	27-Jan-16	< 0.001	< 0.001	0.06	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.33
	21-Apr-16	< 0.001	< 0.001	0.06	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	3.18
	21-Jul-16 20-Oct-16	< 0.001 < 0.001	< 0.001 < 0.001	0.08	< 0.001 < 0.001	< 0.002 < 0.002	< 0.01 < 0.01	< 0.005 < 0.005	< 0.1 0.1	< 0.001 < 0.001	< 0.01 < 0.01	< 0.0002 < 0.0002	< 0.02 < 0.02	< 0.001 < 0.001	< 0.0002 < 0.0002	0.70 0.93
	23-Jan-17	< 0.001	< 0.001	0.07	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.48
MW-11	13-Apr-17	< 0.001	< 0.001	0.07	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	1.46
(Downgradient)	26-Jul-17 29-Mar-18	< 0.001 < 0.001	< 0.001 < 0.001	0.05 0.08	< 0.001 < 0.001	< 0.002 < 0.002	< 0.01 < 0.01	< 0.005 < 0.005	< 0.1	< 0.001 < 0.001	< 0.01 < 0.01	< 0.0002 < 0.0002	< 0.02 < 0.02	< 0.001 < 0.001	< 0.0002 < 0.0002	0.80 0.78
	24-May-18	Not Analyzed	Not Analyzed	0.08	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.1	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.78
	18-Oct-18	Not Analyzed	Not Analyzed	0.07	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.1	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	1.20
	23-Apr-19	< 0.001	< 0.001	0.08	< 0.001	< 0.002	< 0.01	< 0.005	0.2	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.84
	23-Jul-19 8-Oct-19	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	0.07 0.07	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	0.1 < 0.1	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	Not Analyzed Not Analyzed	0.57 0.45
<u> </u>	0 000 17	140t / triary Zea	110t / tridiy2cu	0.07	140t / maryzeu	140t / triary Zea	140t / tridiy2cu	140t / thaiyzou	. 0.1	1 VOL / Wary Zou	140t / tridiy2cu	1 TOC / Wildry ZCU	140t/maryzeu	140t / thatyZCu	140t / tridiyzcu	0.70

= Value determined as a statistical outlier and excluded from background calculations.
= Result from July 17, 2018 re-sampling; prior result from May 23, 2018 sampling (103.6 pCi/L) was associated with use of incorrect analytical Method (gamma spec Method 901.1).

- Notes:

 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.

 2. Background values based on statistical evaluation of initial eight rounds (Dec. 2015 thru July 2017) of groundwater sampling data for Well MW-31.

 3. As indicated, Groundwater Protection Standards are either published MCLs or risk-based Regional Screening Levels (RSLs). For constituents where calculated background exceeds either the MCL or RSL, the background value is used.

LEGEND:

⊕ MW-3 (1066.29)

CCR GROUNDWATER MONITORING WELL WITH **GROUNDWATER ELEVATION** MEASURED BETWEEN OCTOBER 3 AND 21, 2019.

GROUNDWATER FLOW DIRECTION

REFERENCE:

GOOGLE AERIAL PHOTOGRAPH, DATED 10/2015.

500 Penn Center Boulevard, Suite 1000 Pittsburgh, Pennsylvania 15235

FIGURE 1 CCR COMPLIANCE GROUNDWATER MONITORING WELL LOCATION MAP ASH FILTER PONDS CONEMAUGH GENERATING STATION INDIANA COUNTY, PENNSYLVANIA

O:\PROJECT\631003459_Conemaugh\631003459_B1.dwg Date/Time: Jan 02, 2020 — 11:21am ed By: Greg.Jones

REFERENCE:

GOOGLE AERIAL PHOTOGRAPH, DATED 10/2015.

LEGEND:

CCR GROUNDWATER MONITORING WELL WITH GROUNDWATER ELEVATION MEASURED BETWEEN OCTOBER 2 AND 8, 2019.

GROUNDWATER FLOW DIRECTION

500 Penn Center Boulevard, Suite 1000 Pittsburgh, Pennsylvania 15235

FIGURE 2 CCR COMPLIANCE GROUNDWATER MONITORING WELL LOCATION MAP
ASH/REFUSE DISPOSAL SITE
CONEMAUGH GENERATING STATION INDIANA COUNTY, PENNSYLVANIA

Mr. Andrew Wheeler, Administrator, US EPA December 2020

ATTACHMENT 4F

Preliminary Groundwater Monitoring and Statistical Analyses Calendar Year 2020 C190459.01 December 2020

Statistical Analysis for 2020 Groundwater Monitoring Results

The May 2020 groundwater monitoring data for the downgradient wells has been subjected to a direct comparison against the calculated upper prediction limits for background. This comparison indicates elevated sulfate concentrations above background for Well MW-4, consistent with prior observations and as addressed in the Alternate Source Demonstration that still remains relevant.

Samples for the second semi-annual sampling effort were collected in the fourth quarter of 2020. The analytical results are being reviewed as of the time of this submittal.

Conemaugh Generating Station Ash Filter Ponds CCR Appendix III Constituents Detection Monitoring (May 2020)

Monitoring Well	Date	Total Boron (mg/L)	Total Calcium (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Dissolved Solids (mg/L)	Sulfate (mg/L)	pH (S.U.)
	Sampled			Calc	ulated Background			
		0.58	376	1560	0.20	6975	788	4.59-7.42
	17-Dec-15	0.29	333	1540	< 0.1	3620	544	5.49
	27-Jan-16	0.31	288	1280	< 0.1	3180	583	5.87
	20-Apr-16	0.28	170	652	< 0.5	2410	729	6.09
	19-Jul-16 11-Oct-16	0.36 0.46	208 192	1310 1010	0.1 0.2	2760 2640	575 438	5.79 6.56
	17-Jan-17	0.48	198	1030	< 0.1	2650	427	5.87
MW-1B (Upgradient)	24-Apr-17	0.37	166	988	< 0.1	2470	548	5.27
	20-Jul-17	0.39	345	1560	< 0.1	3740	388	5.00
	1-Oct-17	0.36	430	2040	< 0.1	4930	427	5.68
	22-May-18	0.39	120	640	< 0.1	1680	364	5.91
	18-Oct-18	0.89	53	288	3.1	1340	543	7.56
	17-Apr-19 18-Jul-19	0.47 0.44	122 155	467 638	0.3 < 0.1	1300 1630	369 303	6.00 5.60
	3-Oct-19	0.44	190	848	< 0.1	1930	300	5.33
	15-May-20	0.42	218	1170	< 0.1	2510	353	5.41
	11-Oct-16	0.30	191	251	< 0.1	1200	348	6.28
	16-Nov-16	0.31	176	94	0.1	868	416	6.95
	21-Dec-16	0.41	176	101	0.2	1050	519	7.03
	25-Jan-17	0.21	137	68	0.2	726	316	6.93
	21-Mar-17	0.33	158	75	0.1	828	387	6.40
	25-Apr-17	0.29	136	69	< 0.1	792	373	6.28
MW-2	13-Jun-17 27-Jul-17	0.30 0.28	150 133	60 67	< 0.1 < 0.1	768 684	369 310	6.15 6.45
(Upgradient)	4-Oct-17	0.32	138	58	< 0.1	768	330	6.80
	29-May-18	0.10	98	22	0.4	606	185	7.10
	23-Oct-18	0.18	105	21	0.4	550	192	6.97
	15-Apr-19	0.15	99	21	0.4	508	169	7.13
	30-Jul-19	0.15	101	19	0.3	572	194	6.80
	9-Oct-19	0.26	116	54	0.1	564	304	6.19
	15-May-20	0.16	104	18	0.3	534	224	6.27
	16-Dec-15	< 0.05	123	363	< 0.1	882	227	5.74
	26-Jan-16	< 0.05	132	392	< 0.1	970	250	5.94
	25-Apr-16 25-Jul-16	< 0.05 < 0.05	203 115	505 343	< 0.1 < 0.1	1460 972	288 225	6.52 5.72
	24-Oct-16	< 0.05	123	304	< 0.1	902	211	6.01
	17-Jan-17	< 0.05	113	370	< 0.1	976	245	5.95
1414/2	25-Apr-17	< 0.05	181	552	< 0.1	1740	314	5.57
MW-3 (Downgradient)	25-Jul-17	< 0.05	151	389	< 0.1	1270	256	5.47
(Downgradient)	1-Oct-17	< 0.05	135	387	< 0.1	1140	255	6.30
	23-May-18	< 0.05	175	455	< 0.1	1330	276	6.07
	23-Oct-18	< 0.05 < 0.05	152 181	440 553	< 0.1 < 0.1	1150 1440	293 353	5.75 5.97
	22-Apr-19 30-Jul-19	< 0.05	170	497	< 0.1 < 0.1	1720	291	5.66
	21-Oct-19	< 0.05	143	432	< 0.1	1110	261	5.54
	13-May-20	< 0.05	155	464	< 0.1	1320	354	5.98
	21-Dec-15	0.15	301	643	< 0.1	2470	874	5.77
	4-Feb-16	0.13	316	654	< 0.1	2580	870	5.83
	26-Apr-16	0.13	426	932	< 0.1	3390	965	6.19
	25-Jul-16	0.12	346	874	< 0.1	3120	1090	5.82
	26-Oct-16 30-Jan-17	0.17 0.15	310 301	670 736	< 0.1 < 0.1	2530 2740	865 895	6.27 6.12
	30-Jan-17 26-Apr-17	0.15	301	736 863	< 0.1	3310	996	6.68
MW-4	27-Jul-17	0.19	403	977	< 0.1	3350	1170	5.63
(Downgradient)	4-Oct-17	0.14	335	814	< 0.2	3200	1050	6.02
	29-May-18	0.13	345	842	< 0.1	3280	1010	5.96
	24-Oct-18	0.14	290	589	< 0.1	2550	927	5.99
	22-Apr-19	0.10	316	800	< 0.1	2470	892	5.98
	31-Jul-19	0.12	292	650	< 0.1	2430	854	5.62
	21-Oct-19	0.16 0.12	401 306	831 644	< 0.1 < 0.1	3030 2480	1150 987	5.80 6.46
	13-May-20 20-Dec-15	< 0.12	182	388	< 0.1	2480 1580	653	5.59
	2-Feb-16	< 0.05	176	344	< 0.1	1520	576	5.98
	25-Apr-16	< 0.05	175	329	< 0.1	1540	557	5.16
	21-Jul-16	0.34	173	371	< 0.1	1600	591	5.63
	24-Oct-16	< 0.05	173	327	< 0.1	1540	509	6.14
	18-Jan-17	0.11	165	368	< 0.1	1550	543	5.79
MW-23	24-Apr-17	< 0.05	164	383	< 0.1	1520	558	5.21
(Downgradient)	24-Jul-17	< 0.05	183	378	< 0.1	1530	532	5.15
,	1-Oct-17	< 0.05	172 181	313	< 0.1 < 0.1	1520 1460	575 507	6.25 5.63
	22-May-18 22-Oct-18	< 0.05 < 0.05	165	347 355	< 0.1	1460 1450	507 538	5.63 5.70
	17-Apr-19	< 0.05	153	346	< 0.1	1320	527	5.52
	18-Jul-19	< 0.05	164	309	< 0.1	1330	469	5.54
	9-Oct-19	< 0.05	143	350	< 0.1	1320	534	5.69
	13-May-20	0.05	139	363	< 0.1	1260	491	5.74

- Notes:
 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.
 2. Background values based on statistical evaluation of initial eight rounds (Dec. 2015 thru July 2017) of groundwater sampling data for Wells MW-1B and MW-2

Mr. Andrew Wheeler, Administrator, US EPA December 2020

ATTACHMENT 4G

Cobalt Characterization and Associated Groundwater Evaluation Summary of Findings, December 2020

Prepared for:

Keystone-Conemaugh Projects, LLC Conemaugh Generating Station New Florence, Pennsylvania

Prepared by:

Aptim Environmental & Infrastructure, LLC Pittsburgh, Pennsylvania

December 2020

Table of Contents_____

List of	Tables	. iii
List of	Figures	. iii
List of	Appendices	. iii
List of	Acronyms & Abbreviations	.iv
1.0	Introduction	. 1
2.0	Ash Filter Ponds Surface Water and Solid Residuals 2.1 Surface Water Analysis 2.2 Solid Residuals Analysis 2.3 Line of Evidence Findings	. 2 . 2
3.0	CCR Wells and Other Locations Groundwater 3.1 CCR Wells	. 4 . 4
4.0	Local/Regional Soils Composition	. 6 . 7
5.0	Conclusions	. 9
6.0 Tables Figures Append	S	10

List of Tables _____

Table 1	Ash Filter Ponds and CCR Wells—Water Analyses
Table 2	Ash Filter Ponds—Solid Residuals Analyses
Table 3	Soil Boring Analytical Results

List of Figures _____

Figure 1	CCR Groundwater Well Location Map
Figure 2	Cobalt Concentrations in Groundwater
Figure 3	Cobalt Concentrations in Soils
Figure 4	Naturally Occurring Cobalt in Soils—Nationwide
Figure 5	Naturally Occurring Cobalt in Soils—Local

List of Appendices_____

Appendix A	Laboratory Analytical Reports—Ash Filter Ponds Surface Water
Appendix B	Laboratory Analytical Reports—Ash Filter Ponds Solid Residuals
Appendix C	Laboratory Analytical Reports—CCR Monitoring Wells Groundwater
Appendix D	Sanitas™ Input/Output for Cobalt
Appendix E	Soil Boring Logs
Appendix F	Laboratory Analytical Reports—Cobalt in Soils

List of Acronyms & Abbreviations_____

AFP Ash Filter Pond

APTIM Aptim Environmental & Infrastructure, LLC

ASD Alternate Source Demonstration

Bgs below ground surface

CCR Coal Combustion Residuals

CME CME Engineering

GWPS Groundwater Protection Standard

mg/kg milligrams per kilogram
mg/L milligrams per liter
ppm parts per million

Rule Disposal of Coal Combustion Residuals (CCR) from Electric Utilities final rule

SPLP Synthetic Precipitation Leaching Procedure

SSI Statistically Significant Increase
SSL Statistically Significant Level
Station Conemaugh Generating Station
USGS United States Geological Survey

1.0 Introduction

As requested by Keystone-Conemaugh Projects, LLC, Aptim Environmental & Infrastructure, LLC (APTIM) developed and implemented a site investigation at the Conemaugh Generating Station (Station) to evaluate groundwater quality aspects in the areas proximate and downgradient to the existing Ash Filter Ponds (AFPs). These aspects were focused specifically on cobalt in the context of the four AFPs (Ponds "A," "B," "C," and "D") being a consolidated Coal Combustion Residuals (CCR) unit subject to the groundwater monitoring requirements outlined in the CCR Rule (Rule). This focus was further driven by the Station's anticipated submittal of an Application Package under the recently established Part B provisions of the Rule (which become effective on December 14, 2020), applicable portions of which are codified in 40 CFR §257.71(d).

In accordance with the Rule, groundwater monitoring at the AFPs has been ongoing since late 2015, beginning with the required collection of eight rounds of background data per the Detection Monitoring obligations outlined in §257.94. The background datasets comprise all CCR Appendix III and IV constituents and encompass two upgradient wells (Wells MW-1B and MW-2) and three downgradient wells (Wells MW-3, MW-4, and MW-23), which form the CCR groundwater monitoring network (see attached Figure 1). Data from these initial eight rounds were utilized to calculate an upper prediction limit (using SanitasTM statistical software) for each of the Appendix III constituents. Subsequent monitoring and comparison against these values revealed sulfate in downgradient Well MW-4 at levels representing a statistically significant increase (SSI) over background. Per §257.94(e)(2), a successful Alternate Source Demonstration (ASD) was completed (APTIM, April 2018), which identified incidental surface spillage/deposition of gypsum (from truck-based hauling) to be the cause of the elevated sulfate concentrations in Well MW-4. To date, sulfate in Well MW-4 persists as the sole SSI observed, and with continued applicability of the ASD, the AFPs have appropriately remained in Detection Monitoring.

Considering the Station's intent to submit a Part B Application Package, and recognition that cobalt (a CCR Appendix IV constituent) had been detected in groundwater during initial background monitoring at measurable levels in each of the three downgradient wells, APTIM's current investigation objectives were structured to examine potential lines of evidence to either identify or negate the AFPs as a possible reason for the elevated levels. These lines of evidence were centered around the surface water and solid residuals (i.e., bottom ash) in the AFPs, the localized groundwater quality (in the five CCR wells and other existing well locations), and composition of the local/regional soils. The following sections of this report provide a condensed summary of the data/information gathered from September-October 2020 field activities and laboratory analyses used to evaluate these lines of evidence, along with preliminary conclusions drawn from the findings.

2.1 Surface Water Analysis

Under direction from APTIM and per the approved scope of work for the investigation, surface water samples were collected by CME Engineering (CME) from each of the four AFPs and submitted to Geochemical Testing (Somerset, PA) for laboratory analyses. The results from the samples (collected on September 23, 2020) are summarized in the attached Table 1 providing data for all CCR Appendix III and IV constituents, along with select other elements (aluminum, iron, and manganese) and various cations/anions. Copies of the laboratory reports are provided in Appendix A. With regard to cobalt, it is clear from the data that this constituent was not detected in any of the surface water samples collected from the AFPs (all values reported as < 0.005 milligrams per liter [mg/L]). Beyond cobalt, however, it is noted that several other CCR Appendix IV constituents were detected, including antimony, arsenic, lead, lithium, selenium and thallium. These two combined observations hold particular significance when comparisons are made to the results for these same constituents in the downgradient monitoring wells (further discussed in Section 3.0).

2.2 Solid Residuals Analysis

In conjunction with the surface water sampling, CME also collected samples of the solid residual materials from each of the AFPs. These materials represent accumulated fine bottom ash that has settled out from the sluicing transport water. The samples were submitted to Geochemical Testing for analysis of total metals (including cobalt), and then further subjected to testing via the Synthetic Precipitation Leaching Procedure (SPLP) to understand the potential ability of cobalt to leach from the ash matrix. Copies of the laboratory reports are provided in Appendix B. As shown in the attached Table 2, total cobalt was measured in each of the bottom ash samples at concentrations ranging from 6.0 to 33.3 milligrams per kilogram (mg/kg), or equivalently expressed as parts per million (ppm). When the solid materials were subjected to the SPLP testing, the results consistently indicated non-detect levels of cobalt in the leachate extract providing acknowledgement of this constituent being tightly bound to the ash matrix. These SPLP results further support and substantiate the observed absence of cobalt in the surface water samples noted in Section 2.1.

2.3 Line of Evidence Findings

In view of the information presented above and contained in Tables 1 and 2, the lack of cobalt in the surface water of the AFPs and its further propensity to remain bound in the ash matrix clearly suggest that detected levels of cobalt in the downgradient CCR Monitoring Wells MW-3, MW-4, and MW-23 are not linked to the AFPs. Conversely, the presence of certain CCR Appendix IV constituents in the surface water and their corresponding absence in the downgradient wells offers

further evidence of an incomplete migration pathway. This is particularly the case for lithium, which is quite often considered a tracer in some applications due to its stable isotope ratio and relative mobility. Concentrations of this constituent are on average 80-fold higher in the surface water of the AFPs than the non-detect levels (< 0.01 mg/L) in each of the downgradient wells.

3.1 CCR Wells

Again under the direction of APTIM, groundwater samples were collected by CME from each of the five wells that comprise the CCR Monitoring Network for the AFPs, and submitted to Geochemical Testing for laboratory analyses. The results from the samples (collected on September 23, 2020) are summarized in the attached Table 1 (alongside the surface water data for the AFPs), and represent the same list of parameters evaluated for the AFPs. Copies of the laboratory reports are provided in Appendix C. With regard to cobalt, it was reported in upgradient Well MW-1B at a concentration just above the detection limit (0.005 mg/L), and also in each of the downgradient wells at concentrations ranging from 0.010 to 0.053 mg/L. When reviewed against the data generated from the initial eight rounds of background sampling (December 2015 – July 2017), this pattern of detections and the relative concentrations remain consistent, with downgradient Well MW-23 exhibiting the highest cobalt levels.

Although the AFPs have never progressed to CCR Assessment Monitoring (based on the successful ASD for sulfate), for purposes of the current study the data from the background sampling was input to the SanitasTM software and a corresponding CCR Groundwater Protection Standard (GWPS) was generated. The input and abbreviated output files from the Sanitas application are provided in Appendix D, and show a calculated GWPS for cobalt of 0.013 mg/L. If a comparison were done and applicable, the September 2020 cobalt results would be considered to represent a statistically significant level (SSL) above the GWPS in downgradient Wells MW-4 and MW-23. Notwithstanding, the absence of cobalt in the AFPs surface water invariably implies that there must be another reason for the levels of cobalt observed in the groundwater. Moreover, and as previously highlighted in Section 2.1, the presence of several other CCR Appendix IV constituents in the AFPs surface water but absence in the groundwater additionally points to an unlikely migration pathway. These constituents notably include antimony, arsenic, lead, lithium, selenium, and thallium, with lithium again cited as a potentially useful tracer in certain applications due to its stable isotope ratio and relative mobility in aqueous environments.

3.2 Other Existing Well Locations

To help illustrate the levels of cobalt in the groundwater, Figure 2 has been prepared to show measured concentrations (from the September 2020 sampling) in the CCR monitoring wells along with historical concentrations reported from other existing onsite wells. Examination of this figure yields several noted observations from a more holistic perspective. Out of the total number of 34 wells (including five CCR wells plus 29 other existing wells) for which cobalt data is available, there are 23 locations where cobalt was detected in the groundwater. This includes four of the five CCR wells, plus 19 other wells spread across various portions of the Station property. The highest

concentrations appear to be clustered in an area east/southeast of the AFPs and also spanning northward along the right-descending riverbank between existing Wells SH-9 and SH-23. The majority of these well locations, including other more interior-based wells with measured cobalt concentrations (Wells SH-1, SH-16, SH-17, and SH-21) are recognizably outside the generally identified downgradient groundwater flow paths from the AFPs.

In addition to showing the cobalt groundwater concentrations, this figure also serves as a precursor to the discussion provided in Section 4.0, with identification of 13 soil boring locations (designated as SB-1 thru SB-13) which were investigated during the September 2020 activities. These borings were intended to provide information regarding the possible presence of naturally occurring cobalt in the soils, and were placed in locations proximate to existing groundwater wells, including the five CCR monitoring wells.

3.3 Line of Evidence Findings

Similar to the surface water discussion in Section 2.3, the identified presence/absence of certain constituents in groundwater offers meaningful insight regarding a possible pathway and contributions from the AFPs to groundwater. Despite measurable levels of cobalt in the downgradient CCR wells (at levels that could represent an SSL, if applicable), the fact remains that cobalt was not detected in any of the AFP surface water samples or found to leach from ash solids stored in the ponds. The complete absence of other noted CCR Appendix IV constituents (particularly lithium) from the downgradient wells, and their consistent presence in each of the AFPs is also suggestive of an incomplete migration pathway. On a broader scale, the incidence of cobalt in groundwater extends to monitoring wells outside the immediate area (and any potential influence) of the AFPs. Of the 34 wells (5 CCR wells plus 29 others) shown on Figure 2 with available data, 23 of the wells have measurable levels of cobalt. Outside of the CCR wells, a significant portion of the other existing onsite wells have cobalt concentrations on par with the CCR wells and in some cases are even higher. A small area east of the AFPs shows cobalt concentrations in groundwater to be two to three-fold greater than those measured in CCR Well MW-23, which has the highest cobalt concentration of the three downgradient wells. Collectively, these findings and observations continue to support the mounting evidence that the AFP water is not the cause of cobalt in the groundwater.

4.0 Local/Regional Soils Composition

4.1 Local Soils

To gather information and data to examine the final line of evidence regarding cobalt in soils, APTIM personnel conducted a soil boring program in parallel with the other surface water and groundwater sampling activities completed by CME. Boring locations (in areas proximate to existing monitoring wells) were selected following a site reconnaissance on September 16, 2020, with actual field work commencing on September 21, 2020. Over the course of three days and concluding on September 23, 2020, a total of thirteen soil borings (designated as SB-1 thru SB-13) were advanced down to depths which reached into the saturated zone (groundwater-bearing zone) at each location. Based primarily on visual screening of the soil materials, samples were collected at each location to provide at least one from the vadose zone (unsaturated) and one from the saturated zone. Additional samples were collected if unusual or anomalous materials were encountered, such as coal fragments, uniquely colored soils, or recognizable minerals (e.g., pyrite). Boring logs were prepared to document the materials retrieved at each location and are provided in Appendix E.

Collected samples were submitted to RJ Lee Group, Inc. (Monroeville, PA) and analyzed for total metals, including cobalt along with aluminum, iron, and manganese. The results from the analyses are summarized in the attached Table 3, which in turn, was used to develop the attached Figure 3 that shows the soil boring locations and the cobalt concentrations measured at each sample depth. Table 3 also incorporates brief excerpts from the logs that relate to the approximate sampling horizons at each boring location. Copies of the laboratory reports are provided in Appendix F.

From review of Table 3 and Figure 3, it is seen that cobalt was detected at every boring location and within every sample collected, irrespective of the depth horizon and with no obvious depth-dependent pattern. Cobalt concentrations in the individual soil samples ranged from 9.9 to 59.1 mg/kg, with the highest reading measured at location SB-12 (furthest upriver location) at a depth of 18-20 feet below ground surface (bgs). As it is known that cobalt tends to be higher in shale-based rocks, the frequently noted presence of shale and shale fragments at this location could be tied to the elevated cobalt concentration. Soil borings SB-1, SB-2, and SB-3, which were located near each of the three existing downgradient CCR monitoring wells (see Figure 3), showed average cobalt concentrations of 20.9, 19.6, and 20.3 mg/kg, respectively.

When attempts are made to potentially correlate the cobalt soil concentrations to the cobalt groundwater concentrations, it becomes apparent that there is not a simple linear/direct relationship that associates higher groundwater concentrations with higher soil concentrations. In the case of cobalt, there are numerous variables that contribute to its behavior and predicted/observed localized mobility and partitioning into the groundwater. Some of these factors include soil and

groundwater pH, oxidation-reduction potential and the presence of dissolved organic matter in groundwater, interactions/substitution into certain minerals, and retention by oxide and hydroxide compounds of iron and manganese, to name a few. At a very high level, and recognizing that the behavior of cobalt under weathered conditions follows that of iron and manganese, it is perhaps not coincidental that some of the highest cobalt concentrations in groundwater were found in wells that also have some of the highest manganese concentrations. This would encompass Wells SH-9, SH-10, and SH-12, (previously referenced as a cluster east of the AFPs), and would also include downgradient CCR Well MW-23, which has cobalt and manganese concentrations generally on par with Well SH-9.

In any event, identification of the particular mechanisms contributing to the varying cobalt groundwater concentrations observed in the monitoring wells would require considerable effort, including potential additional laboratory examination using sequential extraction procedures to speciate the cobalt in the soils. Nonetheless, quantification of these mechanisms would not alter the current observations, which affirm that cobalt is widespread and naturally occurring source in the local soils, and thus a principal contributing factor to the detected groundwater concentrations.

4.2 Regional Soils

Building on the supposition that naturally occurring cobalt in the soils is responsible for the concentrations being found in the groundwater, a search of available literature and online publications was conducted. This review identified a significant amount of information from the United States Geological Survey (USGS), including documents that summarize and graphically depict naturally occurring cobalt concentrations in soils across the country. The attached Figure 4 shows a nationwide illustration of near-surface (within the top several feet) naturally occurring cobalt concentrations in soils based upon sampling performed by USGS. The darker red and orange colorations indicate the highest cobalt concentrations, as represented by a predominant region of the northwest and also in the Ohio River Valley and portions of Appalachia. Upon closer examination, the attached Figure 5 provides a magnified view of the area local to the Station, using New Florence, PA as the central reference point. As shown, the Station (New Florence) lies within an area regionally characterized as being in the top 30-40 percent in terms of naturally occurring cobalt concentrations in soil. From the data presented in Table 3, the vast majority of the samples (although collected at generally deeper depth horizons than the USGS samples) actually fall within the 80th-100th percentile ranges cited by the USGS (shown on the legends on Figures 4 and 5).

4.3 Line of Evidence Findings

The widespread and consistent presence of cobalt in the samples analyzed and the convincing support documentation from USGS both serve to fully support the position that soils concentrations are naturally occurring. Mobility and detection of dissolved cobalt at the different well locations hinges on numerous variables along with geochemical and lithological conditions,

and thus localized variations in these conditions will dictate the behavior of cobalt in the subsurface aqueous environment. This line of evidence further corroborates the determination that the AFPs are not responsible for cobalt in the groundwater in the subject CCR monitoring wells nor at other locations.

5.0 Conclusions

The findings as presented herein bring together the information generated to examine the three lines of evidence initially laid out as part of the current study. These findings have yielded key elements, including the absence of cobalt in the AFP surface water; the absence of other noted Appendix IV constituents (which were detected in the AFP surface water) from the downgradient CCR monitoring wells; and the ubiquitous presence of naturally occurring cobalt in the local soils. When viewed individually, the findings provide supporting aspects to the overall objectives of the study and when considered collectively, they provide a very compelling narrative that very convincingly suggests that the native soil concentrations and not the AFPs are the responsible cause for the cobalt in the groundwater.

6.0 References

Chemical and Isotopic Tracers. Global Network on Water and Development Information for Arid Lands (G-WADI). Accessed via gwadi.org/tools-resources/chemical-isotopic-tracers.

Kim, James H, Gibb, Herman J., and Howe, Paul D. 2006. "Cobalt and Inorganic Cobalt Compounds." World Health Organization Publication—Concise International Chemical Assessment Document 69.

Slack, John F., Kimball, Bryn E., and Shedd, Kim B. 2017. "Cobalt - Chapter F of Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply." U.S. Department of the Interior—U.S. Geological Survey. Professional Paper 1802-F.

Smith, David B., Cannon, William F., Woodruff, Laurel G., Solano, Federico, and Ellefsen, Karl J. 2017. "Geochemical and Mineralogical Maps, with Interpretation, for Soils of the Conterminous United States." U.S. Department of the Interior—U.S. Geological Survey. Scientific Investigations Report 2017-5118.

Tables

Table 1
Ash Filter Ponds and CCR Wells – Water Analyses
Conemaugh Generating Station

Parameter	Units	MW-1B (Upgradient)	MW-2 (Upgradient)	MW-3 (Downgradient)	MW-4 (Downgradient)	MW-23 (Downgradient)	MW-23 DUP (Downgradient)	Ash Filter Pond A	Ash Filter Pond B	Ash Filter Pond C	Ash Filter Pond D
		9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020	9/23/2020
Field Readings:									1,21,222		
Groundwater Elevation	ft MSL	1073.94	1074.07	1071.06	1071.85	1070.54	1070.54	N/A	N/A	N/A	N/A
Specific Conductance	µmhos/cm	3650	1330	1720	3120	2020	2020	2770	2750	2730	2810
Dissolved Oxygen	mg/L	0.00	6.91	0.00	0.00	ND @ 0.1	ND @ 0.1	4.60	2.51	8.95	0.86
Temperature	°C	15.7	16.2	19.7	19.2	20.2	20.2	24.0	23.4	23.2	23.3
Turbidity	NTU	0.60	ND @ 0.1	ND @ 0.1	ND @ 0.1	17.8	17.8	24.5	26.2	41.3	46.8
рН	S.U.	5.48	6.43	5.78	5.92	5.57	5.57	6.98	7.68	7.78	8.02
CCR Appendix III:				•							
Total Boron	mg/L	0.40	0.33	ND @ 0.05	0.10	0.05	0.07	5.86	5.21	5.60	5.93
Total Calcium	mg/L	154	137	131	209	127	119	453	409	442	456
Total Chloride	mg/L	830	171	419	461	321	321	126	121	120	120
Total Fluoride	mg/L	ND @ 0.1	0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	0.2	0.2	0.2	0.2
Total Dissolved Solids	mg/L	1940	846	1210	1700	1190	1210	2340	2250	2190	2340
Sulfate	mg/L	413	348	236	680	462	465	1500	1430	1430	1430
рН	S.U.	5.48	6.43	5.78	5.92	5.57	5.57	6.98	7.68	7.78	8.02
CCR Appendix IV:											
Total Antimony	mg/L	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001	0.0015	0.0016	0.0017	0.0013
Total Arsenic	mg/L	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001	0.021	0.033	0.045	0.025
Total Barium	mg/L	0.02	0.01	0.04	0.01	0.01	0.01	0.05	0.06	0.06	0.06
Total Beryllium	mg/L	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001
Total Cadmium	mg/L	0.002	ND @ 0.002	ND @ 0.002	ND @ 0.002	ND @ 0.002	ND @ 0.002	ND @ 0.002	0.002	0.002	ND @ 0.002
Total Chromium	mg/L	ND @ 0.01	ND @ 0.01	ND @ 0.01	ND @ 0.01	ND @ 0.01	ND @ 0.01	ND @ 0.01	ND @ 0.01	ND @ 0.01	ND @ 0.01
Total Cobalt	mg/L	0.005	ND @ 0.005	0.010	0.020	0.053	0.050	ND @ 0.005	ND @ 0.005	ND @ 0.005	ND @ 0.005
Total Fluoride	mg/L	ND @ 0.1	0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	0.2	0.2	0.2	0.2
Total Lead	mg/L	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001	0.0016	0.0029	0.0095	0.0021
Total Lithium	mg/L	0.02	ND @ 0.01	ND @ 0.01	ND @ 0.01	ND @ 0.01	ND @ 0.01	0.89	0.82	0.84	0.89
Total Mercury	mg/L	ND @ 0.0002	ND @ 0.0002	ND @ 0.0002	ND @ 0.0002	ND @ 0.0002	ND @ 0.0002	ND @ 0.0002	ND @ 0.0002	ND @ 0.0002	ND @ 0.0002
Total Molybdenum	S.U.	ND @ 0.02	ND @ 0.02	ND @ 0.02	ND @ 0.02	ND @ 0.02	ND @ 0.02	ND @ 0.02	ND @ 0.02	ND @ 0.02	ND @ 0.02
Total Selenium	mg/L	0.0018	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001	ND @ 0.001	0.0014	0.0018	0.0020	0.0018
Total Thallium	mg/L	ND @ 0.0002	ND @ 0.0002	ND @ 0.0002	ND @ 0.0002	ND @ 0.0002	ND @ 0.0002	0.0016	0.0032	0.0030	0.0022
Total Radium 226+228	pCi/L	0.29	-0.59	1.44	0.22	0.93	0.41	1.02	0.36	0.61	-0.14
Supplemental Metals:	Т		T	T	T	T	1		T	T .	T
Total Aluminum	mg/L	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	0.2	0.2	0.4	0.4
Dissolved Aluminum	mg/L	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1
Total Cobalt	mg/L	0.005	ND @ 0.005	0.010	0.020	0.053	0.050	ND @ 0.005	ND @ 0.005	ND @ 0.005	ND @ 0.005
Dissolved Cobalt	mg/L	ND @ 0.005	ND @ 0.005	0.010	0.020	0.048	0.050	ND @ 0.005	ND @ 0.005	ND @ 0.005	ND @ 0.005
Total Iron	mg/L	0.07	ND @ 0.05	0.48	0.14	11.8	10.8	0.63	0.31	0.60	0.79
Dissolved Iron	mg/L	ND @ 0.05	ND @ 0.05	0.47	0.10	10.3	11.0	ND @ 0.05	ND @ 0.05	ND @ 0.05	ND @ 0.05
Total Manganese	mg/L	2.89	1.54	3.80	4.64	6.70	6.26	0.24	0.22	0.24	0.22
Dissolved Manganese	mg/L	2.64	1.53	4.06	4.95	6.11	6.45	0.23	0.23	0.24	0.20
Anions:	/I CC0	4.4	00	1 44	F0	1 44	1 44 1	0.5	00	0.5	
Alkalinity to pH 4.5	mg/L CaC0 ₃	14	98	44	53	44	44	25	23	25	26
Chloride	mg/L	830 NR G 0.1	171	419	461	321	321	126	121	120	120
Fluoride	mg/L	ND @ 0.1	0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	0.2	0.2	0.2	0.2
Sulfate	mg/L	413	348	236	680	462	465	1500	1430	1430	1430
Cations:	ma a h	ND @ 0.1	ND G C 1	ND Q C 1	ND © 0.1	ND @ 0.1	ND Q 0.1	0.0	0.0	0.4	0.4
Aluminum	mg/L	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	0.2	0.2	0.4	0.4
Barium	mg/L	0.02	0.01	0.04	0.01	0.01	0.01	0.05	0.06	0.06	0.06
Boron	mg/L	0.40	0.33	ND @ 0.05	0.10	0.05	0.07	5.86	5.21	5.60	5.93
Calcium	mg/L	154	137	131	209	127	119	453	409	442	456
Iron	mg/L	0.07	ND @ 0.05	0.48	0.14	11.8	10.8	0.63	0.31	0.60	0.79
Lithium	mg/L	0.02	ND @ 0.01	ND @ 0.01	ND @ 0.01	ND @ 0.01	ND @ 0.01	0.89	0.82	0.84	0.89
Magnesium	mg/L	27.1	39.7	61.7	52.0	48.4	45.3	65.2	59.1	64.5	65.9
Manganese	mg/L	2.89	1.54	3.80	4.64	6.70	6.26	0.24	0.22	0.24	0.22
Potassium	mg/L	13.6	3.4	2.1	3.5	2.3	2.2	30.4	27.9	29.5	30.9
Sodium	mg/L	439	67.6	111	236	172	158	87.3	79.4	81.7	84.8

N/A = Not applicable.

ND = Not detected at or above the indicated reporting limit.

Table 2
Ash Filter Ponds – Solid Residuals Analyses
Conemaugh Generating Station

		Ash Ponds Solids – Total Metals and SPLP Metals Analyses									
Parameter	Units	Ash Filter Pond A	Ash Filter Pond B	Ash Filter Pond C	Ash Filter Pond D						
		9/23/2020	9/23/2020	9/23/2020	9/23/2020						
Total Metals:											
Aluminum	mg/kg	12,700	8,000	6,610	6,540						
Cobalt	mg/kg	33.3	25.5	6.0	11.3						
Iron	mg/kg	57,200	45,200	27,800	45,600						
Manganese	mg/kg	1,170	1,270	65	227						
SPLP Metals:											
Aluminum	mg/L	0.5	0.4	0.1	0.3						
Cobalt	mg/L	ND @ 0.005	ND @ 0.005	ND @ 0.005	ND @ 0.005						
Iron	mg/L	0.34	ND @ 0.05	ND @ 0.05	0.08						
Manganese	mg/L	0.05	ND @ 0.01	ND @ 0.01	ND @ 0.01						

ND = Not detected at or above the indicated reporting limit.

Table 3 Soil Boring Analytical Results Conemaugh Generating Station

Soil Boring Location & Depth (ft bgs)	Soil Depth Zone (Vadose or Saturated)	Date Collected	Soil Borings – Total Metals Analyses				
			Aluminum (mg/kg)	Cobalt (mg/kg)	Iron (mg/kg)	Manganese (mg/kg)	Notes (from boring logs)
SB-1			(33)	(99)	(99)	(33/	
5 - 7	Vadose	9/21/2020	51,100	34.0	48,600	1,250	Orangish-gray Clay, mottled, silt and sand, moist
7 - 8	Vadose	9/21/2020	69,200	17.5	55,500	380	Dark black CLAY seam, moist
18 - 20	Saturated	9/21/2020	32,500	11.3	60,200	295	Dark brown to organish-brown SAND, wet
SB-2							,
6 - 8	Vadose	9/21/2020	54,200	21.4	46,600	801	Dark brown SILT with some clay, moist
13 - 13.5	Vadose	9/21/2020	47,500	14.8	38,800	425	Dark black COAL lens
18 - 20	Saturated	9/21/2020	65,900	22.7	43,600	537	Weathered SANDSTONE boulder, iron-stained, wet
SB-3			l l		·		
6 - 8	Vadose	9/22/2020	36,000	26.5	35,900	169	Dark brown sandy CLAY, mottled orange, dry
9 - 10	Vadose	9/22/2020	65,500	24.4	47,000	1,080	Dark brown/black sandy CLAY, organic matter, damp
18 - 20	Saturated	9/22/2020	37,300	9.9	33,700	183	Orangish to dark brown SAND, some silt, wet
SB-4/SB-4R					•		·
5 - 7	Vadose	9/22/2020	52,600	15.2	33,100	632	Dark brown CLAY, black staining, coal fragments, dry
8 - 10	Vadose	9/22/2020	52,200	17.1	36,000	429	Light brown/orangish-red sandy CLAY, dry
18 - 20	Saturated	9/23/2020	43,100	23.6	48,000	515	Orangish-brown/red SAND, large coal fragments, wet
SB-5					•		
5 - 6	Vadose	9/22/2020	56,300	11.4	28,300	227	Orangish-brown SAND, some clay, coal fragments, damp
12.5 - 14.5	Saturated	9/22/2020	38,500	17.5	41,700	524	Tan/light-brown SAND, quartz pebbles, wet
SB-6					•		•
4 - 5	Vadose	9/22/2020	106,000	29.5	58,000	1,610	Orangish-brown sandy CLAY, coal fragments, dry
6 - 8	Vadose	9/22/2020	102,000	28.0	55,000	1,300	Same as above, with increasing coal fragments, moist
12 - 14	Saturated	9/22/2020	52,700	28.0	61,500	2,470	Dark orangish-brown clayey SAND, pebbles, wet
SB-7					•		, , , ,
6 - 8	Vadose	9/22/2020	55,200	26.7	52,000	1,600	Dark brown clayey SAND, trace coal at 7.3 ft, wet
12 - 14	Saturated	9/22/2020	37,500	15.4	38,400	381	Grades brown silty CLAY to dark brown SAND, wet
SB-8							•
8 - 10	Vadose	9/23/2020	54,400	18.1	39,300	831	Dark gray/black clayey SILT, trace coal fragments, moist
13 - 15	Vadose	9/23/2020	76,100	10.1	28,100	82	Same as above, with larger coal fragments, moist
22 - 24	Saturated	9/23/2020	49,400	21.5	81,600	569	Dark brown/black SAND; sandstone fragments, wet
SB-9					•		
4 - 5	Vadose	9/23/2020	86,500	28.1	51,000	903	Orangish-brown silty CLAY, some sand, coal fragments, damp
8 - 10	Vadose	9/23/2020	57,900	29.3	72,400	858	Orangish-brown clayey SAND, trace coal fragments, damp
18 - 20	Saturated	9/23/2020	62,300	23.7	83,800	341	Dark orangish-brown SAND; coal fragments, wet
SB-10							
5 - 5.5	Vadose	9/23/2020	82,300	24.8	67,500	411	Black SAND, some coal fragments, moist
10 - 12	Vadose	9/23/2020	67,100	28.2	79,400	1,770	Orangish-brown clayey SILT, coal from 10.5-11.0 ft, dry-moist
18 - 20	Saturated	9/23/2020	58,900	24.9	80,900	853	Dark brown SAND, sandstone fragments and pebbles, wet
SB-11							
4 - 5	Vadose	9/23/2020	63,300	26.5	42,100	1,270	Dark brown silty CLAY grading to more sand, trace coal fragments, damp
10 - 13	Saturated	9/23/2020	59,000	24.8	65,900	1,440	Dark brown/orangish-red SAND, some coal and sandstone, wet
SB-12							
8 - 10	Vadose	9/23/2020	103,000	29.2	65,100	1,740	Tan/brown sandy SILT, trace coal, clay/gravel and shale fragments, dry
18 - 20	Vadose	9/23/2020	73,200	59.1	40,100	417	Orangish-brown CLAY, coal at 14.2 ft, silt/shale fragments, moist
23 - 24	Saturated	9/23/2020	82,800	32.1	58,200	205	Bright orangish-red clayey SILT; sand and weathered shale, moist-wet
SB-13							
6 - 8	Vadose	9/23/2020	57,700	18.2	40,100	858	Orangish-brown/dark brown silty CLAY; coal fragments, dry
12 - 14	Saturated	9/23/2020	32,600	12.0	24,300	192	Dark brown clayey SAND, wet

ROJECT\110870\Conemaugh\GW INVESTIGATION\631016449\6310 Timer Dec 03, 2020 — 10:55am Kref: Evan.Schlegel

File: Plot

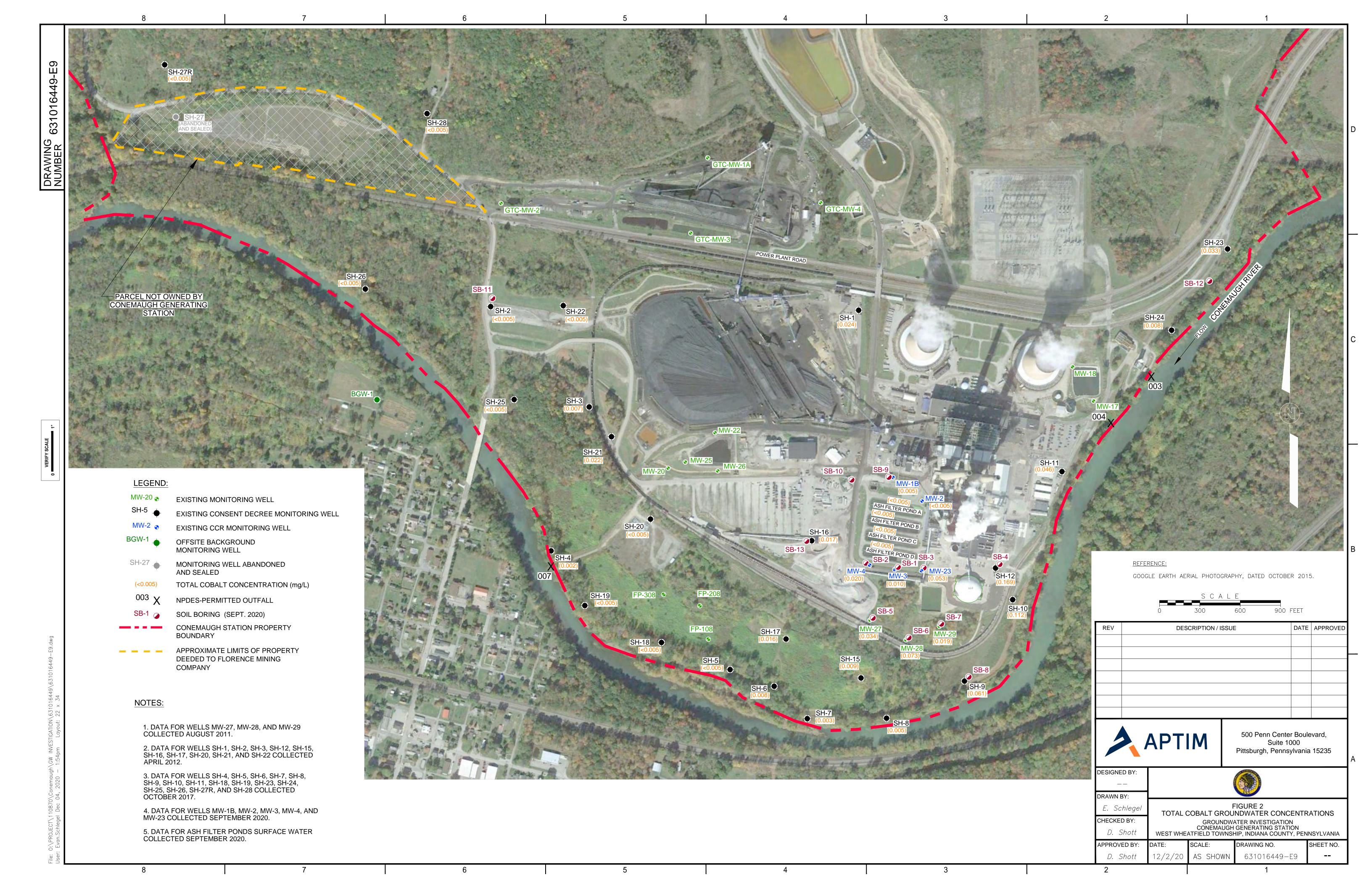
LEGEND:

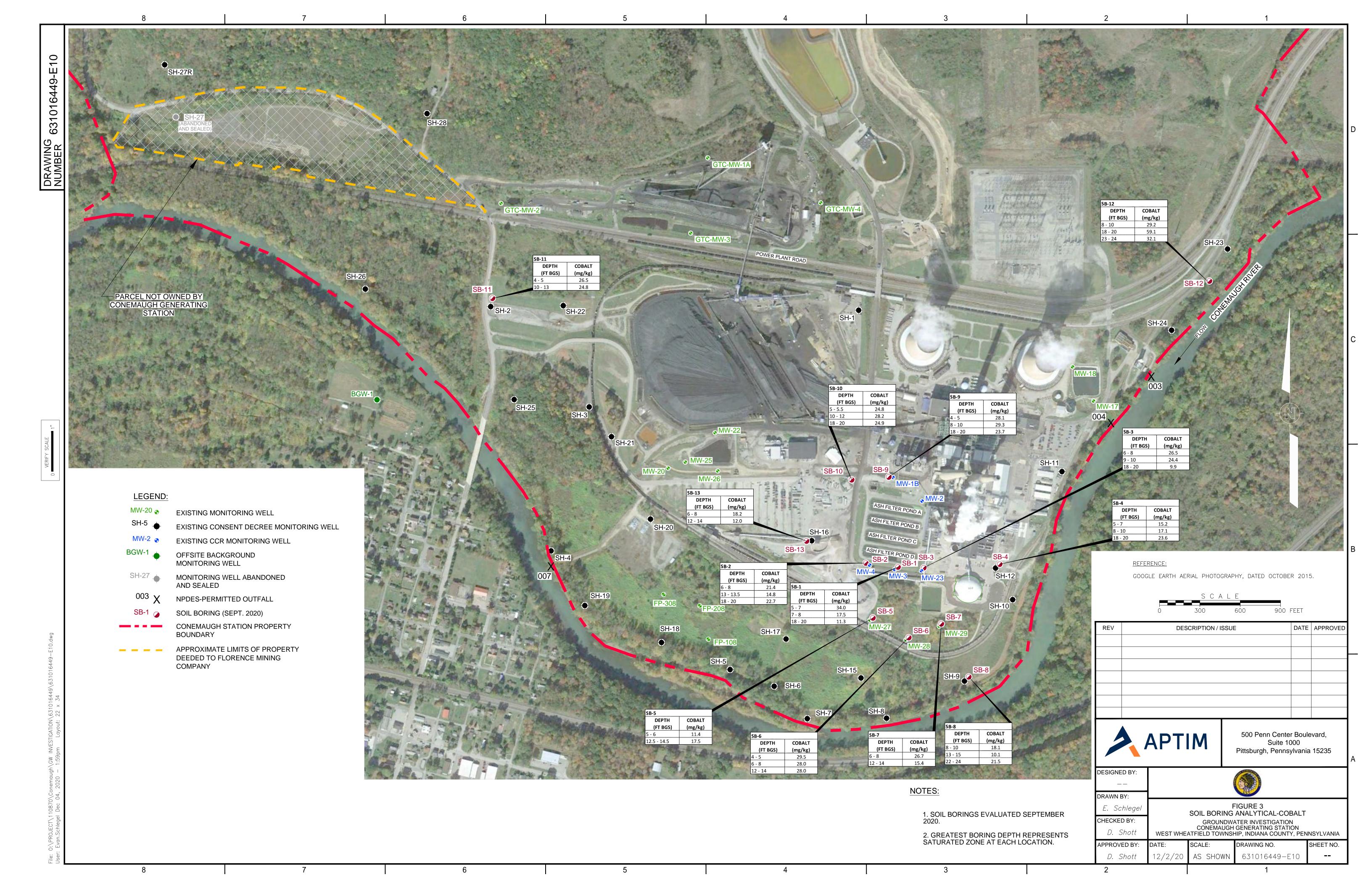
MW-3 CCR GROUNDWATER MONITORING WELL WI MONITORING WELL WITH **GROUNDWATER ELEVATION MEASURED ON SEPTEMBER** 23, 2020

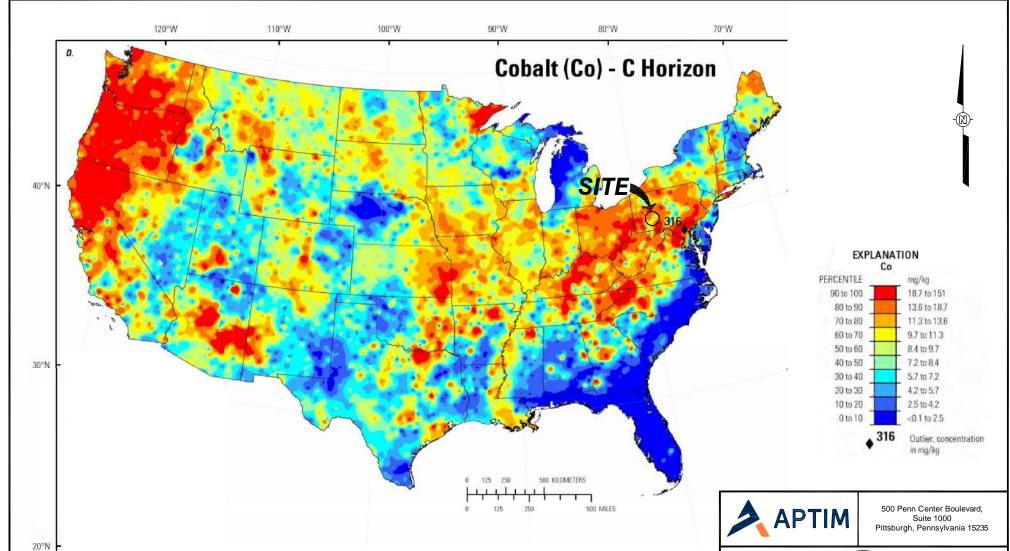
> **GROUNDWATER GENERALIZED** FLOW DIRECTION

REFERENCE:

GOOGLE AERIAL PHOTOGRAPH, DATED 10/2015.

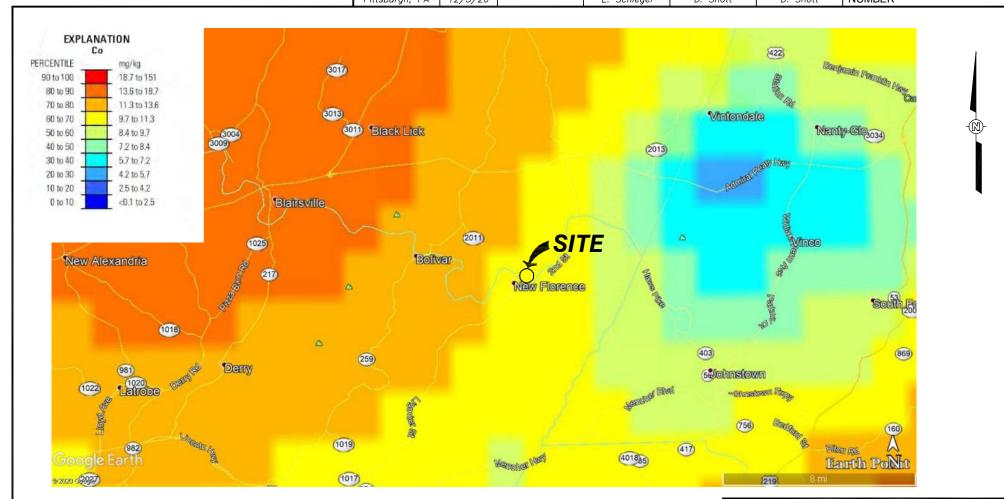



500 Penn Center Boulevard, Suite 1000 Pittsburgh, Pennsylvania 15235


FIGURE 1 CCR COMPLIANCE GROUNDWATER MONITORING WELL LOCATION MAP **ASH FILTER PONDS**

CONEMAUGH GENERATING STATION INDIANA COUNTY, PENNSYLVANIA

 $File: O:\PROJECT\110870\Conemaugh\GW\ INVESTIGATION\631016449\631016449-A1.dwg$ Plot Date/Time: Dec 03, 2020 - 9:27am Xref: APPROVED BY DRAWING **OFFICE** DATE **DESIGNED BY DRAWN BY CHECKED BY** Plotted By: Evan.Schlegel Image 631016449-A1 NUMBER Pittsburgh, PA 12/3/20 E. Schlegel D. Shott D. Shott


REFERENCE:

U.S.G.S. GEOCHEMICAL AND MINERALOGICAL MAPS FOR SOILS OF THE CONTERMINOUS UNITES STATES, OPEN FILE REPORT 2014 - 1082. FIGURE 4 NATURALLY OCCURRING COBALT IN SOILS NATIONWIDE

CONEMAUGH GENERATING STATION INDIANA COUNTY, PENNSYLVANIA

File: O:\PROJECT\110870\Conemaugh\GW INVESTIGATION\631016449\631016449-A2.dwg

Plot Date/Time: Dec 03, 2020 - 9:51am Xref: APPROVED BY DRAWING **OFFICE** DATE **DESIGNED BY DRAWN BY CHECKED BY** Plotted By: Evan.Schlegel Image 631016449-A2 NUMBER Pittsburgh, PA 12/3/20 E. Schlegel D. Shott D. Shott

500 Penn Center Boulevard, Suite 1000 Pittsburgh, Pennsylvania 15235

FIGURE 5 NATURALLY OCCURRING COBALT IN SOILS LOCAL

CONEMAUGH GENERATING STATION INDIANA COUNTY, PENNSYLVANIA

REFERENCE:

U.S.G.S. GEOCHEMICAL AND MINERALOGICAL MAPS FOR SOILS OF THE CONTERMINOUS UNITES STATES, OPEN FILE REPORT 2014 - 1082.

2005 N. Center Ave. Somerset, PA 15501

814/443-1671 814/445-6666 FAX: 814/445-6729

Wednesday, October 21, 2020

John Shimshock CONEMAUGH OPERATING, LLC CONEMAUGH STATION PO BOX K NEW FLORENCE, PA 15944

RE: Conemaugh CCR 3rd Qtr 2020 Order No.: G2009E08

Dear John Shimshock:

Geochemical Testing received 4 sample(s) on 9/23/2020 for the analyses presented in the following report.

There were no problems with sample receipt protocols and analyses met the TNI/NELAC, EPA, and laboratory specifications except where noted in the Case Narrative or Laboratory Results.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Timothy W. Bergstresser Director of Technical Services

Timos W Ley trus

Leslie A. Nemeth Project Manager

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC

Project: Conemaugh CCR 3rd Qtr 2020

Lab Order: G2009E08

CASE NARRATIVE

Date: 21-Oct-20

No problems were encountered during analysis of this workorder, except if noted in this report.

The radiological analysis (Radium 226 by EPA 903.1; Radium 228 by EPA 904.0 was subcontracted to Pace Analytical (PA DEP 65-00282). A copy of the subcontractor's laboratory report is enclosed with this Analytical Report.

Legend:

 $\rm H$ - Method Hold Time exceeded and is not compliant with $40 CFR 136\ Table\ II.$

U - The analyte was not detected at or above the listed concentration, which is below the laboratory quantitation limit.

B - Analyte detected in the associated Method Blank

Q1 - See case narrative

ND - Not Detected

MCL - Contaminant Limit

J - Indicates an estimated value.

Q - Qualifier

QL -Quantitation Limit

DF - Dilution Factor

- S Surrogate Recovery outside accepted recovery limits
- T Sample received above required temperature and is not compliant with 40CFR136 Table II.
- T1 Sample received above required temperature

MDA - Minimum Detectable Activity.

** - Value exceeds Action Limit

TICs - Tentatively Identified Compounds.

E - Value above quantitation range

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: Ash Pond A

Lab Order: G2009E08

Project:Conemaugh CCR 3rd Qtr 2020Sampled By:CME EngineeringLab ID:G2009E08-001Collection Date:9/23/2020 10:52:00 AMMatrix:WASTE WATERReceived Date:9/23/2020 6:36:42 PM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
FIELD PARAMETERS		Analyst:					FIELD
Depth To Water	2.18			Ft			09/23/20 10:52 AM
Dissolved Oxygen	4.60			mg/L			09/23/20 10:52 AM
Flow	NA			GPM			09/23/20 10:52 AM
Oxidation Reduction Potential	118			mV			09/23/20 10:52 AM
pH (Field)	6.98			S.U.			09/23/20 10:52 AM
Sample Depth	NA			Ft			09/23/20 10:52 AM
Specific Conductance (Field)	2770			µmhos/cm			09/23/20 10:52 AM
Temperature (Field)	23.98			deg C			09/23/20 10:52 AM
Turbidity (Field)	24.5			NTU			09/23/20 10:52 AM
Volume Purged	NA			Gallons			09/23/20 10:52 AM
Well Volume Purged	NA			Well Volum	es		09/23/20 10:52 AM
PH BY SM 4500 H+B		Analyst:	LRR				SM 4500-H+ B
Lab pH	7.63		Н	S.U.	1		09/24/20 4:55 PM
INORGANIC NON-METALS		Analyst:	LRR			SM 2540C	SM 2540 C
Total dissolved solids	2340	20		mg/L	1	09/24/20 5:00 PM	09/24/20 5:26 PM
INORGANIC NON-METALS		Analyst:	LRR				ASTM D 1067-11
Alkalinity to pH 4.5	25	10		mg/L CaCC	3 1		09/24/20 4:55 PM
INORGANIC NON-METALS		Analyst:	MBG			EPA 300.0	EPA 300.0
Chloride	126	1.0		mg/L	1	09/24/20 11:30 AM	09/24/20 12:53 PM
Fluoride	0.2	0.1		mg/L	1	09/24/20 11:30 AM	09/24/20 12:53 PM
Sulfate	1500	2.0		mg/L	1	09/24/20 11:30 AM	09/24/20 12:53 PM
INORGANIC METALS		Analyst:	GMG			EPA 200.2	EPA 200.7
Cobalt, dissolved	< 0.005	0.005		mg/L	1	09/25/20 10:35 AM	09/28/20 1:48 PM
INORGANIC METALS		Analyst:	LXM			SM 3112 B	SM 3112 B
Mercury	< 0.20	0.20		μg/L	1	09/25/20 6:35 AM	09/28/20 11:23 AM
INORGANIC METALS		Analyst:	GMG			EPA 200.2	EPA 200.7
Aluminum	0.2	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 1:30 PM
Barium	0.05	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 1:30 PM
Beryllium	< 0.001	0.001		mg/L	1	09/25/20 10:35 AM	09/28/20 1:30 PM
Boron	5.86	0.05		mg/L	1	09/25/20 10:35 AM	09/28/20 1:30 PM
Cadmium	< 0.002	0.002		mg/L	1	09/25/20 10:35 AM	09/28/20 1:30 PM
Calcium	453	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 1:30 PM
Chromium	< 0.01	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 1:30 PM
Cobalt	< 0.005	0.005		mg/L	1	09/25/20 10:35 AM	09/28/20 1:30 PM
Iron	0.63	0.05		mg/L	1	09/25/20 10:35 AM	09/28/20 1:30 PM

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: Ash Pond A

Lab Order: G2009E08

Project:Conemaugh CCR 3rd Qtr 2020Sampled By:CME EngineeringLab ID:G2009E08-001Collection Date:9/23/2020 10:52:00 AMMatrix:WASTE WATERReceived Date:9/23/2020 6:36:42 PM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
INORGANIC METALS		Analyst: (GMG		EPA 200.2	EPA 200.7	
Lithium	0.89	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 1:30 PM
Magnesium	65.2	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 1:30 PM
Manganese	0.24	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 1:30 PM
Molybdenum	< 0.02	0.02		mg/L	1	09/25/20 10:35 AM	09/28/20 1:30 PM
Potassium	30.4	0.5		mg/L	1	09/25/20 10:35 AM	09/28/20 1:30 PM
Sodium	87.3	0.2		mg/L	1	09/25/20 10:35 AM	09/28/20 1:30 PM
INORGANIC METALS		Analyst: I	RLR			EPA 200.2	EPA 200.8
Antimony	1.5	1.0		μg/L	1	09/25/20 10:35 AM	09/28/20 2:01 PM
Arsenic	21.0	1.0		μg/L	1	09/25/20 10:35 AM	09/28/20 2:01 PM
Lead	1.6	1.0		μg/L	1	09/25/20 10:35 AM	09/28/20 2:01 PM
Selenium	1.4	1.0		μg/L	1	09/25/20 10:35 AM	09/28/20 2:01 PM
Thallium	1.6	0.2		μg/L	1	09/25/20 10:35 AM	09/28/20 2:01 PM
RADIOLOGICAL PARAMETERS		Analyst: \$	SUB				EPA 903.1
Radium 226	0.214+-0.3694	0.702		pCi/L	1		10/14/20 12:06 PM
RADIOLOGICAL PARAMETERS		Analyst: \$	SUB				EPA 904.0
Radium 228	0.810+-0.639	1.29		pCi/L	1		10/13/20 11:40 AM

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: Ash Pond B

Lab Order: G2009E08

Project:Conemaugh CCR 3rd Qtr 2020Sampled By:CME EngineeringLab ID:G2009E08-002Collection Date:9/23/2020 11:51:00 AMMatrix:WASTE WATERReceived Date:9/23/2020 6:36:42 PM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
FIELD PARAMETERS		Analyst:					FIELD
Depth To Water	2.14			Ft			09/23/20 11:51 AM
Dissolved Oxygen	2.51			mg/L			09/23/20 11:51 AM
Flow	NA			GPM			09/23/20 11:51 AM
Oxidation Reduction Potential	142			mV			09/23/20 11:51 AM
pH (Field)	7.68			S.U.			09/23/20 11:51 AN
Sample Depth	NA			Ft			09/23/20 11:51 AN
Specific Conductance (Field)	2750			µmhos/cm			09/23/20 11:51 AN
Temperature (Field)	23.43			deg C			09/23/20 11:51 AN
Turbidity (Field)	26.2			NTU			09/23/20 11:51 AN
Volume Purged	NA			Gallons			09/23/20 11:51 AN
Well Volume Purged	NA			Well Volum	es		09/23/20 11:51 AN
PH BY SM 4500 H+B		Analyst:	LRR				SM 4500-H+ B
Lab pH	7.62		Н	S.U.	1		09/24/20 4:58 PM
INORGANIC NON-METALS		Analyst:	LRR			SM 2540C	SM 2540 C
Total dissolved solids	2250	20		mg/L	1	09/24/20 5:00 PM	09/24/20 5:26 PM
INORGANIC NON-METALS		Analyst:	LRR				ASTM D 1067-11
Alkalinity to pH 4.5	23	10		mg/L CaCC	3 1		09/24/20 4:58 PM
INORGANIC NON-METALS		Analyst:	MBG			EPA 300.0	EPA 300.0
Chloride	121	1.0		mg/L	1	09/24/20 11:30 AM	09/24/20 1:05 PM
Fluoride	0.2	0.1		mg/L	1	09/24/20 11:30 AM	09/24/20 1:05 PM
Sulfate	1430	2.0		mg/L	1	09/24/20 11:30 AM	09/24/20 1:05 PM
INORGANIC METALS		Analyst:	GMG			EPA 200.2	EPA 200.7
Cobalt, dissolved	< 0.005	0.005		mg/L	1	09/25/20 10:35 AM	09/28/20 2:01 PM
INORGANIC METALS		Analyst:	LXM			SM 3112 B	SM 3112 B
Mercury	< 0.20	0.20		μg/L	1	09/25/20 6:35 AM	09/28/20 11:24 AM
INORGANIC METALS		Analyst:	GMG			EPA 200.2	EPA 200.7
Aluminum	0.2	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 1:57 PM
Barium	0.06	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 1:57 PM
Beryllium	< 0.001	0.001		mg/L	1	09/25/20 10:35 AM	09/28/20 1:57 PM
Boron	5.21	0.05		mg/L	1	09/25/20 10:35 AM	09/28/20 1:57 PM
Cadmium	0.002	0.002		mg/L	1	09/25/20 10:35 AM	09/28/20 1:57 PM
Calcium	409	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 1:57 PM
Chromium	< 0.01	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 1:57 PM
Cobalt	< 0.005	0.005		mg/L	1	09/25/20 10:35 AM	09/28/20 1:57 PM
Iron	0.31	0.05		mg/L	1	09/25/20 10:35 AM	09/28/20 1:57 PM

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: Ash Pond B

Lab Order: G2009E08

Project:Conemaugh CCR 3rd Qtr 2020Sampled By:CME EngineeringLab ID:G2009E08-002Collection Date:9/23/2020 11:51:00 AMMatrix:WASTE WATERReceived Date:9/23/2020 6:36:42 PM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
INORGANIC METALS		Analyst: (GMG			EPA 200.2	EPA 200.7
Lithium	0.82	0.01		mg/L	1	09/25/20 10:35 AM	1 09/28/20 1:57 PM
Magnesium	59.1	0.1		mg/L	1	09/25/20 10:35 AM	1 09/28/20 1:57 PM
Manganese	0.22	0.01		mg/L	1	09/25/20 10:35 AM	1 09/28/20 1:57 PM
Molybdenum	< 0.02	0.02		mg/L	1	09/25/20 10:35 AM	1 09/28/20 1:57 PM
Potassium	27.9	0.5		mg/L	1	09/25/20 10:35 AM	1 09/28/20 1:57 PM
Sodium	79.4	0.2		mg/L	1	09/25/20 10:35 AM	1 09/28/20 1:57 PM
INORGANIC METALS		Analyst: I	RLR			EPA 200.2	EPA 200.8
Antimony	1.6	1.0		μg/L	1	09/25/20 10:35 AM	1 09/28/20 2:11 PM
Arsenic	33.0	1.0		μg/L	1	09/25/20 10:35 AM	1 09/28/20 2:11 PM
Lead	2.9	1.0		μg/L	1	09/25/20 10:35 AM	1 09/28/20 2:11 PM
Selenium	1.8	1.0		μg/L	1	09/25/20 10:35 AM	1 09/28/20 2:11 PM
Thallium	3.2	0.2		μg/L	1	09/25/20 10:35 AM	1 09/29/20 1:36 PM
RADIOLOGICAL PARAMETERS		Analyst:	SUB				EPA 903.1
Radium 226	0.125+-0.346	0.671		pCi/L	1		10/14/20 12:27 PM
RADIOLOGICAL PARAMETERS		Analyst:	SUB				EPA 904.0
Radium 228	0.235+-0.532	1.18		pCi/L	1		10/13/20 11:40 AM

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: Ash Pond C

Lab Order: G2009E08

 Project:
 Conemaugh CCR 3rd Qtr 2020
 Sampled By:
 CME Engineering

 Lab ID:
 G2009E08-003
 Collection Date:
 9/23/2020 12:02:00 PM

 Matrix:
 WASTE WATER
 Received Date:
 9/23/2020 6:36:42 PM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
FIELD PARAMETERS		Analyst:					FIELD
Depth To Water	1.40			Ft			09/23/20 12:02 PM
Dissolved Oxygen	8.95			mg/L			09/23/20 12:02 PM
Flow	NA			GPM			09/23/20 12:02 PM
Oxidation Reduction Potential	151			mV			09/23/20 12:02 PM
pH (Field)	7.78			S.U.			09/23/20 12:02 PM
Sample Depth	NA			Ft			09/23/20 12:02 PM
Specific Conductance (Field)	2730			µmhos/cm			09/23/20 12:02 PM
Temperature (Field)	23.16			deg C			09/23/20 12:02 PM
Turbidity (Field)	41.3			NTU			09/23/20 12:02 PM
Volume Purged	NA			Gallons			09/23/20 12:02 PM
Well Volume Purged	NA			Well Volume	es		09/23/20 12:02 PM
PH BY SM 4500 H+B		Analyst:	LRR				SM 4500-H+ B
Lab pH	7.63		Н	S.U.	1		09/25/20 8:36 AM
INORGANIC NON-METALS		Analyst:	LRR			SM 2540C	SM 2540 C
Total dissolved solids	2190	20		mg/L	1	09/24/20 5:00 PM	09/24/20 5:26 PM
INORGANIC NON-METALS		Analyst:	LRR				ASTM D 1067-11
Alkalinity to pH 4.5	25	10		mg/L CaCO	3 1		09/25/20 8:36 AM
INORGANIC NON-METALS		Analyst:	MBG			EPA 300.0	EPA 300.0
Chloride	120	1.0		mg/L	1	09/24/20 11:30 AM	09/24/20 1:16 PM
Fluoride	0.2	0.1		mg/L	1	09/24/20 11:30 AM	09/24/20 1:16 PM
Sulfate	1430	2.0		mg/L	1	09/24/20 11:30 AM	09/24/20 1:16 PM
INORGANIC METALS		Analyst:	GMG			EPA 200.2	EPA 200.7
Cobalt, dissolved	< 0.005	0.005		mg/L	1	09/25/20 10:35 AM	09/28/20 2:16 PM
INORGANIC METALS		Analyst:	LXM			SM 3112 B	SM 3112 B
Mercury	< 0.20	0.20		μg/L	1	09/25/20 6:35 AM	09/28/20 11:30 AM
INORGANIC METALS		Analyst:	GMG			EPA 200.2	EPA 200.7
Aluminum	0.4	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 2:15 PM
Barium	0.06	0.01		mg/L	1	09/25/20 10:35 AM	09/29/20 3:51 PM
Beryllium	< 0.001	0.001		mg/L	1	09/25/20 10:35 AM	09/28/20 2:15 PM
Boron	5.60	0.05		mg/L	1	09/25/20 10:35 AM	09/28/20 2:15 PM
Cadmium	0.002	0.002		mg/L	1	09/25/20 10:35 AM	09/28/20 2:15 PM
Calcium	442	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 2:15 PM
Chromium	< 0.01	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 2:15 PM
Cobalt	< 0.005	0.005		mg/L	1	09/25/20 10:35 AM	09/28/20 2:15 PM
Iron	0.60	0.05		mg/L	1	09/25/20 10:35 AM	09/28/20 2:15 PM

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: Ash Pond C

Lab Order: G2009E08

 Project:
 Conemaugh CCR 3rd Qtr 2020
 Sampled By:
 CME Engineering

 Lab ID:
 G2009E08-003
 Collection Date:
 9/23/2020 12:02:00 PM

 Matrix:
 WASTE WATER
 Received Date:
 9/23/2020 6:36:42 PM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
INORGANIC METALS		Analyst: (GMG			EPA 200.2	EPA 200.7
Lithium	0.84	0.01		mg/L	1	09/25/20 10:35 AM	1 09/29/20 3:51 PM
Magnesium	64.5	0.1		mg/L	1	09/25/20 10:35 AM	1 09/28/20 2:15 PM
Manganese	0.24	0.01		mg/L	1	09/25/20 10:35 AM	1 09/28/20 2:15 PM
Molybdenum	< 0.02	0.02		mg/L	1	09/25/20 10:35 AM	1 09/28/20 2:15 PM
Potassium	29.5	0.5		mg/L	1	09/25/20 10:35 AM	1 09/28/20 2:15 PM
Sodium	81.7	0.2		mg/L	1	09/25/20 10:35 AM	1 09/28/20 2:15 PM
INORGANIC METALS		Analyst: I	RLR			EPA 200.2	EPA 200.8
Antimony	1.7	1.0		μg/L	1	09/25/20 10:35 AM	1 09/28/20 2:20 PM
Arsenic	44.7	1.0		μg/L	1	09/25/20 10:35 AM	1 09/28/20 2:20 PM
Lead	9.5	1.0		μg/L	1	09/25/20 10:35 AM	1 09/28/20 2:20 PM
Selenium	2.0	1.0		μg/L	1	09/25/20 10:35 AM	1 09/28/20 2:20 PM
Thallium	3.0	0.2		μg/L	1	09/25/20 10:35 AM	1 09/28/20 2:20 PM
RADIOLOGICAL PARAMETERS		Analyst:	SUB				EPA 903.1
Radium 226	0.261+-0.405	0.702		pCi/L	1		10/14/20 12:27 PM
RADIOLOGICAL PARAMETERS		Analyst:	SUB				EPA 904.0
Radium 228	0.345+-0.582	1.27		pCi/L	1		10/13/20 11:40 AM

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: Ash Pond D

Lab Order: G2009E08

 Project:
 Conemaugh CCR 3rd Qtr 2020
 Sampled By:
 CME Engineering

 Lab ID:
 G2009E08-004
 Collection Date:
 9/23/2020 12:20:00 PM

 Matrix:
 WASTE WATER
 Received Date:
 9/23/2020 6:36:42 PM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
FIELD PARAMETERS		Analyst:					FIELD
Depth To Water	8.90			Ft			09/23/20 12:20 PM
Dissolved Oxygen	0.86			mg/L			09/23/20 12:20 PM
Flow	NA			GPM			09/23/20 12:20 PM
Oxidation Reduction Potential	168			mV			09/23/20 12:20 PM
pH (Field)	8.02			S.U.			09/23/20 12:20 PM
Sample Depth	NA			Ft			09/23/20 12:20 PM
Specific Conductance (Field)	2810			µmhos/cm			09/23/20 12:20 PM
Temperature (Field)	23.27			deg C			09/23/20 12:20 PM
Turbidity (Field)	46.8			NTU			09/23/20 12:20 PM
Volume Purged	NA			Gallons			09/23/20 12:20 PM
Well Volume Purged	NA			Well Volume	es		09/23/20 12:20 PM
PH BY SM 4500 H+B		Analyst:	LRR				SM 4500-H+ B
Lab pH	7.77		Н	S.U.	1		09/25/20 8:40 AM
INORGANIC NON-METALS		Analyst:	LRR			SM 2540C	SM 2540 C
Total dissolved solids	2340	20		mg/L	1	09/24/20 5:00 PM	09/24/20 5:26 PM
INORGANIC NON-METALS		Analyst:	LRR				ASTM D 1067-11
Alkalinity to pH 4.5	26	10		mg/L CaCO	3 1		09/25/20 8:40 AM
INORGANIC NON-METALS		Analyst:	MBG			EPA 300.0	EPA 300.0
Chloride	120	1.0		mg/L	1	09/24/20 11:30 AM	09/24/20 1:28 PM
Fluoride	0.2	0.1		mg/L	1	09/24/20 11:30 AM	09/24/20 1:28 PM
Sulfate	1430	2.0		mg/L	1	09/24/20 11:30 AM	09/24/20 1:28 PM
INORGANIC METALS		Analyst:	GMG			EPA 200.2	EPA 200.7
Cobalt, dissolved	< 0.005	0.005		mg/L	1	09/25/20 10:35 AM	09/28/20 2:18 PM
INORGANIC METALS		Analyst:	LXM			SM 3112 B	SM 3112 B
Mercury	< 0.20	0.20		μg/L	1	09/25/20 6:35 AM	09/28/20 11:32 AM
INORGANIC METALS		Analyst:	GMG			EPA 200.2	EPA 200.7
Aluminum	0.4	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 2:19 PM
Barium	0.06	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 2:19 PM
Beryllium	< 0.001	0.001		mg/L	1	09/25/20 10:35 AM	09/28/20 2:19 PM
Boron	5.93	0.05		mg/L	1	09/25/20 10:35 AM	
Cadmium	< 0.002	0.002		mg/L	1	09/25/20 10:35 AM	09/28/20 2:19 PM
Calcium	456	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 2:19 PM
Chromium	< 0.01	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 2:19 PM
Cobalt	< 0.005	0.005		mg/L	1	09/25/20 10:35 AM	
Iron	0.79	0.05		mg/L	1	09/25/20 10:35 AM	

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: Ash Pond D

Lab Order: G2009E08

 Project:
 Conemaugh CCR 3rd Qtr 2020
 Sampled By:
 CME Engineering

 Lab ID:
 G2009E08-004
 Collection Date:
 9/23/2020 12:20:00 PM

 Matrix:
 WASTE WATER
 Received Date:
 9/23/2020 6:36:42 PM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
INORGANIC METALS		Analyst: (GMG			EPA 200.2	EPA 200.7
Lithium	0.89	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 2:19 PM
Magnesium	65.9	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 2:19 PM
Manganese	0.22	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 2:19 PM
Molybdenum	< 0.02	0.02		mg/L	1	09/25/20 10:35 AM	09/28/20 2:19 PM
Potassium	30.9	0.5		mg/L	1	09/25/20 10:35 AM	09/28/20 2:19 PM
Sodium	84.8	0.2		mg/L	1	09/25/20 10:35 AM	09/28/20 2:19 PM
INORGANIC METALS		Analyst: I	RLR			EPA 200.2	EPA 200.8
Antimony	1.3	1.0		μg/L	1	09/25/20 10:35 AM	09/28/20 2:31 PM
Arsenic	25.1	1.0		μg/L	1	09/25/20 10:35 AM	09/28/20 2:31 PM
Lead	2.1	1.0		μg/L	1	09/25/20 10:35 AM	09/28/20 2:31 PM
Selenium	1.8	1.0		μg/L	1	09/25/20 10:35 AM	09/28/20 2:31 PM
Thallium	2.2	0.2		μg/L	1	09/25/20 10:35 AM	09/28/20 2:31 PM
RADIOLOGICAL PARAMETERS		Analyst:	SUB				EPA 903.1
Radium 226	-0.207+-0.249	0.678		pCi/L	1		10/14/20 12:27 PN
RADIOLOGICAL PARAMETERS		Analyst:	SUB				EPA 904.0
Radium 228	0.0646+-0.603	1.37		pCi/L	1		10/13/20 11:40 AN

October 14, 2020

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

RE: Project: G2009E08

Pace Project No.: 30384559

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on September 29, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Megan A. Rager megan.rager@pacelabs.com

Megan a Rager

(724)850-5600 Project Manager

Enclosures

CERTIFICATIONS

Project: G2009E08
Pace Project No.: 30384559

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190
Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: G2009E08
Pace Project No.: 30384559

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
30384559001	G2009E08-001	Water	09/23/20 10;52	09/29/20 09:30	٦
30384559002	G2009E08-002	Water	09/23/20 11:51	09/29/20 09:30	
30384559003	G2009E08-003	Water	09/23/20 12:02	09/29/20 09:30	
30384559004	G2009E08-004	Water	09/23/20 12:20	09/29/20 09:30	

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project:

G2009E08

Pace Project No.:

30384559

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30384559001	G2009E08-001	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
30384559002	G2009E08-002	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
30384559003	G2009E08-003	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
30384559004	G2009E08-004	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

PROJECT NARRATIVE

Project: G2009E08
Pace Project No. 30384559

Method: EPA 903.1

Description: 903.1 Radium 226
Client: Geochemical Testing
Date: October 14, 2020

General Information:

4 samples were analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G2009E08
Pace Project No. 30384559

Method: EPA 904.0

Description: 904.0 Radium 228
Client: Geochemical Testing
Date: October 14, 2020

General Information:

4 samples were analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

(724)850-5600

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: G2009E08 Pace Project No.: 30384559 Lab ID: 30384559001 Received: 09/29/20 09:30 Sample: G2009E08-001 Collected: 09/23/20 10:52 Matrix: Water Site ID: PWS: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac CAS No. Units Analyzed Qual Pace Analytical Services - Greensburg EPA 903.1 0.214 ± 0.394 (0.702) Radium-226 pCi/L 10/14/20 12:06 13982-63-3 C:NA T:92% Pace Analytical Services - Greensburg Radium-228 EPA 904.0 0.810 ± 0.639 (1.29) pCi/L 10/13/20 11:40 15262-20-1 C:57% T:86% Sample: G2009E08-002 Lab ID: 30384559002 Collected: 09/23/20 11:51 Received: 09/29/20 09:30 Matrix: Water PWS: Site ID: Sample Type: Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 0.125 ± 0.346 (0.671) Radium-226 pCi/L 10/14/20 12:27 13982-63-3 C:NA T:92% Pace Analytical Services - Greensburg Radium-228 EPA 904.0 0.235 ± 0.532 (1.18) pCi/L 10/13/20 11:40 15262-20-1 C:59% T:86% Sample: G2009E08-003 Lab ID: 30384559003 Collected: 09/23/20 12:02 Received: 09/29/20 09:30 Matrix: Water PWS: Site ID: Sample Type: Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg 0.261 ± 0.405 (0.702) Radium-226 EPA 903.1 pCi/L 10/14/20 12:27 13982-63-3 C:NA T:84% Pace Analytical Services - Greensburg EPA 904 0 0.345 ± 0.582 (1.27) Radium-228 pCi/L 10/13/20 11:40 15262-20-1 C:58% T:86% Sample: G2009E08-004 Lab ID: 30384559004 Collected: 09/23/20 12:20 Received: 09/29/20 09:30 Matrix: Water PWS: Site ID: Sample Type: Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg -0.207 ± 0.249 (0.678) EPA 903.1 Radium-226 pCi/L 10/14/20 12:27 13982-63-3 C:NA T:94% Pace Analytical Services - Greensburg

REPORT OF LABORATORY ANALYSIS

0.0646 ± 0.603 (1.37)

C:61% T:77%

pCi/L

10/13/20 11:40 15262-20-1

EPA 904.0

Radium-228

QUALITY CONTROL - RADIOCHEMISTRY

Project:

G2009E08

Pace Project No.:

30384559

QC Batch:

416318

410010

Analysis Method:

EPA 903.1

QC Batch Method: EPA 903.1

Analysis Description:

903.1 Radium-226

Laboratory:

Pace Analytical Services - Greensburg

Associated Lab Samples:

30384559001, 30384559002, 30384559003, 30384559004

METHOD BLANK: 2012841

Matrix: Water

Associated Lab Samples:

30384559001, 30384559002, 30384559003, 30384559004

Parameter

Act ± Unc (MDC) Carr Trac

Units

Analyzed

Qualifiers

Radium-226

0.000 ± 0.277 (0.586) C:NA T:88%

pCi/L

10/14/20 11:42

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:

G2009E08

Pace Project No.:

30384559

QC Batch:

416319

Analysis Method:

EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description:

904.0 Radium 228

Laboratory:

Pace Analytical Services - Greensburg

Associated Lab Samples:

30384559001, 30384559002, 30384559003, 30384559004

METHOD BLANK: 2012842

Matrix: Water

Associated Lab Samples:

30384559001, 30384559002, 30384559003, 30384559004

Parameter

Act ± Unc (MDC) Carr Trac

Units

Analyzed

Qualifiers

Radium-228

0.197 ± 0.397 (0.877) C:65% T:74%

pCi/L

10/13/20 11:52

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: G2009E08
Pace Project No.: 30384559

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 10/14/2020 04:03 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

REPORT OF LABORATORY ANALYSIS

Shuttle/Cooler ID#:

CHAIN OF CUSTODY

Geochemical Testing

Containers Time (Military) G Number of GT Lab 65250 P2020-10420 Sampler PCBs Geochemical Testing • 2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729 Preservatives, etc Phone: (814) 443-1671 Client "NOTE: IF multiple analytes from one bottle, OR if multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG Ì nHZ Not Hazardous / HZ Hazardous Remarks/ Fax: (814) 445-6729 Preservatives by Date 162/6 Field Filtered: Y / N Field Filtered: Y/N Field Fittered: Y / N Filtered: Y/N ield Filtered: Y/N Field Filtered: Y / N Field Filtered: Y / N Field Filtered: Y / N Containers Supplied by: PO/Quote#: HN03 HN03 HN03 HN03 Received by (Company & Signature) **Analyses Requested Radium 226, 228 Radium 226, 228 Radium 226, 228 Radium 226, 228 SL Sludge S Special/DW 0 Other Contact (Company): Leslie Nemeth JO#:30384559 e-mail: Inemeth@geo-ces.com SO Soil Sample Sampled by: Client Type SW Surface Water PW Potable Water WW Wastewater Ó D Distribution/DW R Raw/DW Time (Military) (Military) Time 9:00:00 10:52 12:20 12:02 11:51 Project: Date 9/23/2020 9/23/2020 9/23/2020 9/23/2020 9/24/2020 Date 15501 Sample Matrix GW nHZ/HZ nHZ / HZ TH / THU 가/개 77 / ZHU ZH / ZHU TH / ZHU nHZ/HZ Ø ß≪ GΜ Zip: PA CCR samples C Composite Geochemical Testing Relinquished by (Company & Signature) Address: 2005 North Center Avenue Æ Number State: GW Ground Water Sample Location/ Note Deficiencies Here: G Grab Description City: Somerset Billing Client: eslie Nemeth Sample Matrix: Sample Type: G2009E08-001 G2009E08-002 G2009E08-003 G2009E08-004 **WO#**:

ر د ه ک

003

700

0c -

Pittsburgh Lab Sample Condition	OIL	pori	1,0	# 7 7 7 0 / 5
Page Analytical Client Name:	6	000	ch	# 303845
Courter: Fed Ex UPS DUSPS Client				
Fracking #: 12 544 007 03 55	66	242	04	LIMS Login VO(V)
Custody Seal on Cooler/Box Present:	\Box 6	5	Seals	Intact: yes no
Thermometer Used	Туре	of ice:	Wet	Blue Mone
Cooler Temperature Observed Temp		°C	Corre	ection Factor: C Final Temp: °C
Femp should be above freezing to 6°C				pH paper Lot# Date and initials of person examining
				contents: (Ch 9/24) 28
Comments:	Yes	No	N/A	1000401
Chain of Custody Present:	_			1.
Chain of Custody Filled Out:	/_		<u> </u>	2.
Chain of Custody Relinquished:	_			3.
Sampler Name & Signature on COC:		_		4. NO name or signature
Sample Labels match COC:	_			5.
-Includes date/time/ID Matrix: \(\sigma 1				
Samples Arrived within Hold Time:	_			6.
short Hold Time Analysis (<72hr remaining):		/		7.
Rush Turn Around Time Requested:		/		8.
Sufficient Volume:	/			9.
Correct Containers Used:	/			10.
-Pace Containers Used:				
Containers Intact:	/			11.
Orthophosphate field filtered				12.
Hex Cr Aqueous sample field filtered				13.
Organic Samples checked for dechlorination:				14:
Filtered volume received for Dissolved tests				15.
Il containers have been checked for preservation.			-	16.
exceptions: VOA, coliform, TOC, O&G, Phenolics, F Non-aqueous matrix	Radon,		1	" PH<2
All containers meet method preservation	1		<u> </u>	Initial when Date/time of
equirements.	_	L		completed V9/ preservation
•				Lot # of added preservative
-leadspace in VOA Vials (>6mm):			1	17.
Trip Blank Present:			1	18.
Frip Blank Custody Seals Present			1	1
Rad Samples Screened < 0.5 mrem/hr	1			Initial when Completed: PM Date: STRACTO
	•			completed: Date:
Client Notification/ Resolution:				October ded Dis
Person-Contacted:			-Đate/	Time:Gontacted By:
Comments/ Resolution:				
Comments/ Resolution:				

 $\ \square$ A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Cartification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

2005 N. Center Ave. Somerset, PA 15501

814/443-1671 814/445-6666 FAX: 814/445-6729

Wednesday, September 30, 2020

John Shimshock CONEMAUGH OPERATING, LLC CONEMAUGH STATION PO BOX K NEW FLORENCE, PA 15944

RE: Surface Water Impoundments Order No.: G2009E03

Dear John Shimshock:

Geochemical Testing received 4 sample(s) on 9/23/2020 for the analyses presented in the following report.

There were no problems with sample receipt protocols and analyses met the TNI/NELAC, EPA, and laboratory specifications except where noted in the Case Narrative or Laboratory Results.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Timothy W. Bergstresser Director of Technical Services

Timos W Ley trus

Leslie A. Nemeth Project Manager

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC

Project: Surface Water Impoundments

Lab Order: G2009E03

CASE NARRATIVE

Date: 30-Sep-20

No problems were encountered during analysis of this workorder, except if noted in this report.

Legend:

 \mbox{H} - Method Hold Time exceeded and is not compliant with $40\mbox{CFR136}$ Table II.

U - The analyte was not detected at or above the listed concentration, which is below the laboratory quantitation limit.

B - Analyte detected in the associated Method Blank

Q1 - See case narrative

ND - Not Detected

MCL - Contaminant Limit

J - Indicates an estimated value.

Q - Qualifier

QL -Quantitation Limit

DF - Dilution Factor

S - Surrogate Recovery outside accepted recovery limits

T - Sample received above required temperature and is not compliant with 40CFR136 Table II.

T1 - Sample received above required temperature

MDA - Minimum Detectable Activity.

** - Value exceeds Action Limit

TICs - Tentatively Identified Compounds.

E - Value above quantitation range

Date: 30-Sep-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: Pond A

Lab Order: G2009E03

Project: Surface Water Impoundments Sampled By: Conemaugh

 Lab ID:
 G2009E03-001
 Collection Date:
 9/23/2020 10:52:00 AM

 Matrix:
 SURFACE WATER
 Received Date:
 9/23/2020 6:04:13 PM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
INORGANIC NON METALS		Analyst:	LRR				SM 4500-CO2D
Bicarbonate	24	10		mg/L CaCO3	3 1		09/24/20 4:11 PM
PH BY SM 4500 H+B		Analyst:	LRR				SM 4500-H+ B
Lab pH	7.62	·	Н	S.U.	1		09/24/20 4:11 PM
INORGANIC NON-METALS		Analyst:	LRR				ASTM D 1067-11
Alkalinity to pH 4.5	24	10		mg/L CaCO3	3 1		09/24/20 4:11 PM
INORGANIC NON-METALS		Analyst:	MBG			EPA 300.0	EPA 300.0
Chloride	122	1.0		mg/L	1	09/24/20 10:35 AM	09/24/20 6:26 PM
Sulfate	1470	2.0		mg/L	1	09/24/20 10:35 AM	09/24/20 6:26 PM
INORGANIC METALS		Analyst:	MEG			EPA 200.2	EPA 200.7
Aluminum, dissolved	0.1	0.1		mg/L	1	09/24/20 11:50 AM	09/25/20 5:39 PM
Cobalt, dissolved	< 0.005	0.005		mg/L	1	09/24/20 11:50 AM	09/25/20 5:39 PM
Iron, dissolved	< 0.05	0.05		mg/L	1	09/24/20 11:50 AM	09/25/20 5:39 PM
Manganese, dissolved	0.23	0.01		mg/L	1	09/24/20 11:50 AM	09/25/20 5:39 PM
INORGANIC METALS		Analyst:	MEG			EPA 200.2	EPA 200.7
Aluminum	0.2	0.1		mg/L	1	09/24/20 11:50 AM	09/25/20 5:37 PM
Cobalt	< 0.005	0.005		mg/L	1	09/24/20 11:50 AM	09/25/20 5:37 PM
Iron	0.65	0.05		mg/L	1	09/24/20 11:50 AM	09/25/20 5:37 PM
Magnesium	69.1	0.1		mg/L	1	09/24/20 11:50 AM	09/25/20 5:37 PM
Manganese	0.26	0.01		mg/L	1	09/24/20 11:50 AM	09/25/20 5:37 PM
Potassium	29.7	0.5		mg/L	1	09/24/20 11:50 AM	09/25/20 5:37 PM
Sodium	86.5	0.2		mg/L	1	09/24/20 11:50 AM	09/25/20 5:37 PM

Date: 30-Sep-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: Pond B

Lab Order: G2009E03

Project: Surface Water Impoundments Sampled By: Conemaugh

 Lab ID:
 G2009E03-002
 Collection Date:
 9/23/2020 11:51:00 AM

 Matrix:
 SURFACE WATER
 Received Date:
 9/23/2020 6:04:13 PM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analy	zed
INORGANIC NON METALS		Analyst:	LRR				SM 4500-CO	2D
Bicarbonate	23	10		mg/L CaCO3	3 1		09/24/20 4:1	17 PM
PH BY SM 4500 H+B		Analyst:	LRR				SM 4500-H+	В
Lab pH	7.61		Н	S.U.	1		09/24/20 4:1	7 PM
INORGANIC NON-METALS		Analyst:	LRR				ASTM D 1067	7-11
Alkalinity to pH 4.5	23	10		mg/L CaCO3	3 1		09/24/20 4:1	17 PM
INORGANIC NON-METALS		Analyst:	MBG			EPA 300.0	EPA 300.0	
Chloride	120	1.0		mg/L	1	09/24/20 11:30 AM	09/24/20 11	:53 AM
Sulfate	1440	2.0		mg/L	1	09/24/20 11:30 AM	09/24/20 11	:53 AM
INORGANIC METALS		Analyst:	MEG			EPA 200.2	EPA 200.7	
Aluminum, dissolved	< 0.1	0.1		mg/L	1	09/24/20 11:50 AM	09/25/20 5:4	12 PM
Cobalt, dissolved	< 0.005	0.005		mg/L	1	09/24/20 11:50 AM	09/25/20 5:4	12 PM
Iron, dissolved	< 0.05	0.05		mg/L	1	09/24/20 11:50 AM	09/25/20 5:4	12 PM
Manganese, dissolved	0.23	0.01		mg/L	1	09/24/20 11:50 AM	09/25/20 5:4	12 PM
INORGANIC METALS		Analyst:	MEG			EPA 200.2	EPA 200.7	
Aluminum	0.2	0.1		mg/L	1	09/24/20 11:50 AM	09/25/20 5:4	10 PM
Cobalt	< 0.005	0.005		mg/L	1	09/24/20 11:50 AM	09/25/20 5:4	10 PM
Iron	0.33	0.05		mg/L	1	09/24/20 11:50 AM	09/25/20 5:4	10 PM
Magnesium	61.4	0.1		mg/L	1	09/24/20 11:50 AM	09/25/20 5:4	10 PM
Manganese	0.23	0.01		mg/L	1	09/24/20 11:50 AM	09/25/20 5:4	10 PM
Potassium	26.2	0.5		mg/L	1	09/24/20 11:50 AM	09/25/20 5:4	10 PM
Sodium	76.1	0.2		mg/L	1	09/24/20 11:50 AM	09/25/20 5:4	10 PM

Date: 30-Sep-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC **Client Sample ID:** Pond C

Lab Order: G2009E03

Project: Surface Water Impoundments Sampled By: Conemaugh

 Lab ID:
 G2009E03-003
 Collection Date:
 9/23/2020 12:02:00 PM

 Matrix:
 SURFACE WATER
 Received Date:
 9/23/2020 6:04:13 PM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
INORGANIC NON METALS		Analyst:	LRR				SM 4500-CO2D
Bicarbonate	23	10		mg/L CaCO3	3 1		09/24/20 4:21 PM
PH BY SM 4500 H+B		Analyst:	LRR				SM 4500-H+ B
Lab pH	7.59	•	Н	S.U.	1		09/24/20 4:21 PM
INORGANIC NON-METALS		Analyst:	LRR				ASTM D 1067-11
Alkalinity to pH 4.5	23	10		mg/L CaCO3	3 1		09/24/20 4:21 PM
INORGANIC NON-METALS		Analyst:	MBG			EPA 300.0	EPA 300.0
Chloride	120	1.0		mg/L	1	09/24/20 11:30 AM	I 09/24/20 12:29 PM
Sulfate	1430	2.0		mg/L	1	09/24/20 11:30 AM	09/24/20 12:29 PM
INORGANIC METALS		Analyst:	GMG			EPA 200.2	EPA 200.7
Aluminum, dissolved	< 0.1	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 1:37 PM
Cobalt, dissolved	< 0.005	0.005		mg/L	1	09/25/20 10:35 AM	09/28/20 1:37 PM
Iron, dissolved	< 0.05	0.05		mg/L	1	09/25/20 10:35 AM	09/28/20 1:37 PM
Manganese, dissolved	0.24	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 1:37 PM
INORGANIC METALS		Analyst:	GMG			EPA 200.2	EPA 200.7
Aluminum	0.3	0.1		mg/L	1	09/25/20 10:35 AM	I 09/28/20 1:29 PM
Cobalt	< 0.005	0.005		mg/L	1	09/25/20 10:35 AM	I 09/28/20 1:29 PM
Iron	0.54	0.05		mg/L	1	09/25/20 10:35 AM	I 09/28/20 1:29 PM
Magnesium	60.3	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 1:29 PM
Manganese	0.23	0.01		mg/L	1	09/25/20 10:35 AM	I 09/28/20 1:29 PM
Potassium	27.7	0.5		mg/L	1	09/25/20 10:35 AM	09/28/20 1:29 PM
Sodium	80.4	0.2		mg/L	1	09/25/20 10:35 AM	I 09/28/20 1:29 PM

Date: 30-Sep-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: Pond D

Lab Order: G2009E03

Project: Surface Water Impoundments Sampled By: Conemaugh

 Lab ID:
 G2009E03-004
 Collection Date:
 9/23/2020 12:20:00 PM

 Matrix:
 SURFACE WATER
 Received Date:
 9/23/2020 6:04:13 PM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
INORGANIC NON METALS		Analyst:	LRR				SM 4500-CO2D
Bicarbonate	25	10		mg/L CaCO3	3 1		09/24/20 4:25 PM
PH BY SM 4500 H+B		Analyst:	LRR				SM 4500-H+ B
Lab pH	7.75		Н	S.U.	1		09/24/20 4:25 PM
INORGANIC NON-METALS		Analyst:	LRR				ASTM D 1067-11
Alkalinity to pH 4.5	25	10		mg/L CaCO3	3 1		09/24/20 4:25 PM
INORGANIC NON-METALS		Analyst:	MBG			EPA 300.0	EPA 300.0
Chloride	120	1.0		mg/L	1	09/24/20 11:30 AM	09/24/20 12:41 PM
Sulfate	1450	2.0		mg/L	1	09/24/20 11:30 AM	09/24/20 12:41 PM
INORGANIC METALS		Analyst:	GMG			EPA 200.2	EPA 200.7
Aluminum, dissolved	< 0.1	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 1:40 PM
Cobalt, dissolved	< 0.005	0.005		mg/L	1	09/25/20 10:35 AM	09/28/20 1:40 PM
Iron, dissolved	< 0.05	0.05		mg/L	1	09/25/20 10:35 AM	09/28/20 1:40 PM
Manganese, dissolved	0.20	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 1:40 PM
INORGANIC METALS		Analyst:	GMG			EPA 200.2	EPA 200.7
Aluminum	0.4	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 1:38 PM
Cobalt	< 0.005	0.005		mg/L	1	09/25/20 10:35 AM	09/28/20 1:38 PM
Iron	0.88	0.05		mg/L	1	09/25/20 10:35 AM	09/28/20 1:38 PM
Magnesium	65.4	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 1:38 PM
Manganese	0.22	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 1:38 PM
Potassium	31.4	0.5		mg/L	1	09/25/20 10:35 AM	09/28/20 1:38 PM
Sodium	87.5	0.2		mg/L	1	09/25/20 10:35 AM	09/28/20 1:38 PM

2005 N. Center Ave. Somerset, PA 15501

814/443-1671 814/445-6666 FAX: 814/445-6729

Tuesday, October 20, 2020

John Shimshock CONEMAUGH OPERATING, LLC CONEMAUGH STATION PO BOX K NEW FLORENCE, PA 15944

RE: Conemaugh CCR 3rd Qtr 2020 Order No.: G2009D99

Dear John Shimshock:

Geochemical Testing received 4 sample(s) on 9/23/2020 for the analyses presented in the following report.

There were no problems with sample receipt protocols and analyses met the TNI/NELAC, EPA, and laboratory specifications except where noted in the Case Narrative or Laboratory Results.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Timothy W. Bergstresser Director of Technical Services

Timoff W Ley trese

Leslie A. Nemeth Project Manager

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC

Project: Conemaugh CCR 3rd Qtr 2020

Lab Order: G2009D99

CASE NARRATIVE

Date: 20-Oct-20

No problems were encountered during analysis of this workorder, except if noted in this report.

Legend:

 $\rm H$ - Method Hold Time exceeded and is not compliant with $40 CFR 136\ Table\ II.$

U - The analyte was not detected at or above the listed concentration, which is below the laboratory quantitation limit.

B - Analyte detected in the associated Method Blank

Q1 - See case narrative

ND - Not Detected

MCL - Contaminant Limit

J - Indicates an estimated value.

Q - Qualifier

QL -Quantitation Limit

DF - Dilution Factor

S - Surrogate Recovery outside accepted recovery limits

T - Sample received above required temperature and is not compliant with 40CFR136 Table II.

T1 - Sample received above required temperature

MDA - Minimum Detectable Activity.

** - Value exceeds Action Limit

TICs - Tentatively Identified Compounds.

E - Value above quantitation range

Date: 20-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: Pond A

Lab Order: G2009D99

Project: Conemaugh CCR 3rd Qtr 2020 Sampled By: Conemaugh

 Lab ID:
 G2009D99-001
 Collection Date:
 9/23/2020 11:02:00 AM

 Matrix:
 SOLID
 Received Date:
 9/23/2020 5:28:47 PM

Analyses Result QL Q Units FIELD PARAMETERS Depth To Water Dissolved Oxygen 4.60 NA GPM	DF	Date Prepared	09/23/20 11:02 AM 09/23/20 11:02 AM 09/23/20 11:02 AM
Depth To Water 2.18 Ft Dissolved Oxygen 4.60 mg/L			09/23/20 11:02 AM 09/23/20 11:02 AM 09/23/20 11:02 AM 09/23/20 11:02 AM
Dissolved Oxygen 4.60 mg/L			09/23/20 11:02 AM 09/23/20 11:02 AM
3			09/23/20 11:02 AM
Flow NA GPM			09/23/20 11:02 AM 09/23/20 11:02 AM 09/23/20 11:02 AM
Oxidation Reduction Potential 118 mV			09/23/20 11:02 AM
pH (Field) 6.98 S.U.			
Sample Depth NA Ft			09/23/20 11:02 AM
Specific Conductance (Field) 2770 µmhos/cm			09/23/20 11:02 AM
Temperature (Field) 23.98 deg C			09/23/20 11:02 AM
Turbidity (Field) 24.5 NTU			09/23/20 11:02 AM
Volume Purged NA Gallons			09/23/20 11:02 AM
Well Volume Purged NA Well Volumes			09/23/20 11:02 AM
TOTAL METALS Analyst: GMG		EPA 3050	EPA 6010 D
Aluminum 12700 20.0 mg/Kg-dry	1	09/29/20 9:45 AM	09/29/20 12:06 PM
Cobalt 33.3 0.5 mg/Kg-dry	1	09/29/20 9:45 AM	09/29/20 12:06 PM
Iron 57200 100 mg/Kg-dry	10	09/29/20 9:45 AM	09/30/20 6:55 AM
Manganese 1170 1.0 mg/Kg-dry	1	09/29/20 9:45 AM	09/29/20 12:06 PM
SPLP FLUID #1 Analyst: DMM			EPA 1312
·	1		09/24/20 10:30 AM
SPLP METALS FLUID #1 Analyst: MEG		EPA 3010 A	EPA 6010 D
	1	09/25/20 9:10 AM	09/28/20 7:09 AM
•	1	09/25/20 9:10 AM	09/28/20 7:09 AM
·	1	09/25/20 9:10 AM	09/28/20 7:09 AM
•	1	09/25/20 9:10 AM	09/28/20 7:09 AM

Date: 20-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: Pond B

Lab Order: G2009D99

Project: Conemaugh CCR 3rd Qtr 2020 Sampled By: Conemaugh

 Lab ID:
 G2009D99-002
 Collection Date:
 9/23/2020 12:43:00 PM

 Matrix:
 SOLID
 Received Date:
 9/23/2020 5:28:47 PM

wattix. Solid		10001100 Dutti								
Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed			
FIELD PARAMETERS		Analyst:					Field			
Depth To Water	2.14			Ft			09/23/20 12:43 PM			
Dissolved Oxygen	2.51			mg/L			09/23/20 12:43 PM			
Flow	NA			GPM			09/23/20 12:43 PM			
Oxidation Reduction Potential	142			mV			09/23/20 12:43 PM			
pH (Field)	7.68			S.U.			09/23/20 12:43 PM			
Sample Depth	NA			Ft			09/23/20 12:43 PM			
Specific Conductance (Field)	2750			µmhos/cm			09/23/20 12:43 PM			
Temperature (Field)	23.43			deg C			09/23/20 12:43 PM			
Turbidity (Field)	26.2			NTU			09/23/20 12:43 PM			
Volume Purged	NA			Gallons			09/23/20 12:43 PM			
Well Volume Purged	NA			Well Volume	es		09/23/20 12:43 PM			
TOTAL METALS		Analyst:	GMG			EPA 3050	EPA 6010 D			
Aluminum	8000	20.0		mg/Kg-dry	1	09/29/20 9:45 AM	09/29/20 11:57 AM			
Cobalt	25.5	0.5		mg/Kg-dry	1	09/29/20 9:45 AM	09/29/20 11:57 AM			
Iron	45200	100		mg/Kg-dry	10	09/29/20 9:45 AM	09/30/20 6:54 AM			
Manganese	1270	1.0		mg/Kg-dry	1	09/29/20 9:45 AM	09/29/20 11:57 AM			
SPLP FLUID #1		Analyst:	DMM				EPA 1312			
Final pH Metals	2.43	·		S.U.	1		09/24/20 10:30 AM			
SPLP METALS FLUID #1		Analyst:	MFG			EPA 3010 A	EPA 6010 D			
Aluminum	0.4	0.1	0	mg/L	1	09/25/20 9:10 AM	09/28/20 7:11 AM			
Cobalt	< 0.005	0.005		mg/L	1	09/25/20 9:10 AM	09/28/20 7:11 AM			
Iron	< 0.005	0.005		mg/L	1	09/25/20 9:10 AM	09/28/20 7:11 AM 09/28/20 7:11 AM			
Manganese	< 0.03	0.03		mg/L	1	09/25/20 9:10 AM	09/28/20 7:11 AM			
Manganese	< 0.01	0.01		mg/L	'	03/23/20 3.10 AW	USIZOIZU I.II AIVI			

Date: 20-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: Pond C

Lab Order: G2009D99

Project: Conemaugh CCR 3rd Qtr 2020 Sampled By: Conemaugh

 Lab ID:
 G2009D99-003
 Collection Date:
 9/23/2020 12:41:00 PM

 Matrix:
 SOLID
 Received Date:
 9/23/2020 5:28:47 PM

Matrix: SOLID		Received Date. 7/25/2020 5.20.4							
Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed		
FIELD PARAMETERS		Analyst:					Field		
Depth To Water	1.40			Ft			09/23/20 12:41 PM		
Dissolved Oxygen	8.95			mg/L			09/23/20 12:41 PM		
Flow	NA			GPM			09/23/20 12:41 PM		
Oxidation Reduction Potential	151			mV			09/23/20 12:41 PM		
pH (Field)	7.78			S.U.			09/23/20 12:41 PM		
Sample Depth	NA			Ft			09/23/20 12:41 PM		
Specific Conductance (Field)	2730			µmhos/cm			09/23/20 12:41 PM		
Temperature (Field)	23.16			deg C			09/23/20 12:41 PM		
Turbidity (Field)	41.3			NTU			09/23/20 12:41 PM		
Volume Purged	NA			Gallons			09/23/20 12:41 PM		
Well Volume Purged	NA			Well Volume	es		09/23/20 12:41 PM		
TOTAL METALS		Analyst:	GMG			EPA 3050	EPA 6010 D		
Aluminum	6610	20.0		mg/Kg-dry	1	09/29/20 9:45 AM	09/29/20 12:12 PM		
Cobalt	6.0	0.5		mg/Kg-dry	1	09/29/20 9:45 AM	09/29/20 12:12 PM		
Iron	27800	100		mg/Kg-dry	10	09/29/20 9:45 AM	09/30/20 7:02 AM		
Manganese	64.6	1.0		mg/Kg-dry	1	09/29/20 9:45 AM	09/29/20 12:12 PM		
SPLP FLUID #1		Analyst:	DMM				EPA 1312		
Final pH Metals	6.90	·		S.U.	1		09/24/20 10:30 AM		
SPLP METALS FLUID #1		Analyst:	MEG			EPA 3010 A	EPA 6010 D		
Aluminum	0.1	0.1		mg/L	1	09/25/20 9:10 AM	09/28/20 7:21 AM		
Cobalt	< 0.005	0.005		mg/L	1	09/25/20 9:10 AM	09/28/20 7:21 AM		
Iron	< 0.05	0.05		mg/L	1	09/25/20 9:10 AM	09/28/20 7:21 AM		
Manganese	< 0.01	0.01		mg/L	1	09/25/20 9:10 AM	09/28/20 7:21 AM		
Manganese	< 0.01	0.01		mg/L	1	09/25/20 9:10 AM	09/28/20 7:21 A		

Date: 20-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: Pond D

Lab Order: G2009D99

Project: Conemaugh CCR 3rd Qtr 2020 Sampled By: Conemaugh

 Lab ID:
 G2009D99-004
 Collection Date:
 9/23/2020 12:38:00 PM

 Matrix:
 SOLID
 Received Date:
 9/23/2020 5:28:47 PM

Matrix: SOLID	Received Date: 9/23/2020 5:28:47 PM								
Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed		
FIELD PARAMETERS		Analyst:					Field		
Depth To Water	8.90			Ft			09/23/20 12:38 PM		
Dissolved Oxygen	0.86			mg/L			09/23/20 12:38 PM		
Flow	NA			GPM			09/23/20 12:38 PM		
Oxidation Reduction Potential	168			mV			09/23/20 12:38 PM		
pH (Field)	8.02			S.U.			09/23/20 12:38 PM		
Sample Depth	NA			Ft			09/23/20 12:38 PM		
Specific Conductance (Field)	2810			µmhos/cm			09/23/20 12:38 PM		
Temperature (Field)	23.27			deg C			09/23/20 12:38 PM		
Turbidity (Field)	46.8			NTU			09/23/20 12:38 PM		
Volume Purged	NA			Gallons			09/23/20 12:38 PM		
Well Volume Purged	NA			Well Volume	es		09/23/20 12:38 PM		
TOTAL METALS		Analyst:	GMG			EPA 3050	EPA 6010 D		
Aluminum	6540	20.0		mg/Kg-dry	1	09/29/20 9:45 AM	09/29/20 12:14 PM		
Cobalt	11.3	0.5		mg/Kg-dry	1	09/29/20 9:45 AM	09/29/20 12:14 PM		
Iron	45600	100		mg/Kg-dry	10	09/29/20 9:45 AM	09/30/20 7:03 AM		
Manganese	227	1.0		mg/Kg-dry	1	09/29/20 9:45 AM	09/29/20 12:14 PM		
SPLP FLUID #1		Analyst:	DMM				EPA 1312		
Final pH Metals	2.72	·		S.U.	1		09/24/20 10:30 AM		
SPLP METALS FLUID #1		Analyst:	MEG			EPA 3010 A	EPA 6010 D		
Aluminum	0.3	0.1		mg/L	1	09/25/20 9:10 AM	09/28/20 7:24 AM		
Cobalt	< 0.005	0.005		mg/L	1	09/25/20 9:10 AM	09/28/20 7:24 AM		
Iron	0.08	0.05		mg/L	1	09/25/20 9:10 AM	09/28/20 7:24 AM		
Manganese	< 0.01	0.01		mg/L	1	09/25/20 9:10 AM	09/28/20 7:24 AM		
	1 0.01	0.01		9/ =	•	55, 25, 25 5. 15 7 W	33,20,20 7.21711		

2005 N. Center Ave. Somerset, PA 15501

814/443-1671 814/445-6666 FAX: 814/445-6729

Wednesday, October 21, 2020

John Shimshock CONEMAUGH OPERATING, LLC CONEMAUGH STATION PO BOX K NEW FLORENCE, PA 15944

RE: Conemaugh CCR 3rd Qtr 2020 Order No.: G2009E00

Dear John Shimshock:

Geochemical Testing received 6 sample(s) on 9/23/2020 for the analyses presented in the following report.

There were no problems with sample receipt protocols and analyses met the TNI/NELAC, EPA, and laboratory specifications except where noted in the Case Narrative or Laboratory Results.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Timothy W. Bergstresser Director of Technical Services

Timoff W Ley trese

Leslie A. Nemeth Project Manager

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC

Project: Conemaugh CCR 3rd Qtr 2020

Lab Order: G2009E00

CASE NARRATIVE

Date: 21-Oct-20

No problems were encountered during analysis of this workorder, except if noted in this report.

The radiological analysis (Radium 226 by EPA 903.1; Radium 228 by EPA 904.0 was subcontracted to Pace Analytical (PA DEP 65-00282). A copy of the subcontractor's laboratory report is enclosed with this Analytical Report.

Legend:

 $\rm H$ - Method Hold Time exceeded and is not compliant with $40 CFR 136\ Table\ II.$

U - The analyte was not detected at or above the listed concentration, which is below the laboratory quantitation limit.

B - Analyte detected in the associated Method Blank

Q1 - See case narrative

ND - Not Detected

MCL - Contaminant Limit

J - Indicates an estimated value.

Q - Qualifier

QL -Quantitation Limit

DF - Dilution Factor

S - Surrogate Recovery outside accepted recovery limits

T - Sample received above required temperature and is not compliant with 40CFR136 Table II.

T1 - Sample received above required temperature

MDA - Minimum Detectable Activity.

** - Value exceeds Action Limit

TICs - Tentatively Identified Compounds.

E - Value above quantitation range

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: MW-1B

Lab Order: G2009E00

 Project:
 Conemaugh CCR 3rd Qtr 2020
 Sampled By:
 CME Engineering

 Lab ID:
 G2009E00-001
 Collection Date:
 9/23/2020 9:24:00 AM

 Matrix:
 GROUNDWATER
 Received Date:
 9/23/2020 5:41:19 PM

Matrix: GROUNDWAI	Received Bate. 9/25/2626 5.1							
Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed	
FIELD PARAMETERS		Analyst:					FIELD	
Depth To Water	15.76			Ft			09/23/20 9:24 AM	
Dissolved Oxygen	0.00			mg/L			09/23/20 9:24 AM	
Flow	0.11			GPM			09/23/20 9:24 AM	
pH (Field)	5.48			S.U.			09/23/20 9:24 AM	
Sample Depth	41.0			Ft			09/23/20 9:24 AM	
Specific Conductance (Field)	3650			µmhos/cm			09/23/20 9:24 AM	
Temperature (Field)	15.69			deg C			09/23/20 9:24 AM	
Turbidity (Field)	0.60			NTU			09/23/20 9:24 AM	
Volume Purged	8.5			Gallons			09/23/20 9:24 AM	
Well Volume Purged	0.44			Well Volume	9		09/23/20 9:24 AM	
PH BY SM 4500 H+B		Analyst:	LRR				SM 4500-H+ B	
Lab pH	5.95		Н	S.U.	1		09/24/20 3:42 PM	
INORGANIC NON-METALS		Analyst:	LRR			SM 2540C	SM 2540 C	
Total dissolved solids	1940	20		mg/L	1	09/24/20 5:00 PM	09/24/20 5:26 PM	
INORGANIC NON-METALS		Analyst:	LRR				ASTM D 1067-11	
Alkalinity to pH 4.5	14	10		mg/L CaCO	3 1		09/24/20 3:42 PM	
INORGANIC NON-METALS		Analyst:	MBG			EPA 300.0	EPA 300.0	
Chloride	830	1.0		mg/L	1	09/24/20 10:35 AM	09/24/20 3:08 PM	
Fluoride	< 0.1	0.1		mg/L	1	09/24/20 10:35 AM	09/24/20 3:08 PM	
Sulfate	413	2.0		mg/L	1	09/24/20 10:35 AM	09/24/20 3:08 PM	
INORGANIC METALS		Analyst:	MEG			EPA 200.2	EPA 200.7	
Aluminum, dissolved	< 0.1	0.1		mg/L	1	09/24/20 11:50 AM	09/25/20 4:23 PM	
Cobalt, dissolved	< 0.005	0.005		mg/L	1	09/24/20 11:50 AM	09/25/20 4:23 PM	
Iron, dissolved	< 0.05	0.05		mg/L	1	09/24/20 11:50 AM	09/25/20 4:23 PM	
Manganese, dissolved	2.64	0.01		mg/L	1	09/24/20 11:50 AM	09/25/20 4:23 PM	
INORGANIC METALS		Analyst:	LXM			SM 3112 B	SM 3112 B	
Mercury	< 0.20	0.20		μg/L	1	09/25/20 6:35 AM	09/28/20 10:53 AM	
INORGANIC METALS		Analyst:	MEG			EPA 200.2	EPA 200.7	
Aluminum	< 0.1	0.1		mg/L	1		09/25/20 4:21 PM	
Barium	0.02	0.01		mg/L	1		09/25/20 4:21 PM	
Beryllium	< 0.001	0.001		mg/L	1		09/25/20 4:21 PM	
Boron	0.40	0.05		mg/L	1		09/25/20 4:21 PM	
Cadmium	0.002	0.002		mg/L	1		09/25/20 4:21 PM	
Calcium	154	0.1		mg/L	1		09/25/20 4:21 PM	
Chromium	< 0.01	0.01		mg/L	1	09/24/20 11:50 AM	09/25/20 4:21 PM	

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: MW-1B

Lab Order: G2009E00

 Project:
 Conemaugh CCR 3rd Qtr 2020
 Sampled By:
 CME Engineering

 Lab ID:
 G2009E00-001
 Collection Date:
 9/23/2020 9:24:00 AM

 Matrix:
 GROUNDWATER
 Received Date:
 9/23/2020 5:41:19 PM

Analyses	Result	QL	Q Units	DF	Date Prepared	Date Analyzed
INORGANIC METALS		Analyst: ME	EG .		EPA 200.2	EPA 200.7
Cobalt	0.005	0.005	mg/L	1	09/24/20 11:50 AN	1 09/25/20 4:21 PM
Iron	0.07	0.05	mg/L	1	09/24/20 11:50 AN	1 09/25/20 4:21 PM
Lithium	0.02	0.01	mg/L	1	09/24/20 11:50 AN	1 09/25/20 4:21 PM
Magnesium	27.1	0.1	mg/L	1	09/24/20 11:50 AN	1 09/25/20 4:21 PM
Manganese	2.89	0.01	mg/L	1	09/24/20 11:50 AN	1 09/25/20 4:21 PM
Molybdenum	< 0.02	0.02	mg/L	1	09/24/20 11:50 AN	1 09/25/20 4:21 PM
Potassium	13.6	0.5	mg/L	1	09/24/20 11:50 AN	1 09/25/20 4:21 PM
Sodium	439	0.2	mg/L	1	09/24/20 11:50 AN	1 09/25/20 4:21 PM
INORGANIC METALS		Analyst: JE	K		EPA 200.2	EPA 200.8
Antimony	< 1.0	1.0	μg/L	1	09/24/20 11:50 AN	1 09/25/20 12:59 PM
Arsenic	< 1.0	1.0	μg/L	1	09/24/20 11:50 AN	1 09/25/20 12:59 PM
Lead	< 1.0	1.0	μg/L	1	09/24/20 11:50 AN	1 09/25/20 12:59 PM
Selenium	1.8	1.0	μg/L	1	09/24/20 11:50 AN	1 09/25/20 12:59 PM
Thallium	< 0.2	0.2	μg/L	1	09/24/20 11:50 AN	1 09/25/20 12:59 PM
RADIOLOGICAL PARAMETERS		Analyst: SU	IB			EPA 903.1
Radium 226	0.0671+-0.436	0.880	pCi/L	1		10/13/20 4:37 PM
RADIOLOGICAL PARAMETERS		Analyst: SU	IB			EPA 904.0
Radium 228	0.226+-0.388	0.847	pCi/L	1		10/13/20 11:08 AM

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: MW-2

Lab Order: G2009E00

Project:Conemaugh CCR 3rd Qtr 2020Sampled By:CME EngineeringLab ID:G2009E00-002Collection Date:9/23/2020 11:14:00 AMMatrix:GROUNDWATERReceived Date:9/23/2020 5:41:19 PM

Matrix: GROUNDWAI	EK	.17 1 141					
Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
FIELD PARAMETERS		Analyst:					FIELD
Depth To Water	17.50			Ft			09/23/20 11:14 AM
Dissolved Oxygen	6.91			mg/L			09/23/20 11:14 AM
Flow	0.09			GPM			09/23/20 11:14 AM
pH (Field)	6.43			S.U.			09/23/20 11:14 AM
Sample Depth	25.0			Ft			09/23/20 11:14 AM
Specific Conductance (Field)	1330			µmhos/cm			09/23/20 11:14 AM
Temperature (Field)	16.22			deg C			09/23/20 11:14 AM
Turbidity (Field)	< 0.10			NTU			09/23/20 11:14 AM
Volume Purged	7.5			Gallons			09/23/20 11:14 AM
Well Volume Purged	0.59			Well Volume	9		09/23/20 11:14 AM
PH BY SM 4500 H+B		Analyst:	LRR				SM 4500-H+ B
Lab pH	6.78		Н	S.U.	1		09/24/20 3:45 PM
INORGANIC NON-METALS		Analyst:	LRR			SM 2540C	SM 2540 C
Total dissolved solids	846	20		mg/L	1	09/24/20 5:00 PM	09/24/20 5:26 PM
INORGANIC NON-METALS		Analyst:	LRR				ASTM D 1067-11
Alkalinity to pH 4.5	98	10		mg/L CaCO	3 1		09/24/20 3:45 PM
INORGANIC NON-METALS		Analyst:	MBG			EPA 300.0	EPA 300.0
Chloride	171	1.0		mg/L	1	09/24/20 10:35 AM	09/24/20 4:02 PM
Fluoride	0.1	0.1		mg/L	1	09/24/20 10:35 AM	09/24/20 4:02 PM
Sulfate	348	2.0		mg/L	1	09/24/20 10:35 AM	09/24/20 4:02 PM
INORGANIC METALS		Analyst:	MEG			EPA 200.2	EPA 200.7
Aluminum, dissolved	< 0.1	0.1		mg/L	1	09/24/20 11:50 AM	09/25/20 4:26 PM
Cobalt, dissolved	< 0.005	0.005		mg/L	1	09/24/20 11:50 AM	09/25/20 4:26 PM
Iron, dissolved	< 0.05	0.05		mg/L	1		09/25/20 4:26 PM
Manganese, dissolved	1.53	0.01		mg/L	1	09/24/20 11:50 AM	09/25/20 4:26 PM
INORGANIC METALS		Analyst:	LXM			SM 3112 B	SM 3112 B
Mercury	< 0.20	0.20		μg/L	1	09/25/20 6:35 AM	09/28/20 10:55 AM
INORGANIC METALS		Analyst:	MEG			EPA 200.2	EPA 200.7
Aluminum	< 0.1	0.1		mg/L	1		09/25/20 4:25 PM
Barium	0.01	0.01		mg/L	1		09/25/20 4:25 PM
Beryllium	< 0.001	0.001		mg/L	1		09/25/20 4:25 PM
Boron	0.33	0.05		mg/L	1		09/25/20 4:25 PM
Cadmium	< 0.002	0.002		mg/L	1		09/25/20 4:25 PM
Calcium	137	0.1		mg/L	1		09/25/20 4:25 PM
Chromium	< 0.01	0.01		mg/L	1	09/24/20 11:50 AM	09/25/20 4:25 PM

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: MW-2

Lab Order: G2009E00

Project:Conemaugh CCR 3rd Qtr 2020Sampled By:CME EngineeringLab ID:G2009E00-002Collection Date:9/23/2020 11:14:00 AMMatrix:GROUNDWATERReceived Date:9/23/2020 5:41:19 PM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
INORGANIC METALS		Analyst: I	MEG			EPA 200.2	EPA 200.7
Cobalt	< 0.005	0.005		mg/L	1	09/24/20 11:50 AM	1 09/25/20 4:25 PM
Iron	< 0.05	0.05		mg/L	1	09/24/20 11:50 AM	1 09/25/20 4:25 PM
Lithium	< 0.01	0.01		mg/L	1	09/24/20 11:50 AM	1 09/25/20 4:25 PM
Magnesium	39.7	0.1		mg/L	1	09/24/20 11:50 AM	1 09/25/20 4:25 PM
Manganese	1.54	0.01		mg/L	1	09/24/20 11:50 AM	1 09/25/20 4:25 PM
Molybdenum	< 0.02	0.02		mg/L	1	09/24/20 11:50 AM	1 09/25/20 4:25 PM
Potassium	3.4	0.5		mg/L	1	09/24/20 11:50 AM	1 09/25/20 4:25 PM
Sodium	67.6	0.2		mg/L	1	09/24/20 11:50 AM	1 09/25/20 4:25 PM
INORGANIC METALS		Analyst: 、	JEK			EPA 200.2	EPA 200.8
Antimony	< 1.0	1.0		μg/L	1	09/24/20 11:50 AM	1 09/25/20 1:02 PM
Arsenic	< 1.0	1.0		μg/L	1	09/24/20 11:50 AM	1 09/25/20 1:02 PM
Lead	< 1.0	1.0		μg/L	1	09/24/20 11:50 AM	1 09/25/20 1:02 PM
Selenium	< 1.0	1.0		μg/L	1	09/24/20 11:50 AM	1 09/25/20 1:02 PM
Thallium	< 0.2	0.2		μg/L	1	09/24/20 11:50 AM	1 09/25/20 1:02 PM
RADIOLOGICAL PARAMETERS		Analyst: \$	SUB				EPA 903.1
Radium 226	-0.132+-0.408	0.928		pCi/L	1		10/13/20 4:37 PM
RADIOLOGICAL PARAMETERS		Analyst: \$	SUB				EPA 904.0
Radium 228	-0.459+-0.438	1.09		pCi/L	1		10/13/20 11:08 AM

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: MW-3

Lab Order: G2009E00

 Project:
 Conemaugh CCR 3rd Qtr 2020
 Sampled By:
 CME Engineering

 Lab ID:
 G2009E00-003
 Collection Date:
 9/23/2020 1:59:00 PM

 Matrix:
 GROUNDWATER
 Received Date:
 9/23/2020 5:41:19 PM

Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
FIELD PARAMETERS		Analyst:					FIELD
Depth To Water	12.58			Ft			09/23/20 1:59 PM
Dissolved Oxygen	0.00			mg/L			09/23/20 1:59 PM
Flow	0.07			GPM			09/23/20 1:59 PM
pH (Field)	5.78			S.U.			09/23/20 1:59 PM
Sample Depth	24.0			Ft			09/23/20 1:59 PM
Specific Conductance (Field)	1720			µmhos/cm			09/23/20 1:59 PM
Temperature (Field)	19.66			deg C			09/23/20 1:59 PM
Turbidity (Field)	< 0.10			NTU			09/23/20 1:59 PM
Volume Purged	4.0			Gallons			09/23/20 1:59 PM
Well Volume Purged	1.5			Well Volume	е		09/23/20 1:59 PM
PH BY SM 4500 H+B		Analyst: I	LRR				SM 4500-H+ B
Lab pH	6.16		Н	S.U.	1		09/24/20 3:52 PM
INORGANIC NON-METALS		Analyst: I	LRR			SM 2540C	SM 2540 C
Total dissolved solids	1210	20		mg/L	1	09/24/20 5:00 PM	09/24/20 5:26 PM
INORGANIC NON-METALS		Analyst:	LRR				ASTM D 1067-11
Alkalinity to pH 4.5	44	10		mg/L CaCO	3 1		09/24/20 3:52 PM
INORGANIC NON-METALS		Analyst: I	MBG			EPA 300.0	EPA 300.0
Chloride	419	1.0		mg/L	1	09/24/20 10:35 AM	09/24/20 4:20 PM
Fluoride	< 0.1	0.1		mg/L	1	09/24/20 10:35 AM	09/24/20 4:20 PM
Sulfate	236	2.0		mg/L	1	09/24/20 10:35 AM	09/24/20 4:20 PM
INORGANIC METALS		Analyst: I	MEG			EPA 200.2	EPA 200.7
Aluminum, dissolved	< 0.1	0.1		mg/L	1	09/24/20 11:50 AM	09/25/20 4:30 PM
Cobalt, dissolved	0.010	0.005		mg/L	1	09/24/20 11:50 AM	09/25/20 4:30 PM
Iron, dissolved	0.47	0.05		mg/L	1	09/24/20 11:50 AM	09/25/20 4:30 PM
Manganese, dissolved	4.06	0.01		mg/L	1	09/24/20 11:50 AM	09/25/20 4:30 PM
INORGANIC METALS		Analyst: I	LXM			SM 3112 B	SM 3112 B
Mercury	< 0.20	0.20		μg/L	1	09/25/20 6:35 AM	09/28/20 10:56 AM
INORGANIC METALS		Analyst: I	MEG			EPA 200.2	EPA 200.7
Aluminum	< 0.1	0.1		mg/L	1	09/24/20 11:50 AM	09/25/20 4:28 PM
Barium	0.04	0.01		mg/L	1	09/24/20 11:50 AM	09/25/20 4:28 PM
Beryllium	< 0.001	0.001		mg/L	1	09/24/20 11:50 AM	09/25/20 4:28 PM
Boron	< 0.05	0.05		mg/L	1		09/25/20 4:28 PM
Cadmium	< 0.002	0.002		mg/L	1	09/24/20 11:50 AM	09/25/20 4:28 PM
Calcium	131	0.1		mg/L	1		09/25/20 4:28 PM
Chromium	< 0.01	0.01		mg/L	1	09/24/20 11:50 AM	09/25/20 4:28 PM

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: MW-3

Lab Order: G2009E00

 Project:
 Conemaugh CCR 3rd Qtr 2020
 Sampled By:
 CME Engineering

 Lab ID:
 G2009E00-003
 Collection Date:
 9/23/2020 1:59:00 PM

Matrix: GROUNDWATER Received Date: 9/23/2020 5:41:19 PM

Matrix. GROONDWIII	LIX						
Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
INORGANIC METALS		Analyst: N	MEG			EPA 200.2	EPA 200.7
Cobalt	0.010	0.005		mg/L	1	09/24/20 11:50 AN	1 09/25/20 4:28 PM
Iron	0.48	0.05		mg/L	1	09/24/20 11:50 AN	1 09/25/20 4:28 PM
Lithium	< 0.01	0.01		mg/L	1	09/24/20 11:50 AN	1 09/25/20 4:28 PM
Magnesium	61.7	0.1		mg/L	1	09/24/20 11:50 AN	1 09/25/20 4:28 PM
Manganese	3.80	0.01		mg/L	1	09/24/20 11:50 AN	1 09/25/20 4:28 PM
Molybdenum	< 0.02	0.02		mg/L	1	09/24/20 11:50 AN	1 09/25/20 4:28 PM
Potassium	2.1	0.5		mg/L	1	09/24/20 11:50 AN	1 09/25/20 4:28 PM
Sodium	111	0.2		mg/L	1	09/24/20 11:50 AN	1 09/25/20 4:28 PM
INORGANIC METALS		Analyst: J	JEK			EPA 200.2	EPA 200.8
Antimony	< 1.0	1.0		μg/L	1	09/24/20 11:50 AN	1 09/25/20 1:04 PM
Arsenic	< 1.0	1.0		μg/L	1	09/24/20 11:50 AN	1 09/25/20 1:04 PM
Lead	< 1.0	1.0		μg/L	1	09/24/20 11:50 AN	1 09/25/20 1:04 PM
Selenium	< 1.0	1.0		μg/L	1	09/24/20 11:50 AM	1 09/25/20 1:04 PM
Thallium	< 0.2	0.2		μg/L	1	09/24/20 11:50 AN	1 09/25/20 1:04 PM
RADIOLOGICAL PARAMETERS		Analyst: \$	SUB				EPA 903.1
Radium 226	0.227+-0.353	0.611		pCi/L	1		10/14/20 12:06 PM
RADIOLOGICAL PARAMETERS		Analyst: \$	SUB				EPA 904.0
Radium 228	1.21+-0.637	1.14		pCi/L	1		10/13/20 11:51 AM

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: MW-4

Lab Order: G2009E00

 Project:
 Conemaugh CCR 3rd Qtr 2020
 Sampled By:
 CME Engineering

 Lab ID:
 G2009E00-004
 Collection Date:
 9/23/2020 12:25:00 PM

 Matrix:
 GROUNDWATER
 Received Date:
 9/23/2020 5:41:19 PM

WIALTIX: GROUNDWATER	EK Received Date. 9/25/2020 5.11.19 1						
Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
FIELD PARAMETERS		Analyst:					FIELD
Depth To Water	8.30			Ft			09/23/20 12:25 PM
Dissolved Oxygen	0.00			mg/L			09/23/20 12:25 PM
Flow	0.08			GPM			09/23/20 12:25 PM
pH (Field)	5.92			S.U.			09/23/20 12:25 PM
Sample Depth	22.4			Ft			09/23/20 12:25 PM
Specific Conductance (Field)	3120			µmhos/cm			09/23/20 12:25 PM
Temperature (Field)	19.22			deg C			09/23/20 12:25 PM
Turbidity (Field)	< 0.10			NTU			09/23/20 12:25 PM
Volume Purged	3.5			Gallons			09/23/20 12:25 PM
Well Volume Purged	0.92			Well Volume)		09/23/20 12:25 PM
PH BY SM 4500 H+B		Analyst:	LRR				SM 4500-H+ B
Lab pH	6.25		Н	S.U.	1		09/24/20 3:56 PM
INORGANIC NON-METALS		Analyst:	LRR			SM 2540C	SM 2540 C
Total dissolved solids	1700	20		mg/L	1	09/24/20 5:00 PM	09/24/20 5:26 PM
INORGANIC NON-METALS		Analyst:	LRR				ASTM D 1067-11
Alkalinity to pH 4.5	53	10		mg/L CaCO	3 1		09/24/20 3:56 PM
INORGANIC NON-METALS		Analyst:	MBG			EPA 300.0	EPA 300.0
Chloride	461	1.0		mg/L	1	09/24/20 10:35 AM	09/24/20 4:56 PM
Fluoride	< 0.1	0.1		mg/L	1	09/24/20 10:35 AM	09/24/20 4:56 PM
Sulfate	680	2.0		mg/L	1	09/24/20 10:35 AM	09/24/20 4:56 PM
INORGANIC METALS		Analyst:	MEG			EPA 200.2	EPA 200.7
Aluminum, dissolved	< 0.1	0.1		mg/L	1	09/24/20 11:50 AM	09/25/20 4:31 PM
Cobalt, dissolved	0.020	0.005		mg/L	1	09/24/20 11:50 AM	09/25/20 4:31 PM
Iron, dissolved	0.10	0.05		mg/L	1	09/24/20 11:50 AM	09/25/20 4:31 PM
Manganese, dissolved	4.95	0.01		mg/L	1	09/24/20 11:50 AM	09/25/20 4:31 PM
INORGANIC METALS		Analyst:	LXM			SM 3112 B	SM 3112 B
Mercury	< 0.20	0.20		μg/L	1	09/25/20 6:35 AM	09/28/20 10:58 AM
INORGANIC METALS		Analyst:	MEG			EPA 200.2	EPA 200.7
Aluminum	< 0.1	0.1		mg/L	1	09/24/20 11:50 AM	09/25/20 4:33 PM
Barium	0.01	0.01		mg/L	1		09/25/20 4:33 PM
Beryllium	< 0.001	0.001		mg/L	1		09/25/20 4:33 PM
Boron	0.10	0.05		mg/L	1		09/25/20 4:33 PM
Cadmium	< 0.002	0.002		mg/L	1		09/25/20 4:33 PM
Calcium	209	0.1		mg/L	1		09/25/20 4:33 PM
Chromium	< 0.01	0.01		mg/L	1	09/24/20 11:50 AM	09/25/20 4:33 PM

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: MW-4

Lab Order: G2009E00

 Project:
 Conemaugh CCR 3rd Qtr 2020
 Sampled By:
 CME Engineering

 Lab ID:
 G2009E00-004
 Collection Date:
 9/23/2020 12:25:00 PM

 Matrix:
 GROUNDWATER
 Received Date:
 9/23/2020 5:41:19 PM

Matrix: GROUNDWAI	EK		Received	Date.	9/23/2020 3.41	.19 1 101
Analyses	Result	QL	Q Units	DF	Date Prepared	Date Analyzed
INORGANIC METALS		Analyst: ME	EG .		EPA 200.2	EPA 200.7
Cobalt	0.020	0.005	mg/L	1	09/24/20 11:50 AM	1 09/25/20 4:33 PM
Iron	0.14	0.05	mg/L	1	09/24/20 11:50 AM	1 09/25/20 4:33 PM
Lithium	< 0.01	0.01	mg/L	1	09/24/20 11:50 AM	1 09/25/20 4:33 PM
Magnesium	52.0	0.1	mg/L	1	09/24/20 11:50 AM	1 09/25/20 4:33 PM
Manganese	4.64	0.01	mg/L	1	09/24/20 11:50 AM	1 09/25/20 4:33 PM
Molybdenum	< 0.02	0.02	mg/L	1	09/24/20 11:50 AM	1 09/25/20 4:33 PM
Potassium	3.5	0.5	mg/L	1	09/24/20 11:50 AM	1 09/25/20 4:33 PM
Sodium	236	0.2	mg/L	1	09/24/20 11:50 AM	1 09/25/20 4:33 PM
INORGANIC METALS		Analyst: JE	K		EPA 200.2	EPA 200.8
Antimony	< 1.0	1.0	μg/L	1	09/24/20 11:50 AM	1 09/25/20 1:06 PM
Arsenic	< 1.0	1.0	μg/L	1	09/24/20 11:50 AM	1 09/25/20 1:06 PM
Lead	< 1.0	1.0	μg/L	1	09/24/20 11:50 AM	1 09/25/20 1:06 PM
Selenium	< 1.0	1.0	μg/L	1	09/24/20 11:50 AM	1 09/25/20 1:06 PM
Thallium	< 0.2	0.2	μg/L	1	09/24/20 11:50 AM	1 09/25/20 1:06 PM
RADIOLOGICAL PARAMETERS		Analyst: SU	IB			EPA 903.1
Radium 226	-0.0566+-0.400	0.849	pCi/L	1		10/14/20 12:06 PM
RADIOLOGICAL PARAMETERS		Analyst: SU	IB			EPA 904.0
Radium 228	0.278+-0.504	1.10	pCi/L	1		10/13/20 11:51 AM

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: MW-23

Lab Order: G2009E00

 Project:
 Conemaugh CCR 3rd Qtr 2020
 Sampled By:
 CME Engineering

 Lab ID:
 G2009E00-005
 Collection Date:
 9/23/2020 2:25:00 PM

 Matrix:
 GROUNDWATER
 Received Date:
 9/23/2020 5:41:19 PM

Matrix: GROUNDWATER				itecerveu B	aic.	,.		
Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed	
FIELD PARAMETERS		Analyst:					FIELD	
Depth To Water	15.92			Ft			09/23/20 2:25 PM	
Dissolved Oxygen	< 0.10			mg/L			09/23/20 2:25 PM	
Flow	0.14			GPM			09/23/20 2:25 PM	
pH (Field)	5.57			S.U.			09/23/20 2:25 PM	
Sample Depth	30.4			Ft			09/23/20 2:25 PM	
Specific Conductance (Field)	2020			µmhos/cm			09/23/20 2:25 PM	
Temperature (Field)	20.22			deg C			09/23/20 2:25 PM	
Turbidity (Field)	17.8			NTU			09/23/20 2:25 PM	
Volume Purged	8.5			Gallons			09/23/20 2:25 PM	
Well Volume Purged	0.81			Well Volume	:		09/23/20 2:25 PM	
PH BY SM 4500 H+B		Analyst: I	_RR				SM 4500-H+ B	
Lab pH	6.07		Н	S.U.	1		09/24/20 4:01 PM	
INORGANIC NON-METALS		Analyst: I	_RR			SM 2540C	SM 2540 C	
Total dissolved solids	1190	20		mg/L	1	09/24/20 5:00 PM	09/24/20 5:26 PM	
INORGANIC NON-METALS		Analyst: I	_RR				ASTM D 1067-11	
Alkalinity to pH 4.5	44	10		mg/L CaCO3	3 1		09/24/20 4:01 PM	
INORGANIC NON-METALS		Analyst: I	MBG			EPA 300.0	EPA 300.0	
Chloride	321	1.0		mg/L	1	09/24/20 10:35 AM	09/24/20 5:14 PM	
Fluoride	< 0.1	0.1		mg/L	1	09/24/20 10:35 AM	09/24/20 5:14 PM	
Sulfate	462	2.0		mg/L	1	09/24/20 10:35 AM	09/24/20 5:14 PM	
INORGANIC METALS		Analyst: (GMG			EPA 200.2	EPA 200.7	
Aluminum, dissolved	< 0.1	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 1:27 PM	
Cobalt, dissolved	0.048	0.005		mg/L	1	09/25/20 10:35 AM	09/28/20 1:27 PM	
lron, dissolved	10.3	0.05		mg/L	1	09/25/20 10:35 AM	09/28/20 1:27 PM	
Manganese, dissolved	6.11	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 1:27 PM	
INORGANIC METALS		Analyst: I	_XM			SM 3112 B	SM 3112 B	
Mercury	< 0.20	0.20		μg/L	1	09/25/20 6:35 AM	09/28/20 11:12 AM	
INORGANIC METALS		Analyst: (GMG			EPA 200.2	EPA 200.7	
Aluminum	< 0.1	0.1		mg/L	1		09/28/20 1:07 PM	
Barium 	0.01	0.01		mg/L	1		09/28/20 1:07 PM	
Beryllium -	< 0.001	0.001		mg/L	1		09/28/20 1:07 PM	
Boron	0.05	0.05		mg/L	1		09/28/20 1:07 PM	
Cadmium	< 0.002	0.002		mg/L	1		09/28/20 1:07 PM	
Calcium	127	0.1		mg/L	1		09/28/20 1:07 PM	
Chromium	< 0.01	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 1:07 PM	

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: MW-23

Lab Order: G2009E00

 Project:
 Conemaugh CCR 3rd Qtr 2020
 Sampled By:
 CME Engineering

 Lab ID:
 G2009E00-005
 Collection Date:
 9/23/2020 2:25:00 PM

Matrix: GROUNDWATER Received Date: 9/23/2020 5:41:19 PM

Matrix: GROUNDWAII	EK			9/23/2020 3.41.19 1 W			
Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
INORGANIC METALS		Analyst: (GMG			EPA 200.2	EPA 200.7
Cobalt	0.053	0.005		mg/L	1	09/25/20 10:35 AM	09/28/20 1:07 PM
Iron	11.8	0.05		mg/L	1	09/25/20 10:35 AM	09/28/20 1:07 PM
Lithium	< 0.01	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 1:07 PM
Magnesium	48.4	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 1:07 PM
Manganese	6.70	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 1:07 PM
Molybdenum	< 0.02	0.02		mg/L	1	09/25/20 10:35 AM	09/28/20 1:07 PM
Potassium	2.3	0.5		mg/L	1	09/25/20 10:35 AM	09/28/20 1:07 PM
Sodium	172	0.2		mg/L	1	09/25/20 10:35 AM	09/28/20 1:07 PM
INORGANIC METALS		Analyst: F	RLR			EPA 200.2	EPA 200.8
Antimony	< 1.0	1.0		μg/L	1	09/25/20 10:35 AM	09/28/20 1:43 PM
Arsenic	< 1.0	1.0		μg/L	1	09/25/20 10:35 AM	1 09/28/20 1:43 PM
Lead	< 1.0	1.0		μg/L	1	09/25/20 10:35 AM	/ 09/28/20 1:43 PM
Selenium	< 1.0	1.0		μg/L	1	09/25/20 10:35 AM	09/28/20 1:43 PM
Thallium	< 0.2	0.2		μg/L	1	09/25/20 10:35 AM	1 09/28/20 1:43 PM
RADIOLOGICAL PARAMETERS		Analyst: \$	SUB				EPA 903.1
Radium 226	0.116+-0.395	0.761		pCi/L	1		10/14/20 12:06 PM
RADIOLOGICAL PARAMETERS		Analyst: \$	SUB				EPA 904.0
Radium 228	0.818+-0.676	1.37		pCi/L	1		10/13/20 11:51 AM

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: MW-23 DUP

Lab Order: G2009E00

 Project:
 Conemaugh CCR 3rd Qtr 2020
 Sampled By:
 CME Engineering

 Lab ID:
 G2009E00-006
 Collection Date:
 9/23/2020 2:25:00 PM

 Matrix:
 GROUNDWATER
 Received Date:
 9/23/2020 5:41:19 PM

Matrix: GROUNDWATER				Received D	att.	7/23/2020 3.11.19 1141			
Analyses	Result	QL	Q	Units	DF	Date Prepared	Date Analyzed		
FIELD PARAMETERS		Analyst:					FIELD		
Depth To Water	15.92			Ft			09/23/20 2:25 PM		
Dissolved Oxygen	< 0.10			mg/L			09/23/20 2:25 PM		
Flow	0.14			GPM			09/23/20 2:25 PM		
pH (Field)	5.57			S.U.			09/23/20 2:25 PM		
Sample Depth	30.4			Ft			09/23/20 2:25 PM		
Specific Conductance (Field)	2020			µmhos/cm			09/23/20 2:25 PM		
Temperature (Field)	20.22			deg C			09/23/20 2:25 PM		
Turbidity (Field)	17.8			NTU			09/23/20 2:25 PM		
Volume Purged	8.5			Gallons			09/23/20 2:25 PM		
Well Volume Purged	0.81			Well Volume)		09/23/20 2:25 PM		
PH BY SM 4500 H+B		Analyst: I	LRR				SM 4500-H+ B		
Lab pH	6.09		Н	S.U.	1		09/24/20 4:06 PM		
INORGANIC NON-METALS		Analyst: I	LRR			SM 2540C	SM 2540 C		
Total dissolved solids	1210	20		mg/L	1	09/24/20 5:00 PM	09/24/20 5:26 PM		
INORGANIC NON-METALS		Analyst: I	LRR				ASTM D 1067-11		
Alkalinity to pH 4.5	44	10		mg/L CaCO3	3 1		09/24/20 4:06 PM		
INORGANIC NON-METALS		Analyst: I	MBG			EPA 300.0	EPA 300.0		
Chloride	321	1.0		mg/L	1	09/24/20 10:35 AM	09/24/20 5:32 PM		
Fluoride	< 0.1	0.1		mg/L	1	09/24/20 10:35 AM	09/24/20 5:32 PM		
Sulfate	465	2.0		mg/L	1	09/24/20 10:35 AM	09/24/20 5:32 PM		
INORGANIC METALS		Analyst: (GMG			EPA 200.2	EPA 200.7		
Aluminum, dissolved	< 0.1	0.1		mg/L	1	09/25/20 10:35 AM	09/28/20 1:25 PM		
Cobalt, dissolved	0.050	0.005		mg/L	1	09/25/20 10:35 AM	09/28/20 1:25 PM		
Iron, dissolved	11.0	0.05		mg/L	1	09/25/20 10:35 AM	09/28/20 1:25 PM		
Manganese, dissolved	6.45	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 1:25 PM		
INORGANIC METALS		Analyst: I	LXM			SM 3112 B	SM 3112 B		
Mercury	< 0.20	0.20		μg/L	1	09/25/20 6:35 AM	09/28/20 11:17 AN		
INORGANIC METALS		Analyst: (GMG			EPA 200.2	EPA 200.7		
Aluminum	< 0.1	0.1		mg/L	1	09/25/20 10:35 AM			
Barium	0.01	0.01		mg/L	1	09/25/20 10:35 AM			
Beryllium	< 0.001	0.001		mg/L	1	09/25/20 10:35 AM			
Boron	0.07	0.05		mg/L	1	09/25/20 10:35 AM			
Cadmium	< 0.002	0.002		mg/L	1	09/25/20 10:35 AM			
Calcium	119	0.1		mg/L	1	09/25/20 10:35 AM			
Chromium	< 0.01	0.01		mg/L	1	09/25/20 10:35 AM	09/28/20 1:17 PM		

Date: 21-Oct-20

Geochemical Testing

CLIENT: CONEMAUGH OPERATING, LLC Client Sample ID: MW-23 DUP

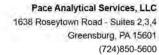
Lab Order: G2009E00

Radium 228

 Project:
 Conemaugh CCR 3rd Qtr 2020
 Sampled By:
 CME Engineering

 Lab ID:
 G2009E00-006
 Collection Date:
 9/23/2020 2:25:00 PM

Received Date: 9/23/2020 5:41:19 PM Matrix: GROUNDWATER Result QL Units **DF** Date Prepared **Date Analyzed** Analyses Q **INORGANIC METALS** Analyst: GMG **EPA 200.2 EPA 200.7** 0.005 Cobalt 0.050 mg/L 09/25/20 10:35 AM 09/28/20 1:17 PM 1 Iron 10.8 0.05 mg/L 1 09/25/20 10:35 AM 09/28/20 1:17 PM 0.01 Lithium < 0.01 mg/L 1 09/25/20 10:35 AM 09/28/20 1:17 PM Magnesium 45.3 0.1 mg/L 1 09/25/20 10:35 AM 09/28/20 1:17 PM 0.01 09/25/20 10:35 AM 09/28/20 1:17 PM Manganese 6.26 mg/L 1 Molybdenum < 0.02 0.02 mg/L 1 09/25/20 10:35 AM 09/28/20 1:17 PM Potassium 2.2 0.5 mg/L 1 09/25/20 10:35 AM 09/29/20 3:49 PM Sodium 158 0.2 mg/L 1 09/25/20 10:35 AM 09/28/20 1:17 PM **EPA 200.2 EPA 200.8 INORGANIC METALS** Analyst: RLR Antimony < 1.0 1.0 μg/L 09/25/20 10:35 AM 09/28/20 1:59 PM < 1.0 1.0 Arsenic μg/L 1 09/25/20 10:35 AM 09/28/20 1:59 PM Lead < 1.0 1.0 μg/L 1 09/25/20 10:35 AM 09/28/20 1:59 PM Selenium < 1.0 1.0 09/25/20 10:35 AM 09/28/20 1:59 PM µg/L 1 Thallium < 0.2 0.2 09/25/20 10:35 AM 09/28/20 1:59 PM µg/L RADIOLOGICAL PARAMETERS Analyst: SUB **EPA 903.1** Radium 226 0.657 1 10/14/20 12:06 PM 0.0547+-0.322 pCi/L RADIOLOGICAL PARAMETERS Analyst: SUB **EPA 904.0**


1.33

pCi/L

1

0.351+-0.611

10/13/20 11:51 AM

October 14, 2020

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

RE: Project: G2009E00

Pace Project No.: 30384557

Dear Ms. Nemeth:

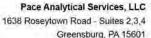
Enclosed are the analytical results for sample(s) received by the laboratory on September 29, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Megan A. Rager megan.rager@pacelabs.com

Megan a Rager

(724)850-5600 Project Manager

Enclosures

(724)850-5600

CERTIFICATIONS

G2009E00 Project: Pace Project No .: 30384557

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012

Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1

New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706

North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526

Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

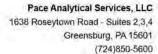
REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: G2009E00
Pace Project No.: 30384557

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
30384557001	G2009E00-001	Water	09/23/20 09:24	09/29/20 09:30	
30384557002	G2009E00-002	Water	09/23/20 11:14	09/29/20 09:30	
30384557003	G2009E00-003	Water	09/23/20 13:59	09/29/20 09:30	
30384557004	G2009E00-004	Water	09/23/20 12:25	09/29/20 09:30	
30384557005	G2009E00-005	Water	09/23/20 14:25	09/29/20 09:30	
30384557006	G2009E00-006	Water	09/23/20 14:25	09/29/20 09:30	

SAMPLE ANALYTE COUNT


Project:

G2009E00

Pace Project No.: 30384557

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30384557001	G2009E00-001	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
30384557002	G2009E00-002	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
30384557003	G2009E00-003	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	Ť	PASI-PA
30384557004	G2009E00-004	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
30384557005	G2009E00-005	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
30384557006	G2009E00-006	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

PROJECT NARRATIVE

Project: G2009E00
Pace Project No.: 30384557

Method: EPA 903.1

Description: 903.1 Radium 226
Client: Geochemical Testing
Date: October 14, 2020

General Information:

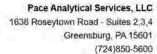
6 samples were analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: Pace Project No.:

G2009E00 30384557

Method:

EPA 904.0

Description: 904.0 Radium 228 Client:

Date:

Geochemical Testing

October 14, 2020

General Information:

6 samples were analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:

G2009E00

Pace Project No .:

30384557

Sample: G2009E00-001

Parameters

Lab ID: 30384557001

Collected: 09/23/20 09:24

Received: 09/29/20 09:30 Matrix: Water

CAS No.

Qual

Qual

Qual

Qual

PWS:

Site ID:

Method

Sample Type:

Act ± Unc (MDC) Carr Trac

Pace Analytical Services - Greensburg EPA 903.1 Radium-226

0.0671 ± 0.436 (0.880) C:NA T:84%

10/13/20 16:37 13982-63-3 pCi/L

Analyzed

Pace Analytical Services - Greensburg

0.226 ± 0.388 (0.847)

10/13/20 11:08 15262-20-1

Radium-228

C:76% T:87%

09/29/20 09:30

Sample: G2009E00-002 PWS:

Parameters

Lab ID: 30384557002 Site ID:

Method

Collected: 09/23/20 11:14 Sample Type:

Act ± Unc (MDC) Carr Trac

Analyzed CAS No.

Radium-226

EPA 903.1

EPA 904.0

Pace Analytical Services - Greensburg -0.132 ± 0.408 (0.928)

pCi/L

pCi/L

Units

pCi/L

Received:

Units

10/13/20 16:37 13982-63-3

EPA 904.0

Pace Analytical Services - Greensburg

C:NA T:94%

-0.459 ± 0.438 (1.09)

Act ± Unc (MDC) Carr Trac

10/13/20 11:08 15262-20-1

Radium-228

Sample: G2009E00-003

Lab ID: 30384557003 Site ID:

C:75% T:72%

Collected: 09/23/20 13:59 Received: 09/29/20 09:30 Matrix: Water Sample Type:

Units

pCi/L

Received:

PWS:

Radium-226

Parameters Method

Pace Analytical Services - Greensburg

0.227 ± 0.353 (0.611)

pCi/L

10/14/20 12:06 13982-63-3

10/13/20 11:51 15262-20-1

CAS No.

Radium-228

Pace Analytical Services - Greensburg EPA 904.0

EPA 903.1

C:NA T:93%

1.21 ± 0.637 (1.14) C:58% T:78%

Analyzed

Parameters

Sample: G2009E00-004

Lab ID: 30384557004

Collected: 09/23/20 12:25

09/29/20 09:30

PWS:

Site ID:

Method

Sample Type:

Act ± Unc (MDC) Carr Trac

Units Analyzed CAS No.

Pace Analytical Services - Greensburg EPA 903.1

-0.0566 ± 0.400 (0.849) C:NA T:94%

pCi/L

10/14/20 12:06 13982-63-3

Radium-226 Radium-228

Pace Analytical Services - Greensburg EPA 904.0

0.278 ± 0.504 (1.10) C:53% T:86%

pCi/L

10/13/20 11:51 15262-20-1

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:

G2009E00

Pace Project No.:

30384557

Parameters

Sample: G2009E00-005

Lab ID: 30384557005

Collected: 09/23/20 14:25

Received: 09/29/20 09:30

Matrix: Water

CAS No.

Qual

Qual

PWS:

Site ID:

Method

Sample Type:

Act ± Unc (MDC) Carr Trac

Radium-226

Radium-228

EPA 903.1

Pace Analytical Services - Greensburg 0.116 ± 0.395 (0.761)

pCi/L

Units

10/14/20 12:06 13982-63-3

C:NA T:82% Pace Analytical Services - Greensburg

EPA 904.0

Method

0.818 ± 0.676 (1.37) C:50% T:82%

pCi/L

10/13/20 11:51 15262-20-1

Sample: G2009E00-006

Parameters

Lab ID: 30384557006

Collected: 09/23/20 14:25

Act ± Unc (MDC) Carr Trac

Received: 09/29/20 09:30 Matrix: Water

Analyzed

PWS:

Site ID:

Sample Type:

Analyzed CAS No.

Radium-226

Radium-228

Pace Analytical Services - Greensburg EPA 903.1

0.0547 ± 0.322 (0.657)

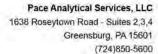
pCi/L

10/14/20 12:06 13982-63-3

EPA 904.0

C:NA T:96% Pace Analytical Services - Greensburg

> 0.351 ± 0.611 (1.33) C:55% T:61%


pCi/L

Units

10/13/20 11:51 15262-20-1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

G2009E00

Pace Project No .:

30384557

QC Batch:

416315

Analysis Method:

EPA 903.1

QC Batch Method:

EPA 903.1

Analysis Description:

903.1 Radium-226

Laboratory:

Pace Analytical Services - Greensburg

Associated Lab Samples:

30384557001, 30384557002

METHOD BLANK: 2012832

Matrix: Water

Associated Lab Samples: 3

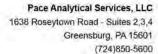
30384557001, 30384557002

Parameter

Act ± Unc (MDC) Carr Trac

Units

Analyzed


Qualifiers

Radium-226

0.547 ± 0.529 (0.829) C:NA T:90%

pCi/L

10/13/20 15:31

Project:

G2009E00

Pace Project No.:

30384557

QC Batch:

416318

Analysis Method:

EPA 903.1

QC Batch Method:

EPA 903.1

Analysis Description:

903.1 Radium-226

Laboratory:

Pace Analytical Services - Greensburg

Associated Lab Samples:

30384557003, 30384557004, 30384557005, 30384557006

METHOD BLANK: 2012841

Matrix: Water

Associated Lab Samples:

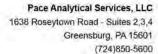
30384557003, 30384557004, 30384557005, 30384557006

Parameter

Act ± Unc (MDC) Carr Trac

Units

Analyzed


Qualifiers

Radium-226

0.000 ± 0.277 (0.586) C:NA T:88%

pCi/L

10/14/20 11:42

Project:

G2009E00

Pace Project No.:

30384557

QC Batch:

416316

Analysis Method:

EPA 904.0

QC Batch Method:

EPA 904.0

Analysis Description:

904.0 Radium 228

Laboratory:

Pace Analytical Services - Greensburg

Associated Lab Samples:

30384557001, 30384557002

METHOD BLANK: 2012833

Matrix: Water

Associated Lab Samples:

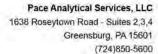
30384557001, 30384557002

Parameter

Act ± Unc (MDC) Carr Trac

Units

Analyzed


Qualifiers

Radium-228

0.585 ± 0.436 (0.848) C:74% T:70%

pCi/L

10/13/20 11:06

Project:

G2009E00

Pace Project No.:

30384557

QC Batch:

416319

Analysis Method:

EPA 904.0

QC Batch Method:

EPA 904.0

Analysis Description:

904.0 Radium 228

Laboratory:

Pace Analytical Services - Greensburg

Associated Lab Samples:

30384557003, 30384557004, 30384557005, 30384557006

METHOD BLANK: 2012842

Matrix: Water

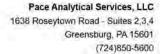
Associated Lab Samples:

30384557003, 30384557004, 30384557005, 30384557006

Parameter

Act ± Unc (MDC) Carr Trac

Units


Analyzed

Qualifiers

Radium-228

0.197 ± 0.397 (0.877) C:65% T:74%

pCi/L 10/13/20 11:52

QUALIFIERS

Project: G2009E00
Pace Project No.: 30384557

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit,

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 10/14/2020 04:03 PM

Shuttle/Cooler ID#:

CHAIN OF CUSTODY

Geochemical Testing

007 Number of Containers GT Time (Military) GT Lab 08:30 P2020-10420 Sampler Geochemical Testing • 2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729 Preservatives, etc Phone: (814) 443-1671 Client "NOTE: IF multiple analytes from one bottle, OR if multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG nHZ Not Hazardous / HZ Hazardous Remarks/ Fax: (814) 445-6729 9/20/20 Date Preservatives by Field Filtered: Y / N Field Filtered: Y / N reld Fittered: Y / N ield Filtered: Y / N Filtered: Y / N ield Filtered: Y / N ield Filtered: Y / N Field Filtered: Y / N Containers Supplied by: PO/Quote#: HN03 HN03 HN03 HNO3 HN03 HN03 Received by (Company & Signature): ***Analyses Requested Radium 226, 228 Radium 226, 228 Radium 226, 228 Radium 226, 228 Radium 226, 228 Radium 226, 228 SL Sludge S Special/DW O Other MO#:30384557 Contact (Company): Leslie Nemeth e-mail: Inemeth@geo-ces.com SO Soil Sampled by: Client GW Ground Water SW Surface Water PW Potable Water WW Wastewater Sample Type 30384557 D Distribution/DW R Raw/DW 0 O (Military) Time (Military) Time 9:00:00 14:25 11:14 13:59 12:25 14:25 9:24 Project: Date 9/23/2020 9/23/2020 9/23/2020 9/23/2020 9/23/2020 9/23/2020 9/24/2020 Date State: PA Zip: 15501 Sample Matrix FHZ/HZ HZ/HZ ZH / ZHU THZ / HZ HZ/HZ GW NH2/H2 건/건 THZ/HZ GW QW GW GW GW GW PA CCR samples C Composite Geochemical Testing 2005 North Center Avenue Number Relinquished by (Company & Signature) Sample Location/ G Grab Note Deficiencies Here: Description City: Somerset Billing Client: eslie Nemeth Sample Matrix: Sample Type: 32009E00-001 G2009E00-002 G2009E00-003 G2009E00-004 G2009E00-005 G2009E00-006 Address: WO#:

500

900

700

003

0

SAMPLES MUST BE PRESERVED ON ICE.

Cooler Temp (°C) on receipt: 5/4

Yes or VNo

Ice present on receipt:

Sample Receiving (1st Review):

Client Support (2nd Review):

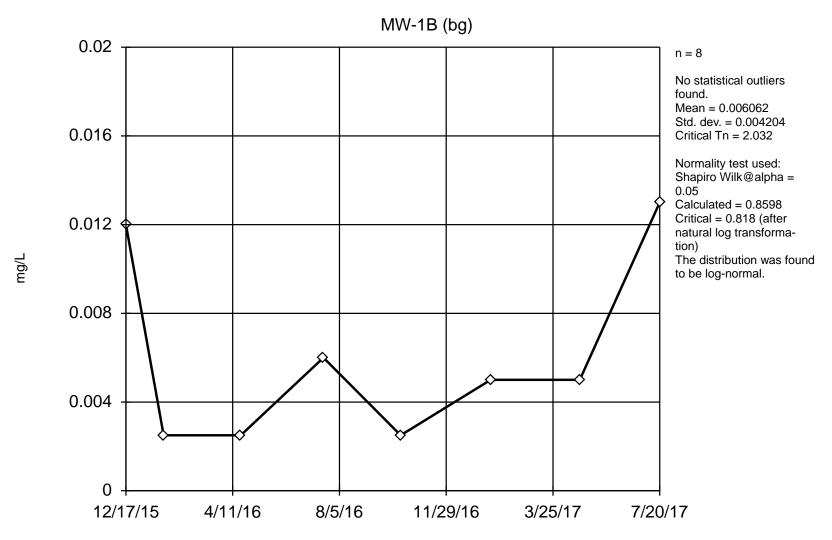
Pittsburgh Lab Sample Condit				Project ## - 30384557
Page Analytical Client Name:)ed(h	Project ## - 3 0 3 8 4 5 5 /
Courier: Fed Ex UPS DUSPS Clien	· D:	omme	rcial	Pace Other Label (247)
Tracking #: 12 544 007 03 5				LIMS Login 10h
Custody Seal on Cooler/Box Present:		0		intact: Uyes Ino
Thermometer Used N/A	-			Blue Mone
Cooler Temperature Observed Temp	1340			ection Factor: C Final Temp: C
Femp should be above freezing to 6°C		221	Cont	Tillar resilp.
				pH paper Lot# Date and Initials of person examining contents: ソンカーコーニョン
Comments:	Yes	No	N/A	lopoyou commis-194
Chain of Custody Present:				1.
Chain of Custody Filled Out:		<u> </u>		2.
Chain of Custody Relinquished:		<u></u>		3.
Sampler Name & Signature on COC:				4. No name or signature
Sample Labels match COC:				5.
-Includes date/time/ID Matrix: 6	ur			
Samples Arrived within Hold Time:	/			6,
Short Hold Time Analysis (<72hr remaining):		/		7.
Rush Turn Around Time Requested:	11.1	/		8.
Sufficient Volume:	/			9.
Correct Containers Used:	/			10.
-Pace Containers Used:		/		
Containers Intact:	/			11.
Orthophosphate field filtered			/	12.
Hex Cr Aqueous sample field filtered			/	13.
Organic Samples checked for dechlorination:			/	14.
Filtered volume received for Dissolved lests	-		/	15.
exceptions: VOA, coliform, TOC, O&G, Phenolics, Non-aqueous matrix	Radon,			16. PH < 2
All containers meet method preservation equirements.	/			Initial when completed Date/time of preservation
				Lot# of added / preservative
leadspace in VOA Vials (>6mm):			/	17.
Trip Blank Present:			/	18.
Trip Blank Custody Seals Present	_		/	Initial when
Rad Samples Screened < 0.5 mrem/hr				completed: Van Date: 9/29/20
Client Notification/ Resolution:				
Person Contacted:			-Date/	Fime:Gontacted-By:
Comments/ Resolution:				

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section

of the Workorder Edit Screen. J:\QAQC\Master\Document Management\Sample Mgt\Sample Condition Upon Receipt Pittsburgh (C056-9 5April2019)

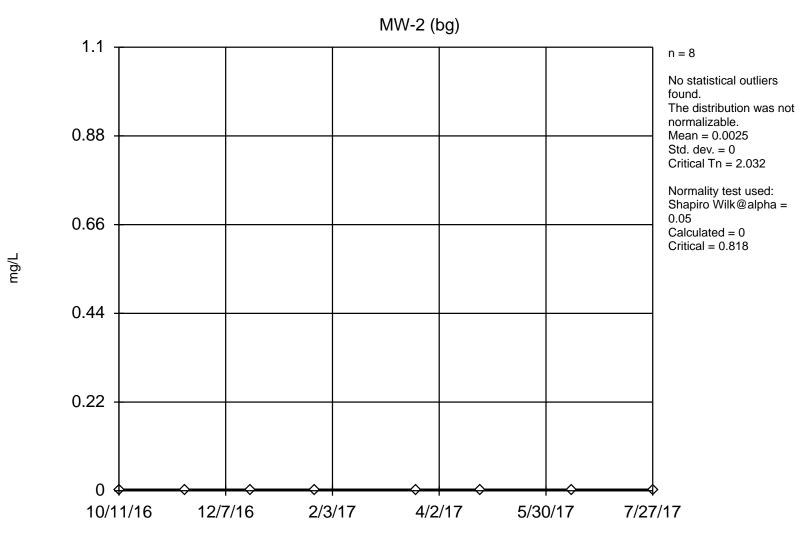
 $Appendix\ D$ $Sanitas^{\intercal\!\!M}\ Input/Output\ for\ Cobalt$


Sanitas Input Data File

SampleID	Collect Date	TestName	Flag	Value	PQL	Units
MW-1B	12/17/2015	Cobalt, Total		0.012	0.005	mg/L
MW-1B	1/27/2016	Cobalt, Total	<	0.005	0.005	mg/L
MW-1B	4/20/2016	Cobalt, Total	<	0.005	0.005	mg/L
MW-1B	7/19/2016	Cobalt, Total		0.006	0.005	mg/L
MW-1B	10/11/2016	Cobalt, Total	<	0.005	0.005	mg/L
MW-1B	1/17/2017	Cobalt, Total		0.005	0.005	mg/L
MW-1B	4/24/2017	Cobalt, Total		0.005	0.005	mg/L
MW-1B	7/20/2017	Cobalt, Total		0.013	0.005	mg/L
MW-2	10/11/2016	Cobalt, Total	<	0.005	0.005	mg/L
MW-2	11/16/2016	Cobalt, Total	<	0.005	0.005	mg/L
MW-2	12/21/2016	Cobalt, Total	<	0.005	0.005	mg/L
MW-2	1/25/2017	Cobalt, Total	<	0.005	0.005	mg/L
MW-2	3/21/2017	Cobalt, Total	<	0.005	0.005	mg/L
MW-2	4/25/2017	Cobalt, Total	<	0.005	0.005	mg/L
MW-2	6/13/2017	Cobalt, Total	<	0.005	0.005	mg/L
MW-2	7/27/2017	Cobalt, Total	<	0.005	0.005	mg/L

Outlier Analysis

	Facility: Conemaugh Generating Station Client: Key-Con				Data File: Conemaugh Cobalt Data Se					
Constituent	Well	Outlier	Value(s)	Date(s)	<u>Method</u>	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>Distribution</u>
Cobalt, Total (mg/L)	MW-1B (bg)	No	n/a	n/a	EPA 1989	0.05	8	0.006062	0.004204	In(x)
Cobalt, Total (mg/L)	MW-2 (ba)	No	n/a	n/a	EPA 1989	0.05	8	0.0025	0	unknown


EPA 1989 Outlier Test

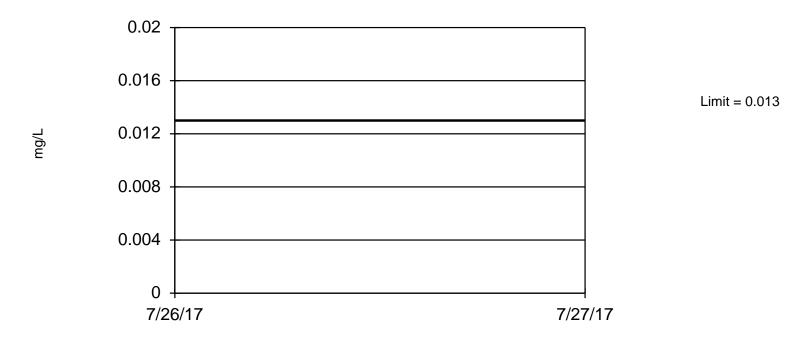
Constituent: Cobalt, Total Analysis Run 10/26/2020 1:34 PM

Facility: Conemaugh Generating Station Client: NRG Data File: Conemaugh Cobalt Data Sept 2020

EPA 1989 Outlier Test

Constituent: Cobalt, Total Analysis Run 10/26/2020 1:41 PM

Facility: Conemaugh Generating Station Client: NRG Data File: Conemaugh Cobalt Data Sept 2020


Prediction Limit

Facility: Conemaugh Generating Station Client: Key-Con Data File: Conemaugh Cobalt Data Sept 2020 Printed 10/27/2020, 9:26AM

Constituent	<u>Well</u>	Upper Lim.	<u>Date</u>	Observ.	Sig.	<u>Bg N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Cobalt, Total (mg/L)	n/a	0.013	n/a	1 future	n/a	16	68.75	n/a	0.05882	NP Inter (NDs)

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 16 background values. 68.75% NDs. Report alpha = 0.05882. Assumes 1 future value. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Cobalt, Total Analysis Run 10/27/2020 9:26 AM

Facility: Conemaugh Generating Station Client: NRG Data File: Conemaugh Cobalt Data Sept 2020

Appendix E

Soil Boring Logs

Soil Boring SB-

SB-1Page: 1 of 1

•				- GW In	vestig	gation Owner Keystone-Conemaugh Projects, LLC. COMMENTS
Location _						Proj. No. <u>631016449</u> bgs = below ground surface Soil samples were collected
Surface El	ev10	76 ft.	Tot	al Hole D	epth	20.0 ft. North 40.3825 ft. East -79.0629 ft. from SB-1(5-7), SB-1(7-8), and SB-1(18-20)
Top of Cas	sing N	Α	Wa	iter Level	l Initia	al $\frac{\sqrt{2}}{2}$ 17.0 ft. Static NA Diameter 2 in. Soil samples were screened using a 10.6 eV Photoionization
						Type/Size NA Detector (PID)
						Surface elevation and coordinates are approximate
						based on use of a hand-held
						Rig/Core DP1 Geophobe 1822 D1 GPS device Hand clear to 5 feet, Direct-Push-Technology
						abein Date 9/21/20 Permit # NA
				, ,		icense No
Checked	3y <u>D.</u>	11		1 1	_	icense No.
			t or	0	Class.	Description
Depth (ft.)	PID (ppm)	Sample ID % Recovery	Blow Count or RQD Recovery	Graphic Log	S	·
ا تُق	ு ம	Sam 6 Re	ow (g, J	nscs	(Color, Texture, Structure)
			酉			Geologic Descriptions are Based on the USCS.
├ 0 -						
			1/	77. 7.1	OPSO	1E ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
	0.0	100%	/		GP	Gray LIMESTONE GRAVEL, 2B, fizzes, dry
		10070	/			Dark brown to organish-brown CLAY with some sand and pebbles, moist
├ 2 -			П			
L 4	0.0	1000/	1/1		CLS	
		100%	//			
├ 4 →			Н			
	0.0	(SB-1(5-	1/1			
	0.0	<u>7)</u> 100%				Orangish-gray CLAY, mottled, some silt, little sand, moist
⊢ 6 −			Н		CL	
		SB-1(7-	1/1		ML	
	0.0	<u>8)</u> 100%	/			
⊢ 8 ⊣			Ц		CLAY	
			1/		CVA	Orangish-brown SAND, fine-coarse grained, some silt and trace clay, moist
	0.0	100%	/		SW	
- 10 -			Ш			
			П			Orangish-red to brown SAND, fine-medium grained, sub-rounded, some
	0.0	100%	/			clay, silt, and pebbles (1-10mm), fizzes, damp
		10070	/			
- 12 −			П		sw	
L 4	0.0		1/1		SM	
//20		100%	//			
— 14 —			Н			
	0.0		- 1/1			
J. J.	0.0	100%				Orangish-brown SAND, medium-coarse grained, some gravel, fizzes, moist
[16 -			Н			(increasing moisture content)
			1/		SW	
화 	0.0	100%	/			
CONEMAUGH.GPJ APTIM.GDT 19			Ш			
EMA I		SB-1(18-	. /			Dark brown to orangish-brown SAND, coarse grained, some pebbles
	0.0	20)	· /		SM/G	(1-20mm), fizzes, wet
_ I		100%	/	0,7		
<u>₩</u> 20 −			٦			Bottom of boring at 20 feet bgs
APTIM Rev. 7/13/17 - 22						
Ž 22						
[22 -						
<∟	1	Ш				II.

Soil Boring SB-

SB-2Page: 1 of 1

Location Surface El Top of Cas Screen: Di Casing: Di Fill Materia Drill Co. Driller	New Florev	Boring C ergers, Ir	PA Tota Tota Wa Len Len uttings/ c. Log	al Hole [ter Level agth No. 10 No. 10 Bentonite By T.	Depth I Initial A A e ethod Hochb	20.0 ft.	North 40.3826 ft. East -79.0632 ft. Static NA	
- 0 -								
			П	TOPSOIL, organic matter, dry				
	0.0	100%	/		GP	Gray LIMES	STONE GRAVEL, 2B, fizzes, some asph	alt pieces, dry
- 2 - 4 -	0.0	100%			CL ML	Dark brown (0-10mm), f	to orangish-red silty CLAY, some fine-gr izzes, dry	rained sand and gravel
- 6 -	0.0	100% <u>SB-2(6-8)</u> 100%	//		ML	Dark brown well-rounde	SILT with some clay, very fine-fine grain d, fizzes, moist	ed sand, and gravel,
- 8 - - 10 -	0.0	100%			CL ML	sand, grave	own to gray silty CLAY, mottled, some vel, and trace organic material, moist SILT, some clay and very fine-fine grain	
- 12 -	0.0	100% SB-2(13-			ML	Dark blown	SILT, Some day and very line-line grain	eu sanu, moist
50	0.0	13.5) 100%	/	MAN STATE FOR	COAL		COAL lens, fizzes	
14 🖳			Н	, O, Š	\$&G/¢		own SAND, medium-coarse grained, soull-rounded, wet (river sands)	me large sandstone
CONEMAUGH.GPJ APTIM.GDT 10/28/20	0.0	100%			\$&G/C	•	SAND, coarse grained, some pebbles, v	wet
H.GP.	0.0	100%	/		$\ \ $			
I .	0.0	SB-2(18- 20) 100%			NDSTO	wet vet	o tan SANDSTONE boulder, extremely w	eathered, iron-staining,
Rev: 7/13/17						DOUGH OF D	oring at 20 feet bgs	
APTIM Rev								

Soil Boring SE

SB-3Page: 1 of 1

Location _ Surface Ele Top of Cas Screen: Di Casing: Di Fill Materia Drill Co	New Fleev. 10 Sing Na a NA a NA Soil Eichelb	orence, PA 184 ft. A Boring Cut ergers, Inc	Total Water Lengt Lengt	Hole Do r Level th <u>NA</u> th <u>NA</u> entonite	epth Initia	ation Owner _	North 40.382 Static NA Type/Size NA Type NA DPT Geopro feet, Direct-Pu	Proj 25 ft. IA be 782	COMMENTS bgs = below ground surface Soil samples were collected from SB-3(6-8), SB-3(9-10), and SB-3(18-20) Soil samples were screened using a 10.6 eV Photoionization Detector (PID) Surface elevation and coordinates are approximate based on use of a hand-held GPS device			
			-	-		icense No						
Depth (ft.)	Old (mdd)	Sample ID % Recovery	Recovery	Graphic Log	USCS Class.		Geolo	(Colo		iption re, Struct re Based o		CS.
- 0 - - 2 - - 4 -	0.0	100%			<u>PS</u> Q	fizzes, dry						., dry
- 6 - - 8 -	0.0	100% <u>SB-3(6-8)</u> 100%			CLS		sandy CLAY 6-7.5 feet, we				ne calca	areous-rich sandstone
	0.8	<u>SB-3(9-10)</u> 100%			CLS	Dark brown material, fizz	to black sand es, damp (a _l	ly CLA opears	AY, som s to be t	ne well-r he origi	rounded inal gro	I pebbles and organic und surface)
- 10 - - 12 -	0.0	100%			CL ML	Brownish-ora	ange to gray	silty C	LAY, m	ottled,	some s	andstone fragments,
14 -	0.0	100%			sc	Dark brown sandstone fr	clayey SAND agments, we), fine- t	coarse	grained	d, sub-ro	ounded, some
4PTIM.GDT	0.0	100%			sc	Orangish-bro	own to gray o	clayey	SAND,	mottled	d, moist	
3H.GP	0.0	100%			DST	NE Light gray S	ANDSTONE	bould	er, mois	st		
347 CONEMAUGH GBJ	0.1	<u>SB-3(18-</u> 20) 100%			SP SC	and sandsto	ne fragments	s, wet		coarse	-grained	d, some silt, pebbles,
APTIM Rev: 7/13/17						Bottom of bo	oring at 20 fe	et bgs				

Soil Boring

SB-4/SB-4R Page: 1 of 1

Project _	Conema	ugh Soil	Borings	- GW In	vestig	ation Owner Keystone-Conemaugh Projects, LLC.	COMMENTS
Location .	New Fl	orence, l	PA			Proj. No. <u>631016449</u>	bgs = below ground surface Soil samples were collected
				al Hole [enth		from SB-4(5-7), SB-4(8-10), and SB-4(18-20)
						<u> </u>	Soil samples were screened
						Type/Size Diameter	using a 10.6 eV Photoionization Detector (PID)
						Type NA	Surface elevation and
							coordinates are approximate based on use of a hand-held
						Rig/Core DPT Geoprobe 7822 DT	GPS device
						Hand clear to 5 feet, Direct-Push-Technology, HSA Auger	
						bein Date 9/23/20 Permit # NA	
Checked E	_{3y} <u>D. S</u>	Shott			L	icense No	
			t or		SS.	Description	
Depth (ft.)	PID (mdd)	Sample ID % Recovery	Blow Count or RQD Recovery	Graphic Log	Class.	Description	
l g l	ਰ ਕੁ	Re la	% C 26	Gra	nscs	(Color, Texture, Structure)	
		01%	8 4		🖺	Geologic Descriptions are Based on the US	SCS.
- 0 -							
			1/	71. 7.1	OPSO		
	0.0	100%	/	, O.•.		Dark brown SAND and GRAVEL, some large boulded	ers, dry
- 2 -			/		\$&G/C		
			П	· 03			
	0.0	100%	/	77777		Dark brown sandy CLAY with some sandstone and	and fragments dry
		10070	/			Dark brown sandy CLAY with some sandstone and t	coai fragments, dry
4			П		CLS		
<u> </u>	0.0	<u>SB-4(5-</u> 7)	/				
		100%	//	////		Dark brown to black CLAY, stained black, some coa and sub-rounded sandstone pebbles, dry	I fragments, organics,
⊢ 6 ⊣			Н		CLAY	and sub-rounded sandstone peobles, dry	
	0.0		1/1				
	0.0	100%	/		NDST	Yellowish-tan SANDSTONE boulder, fizzes, dry	
⊢ 8 ⊣			Н			Light brown to orangish-red sandy CLAY, mottled da	ark grav some small
		SB-4(8-	1/1			sub-rounded sandstone pebbles, dry	in gray, some sman
T 7	0.0	10) 100%	/				
- 10 -			Н				
			1/		CLS		
F 1	0.0	100%	/				
<u> </u>			\sqcup				
'-			1/		$\vdash \vdash$	Orangiah brown alayay CAND asses large asset later	o frogmanto
	0.0	100%	/			Orangish-brown clayey SAND, some large sandston	e iragments, moist
8 7			/		SC SM		
78 − 14 □			П		SIVI		
<u></u>	0.0	100%	/			CAA increasing and content resist wat	
M.GI		100%	//		sc	SAA, increasing sand content, moist - wet	
[H			Н		SM		
3	0.0	40-0:	/				
인	0.0	100%	/			Orangish-brown to red SAND, coarse grained, some sandstone fragments and large black coal fragments	
[18 -			Н			sanusione nagments and large plack coal hagment	o, vv⊡l
≥ E Z	0.0	SB-4(18-	: /		SP		
8 7	0.0	20) 100%	/				
4PTIM Rev. 7/13/17 CONEMAUGH.GPJ APTIM.GDT 10/28/20 1			Ц			Bottom of boring at 20 feet bgs	
2/1						Bottom of boiling at 20 feet bys	
Rev							
<u></u>							
AP							

Soil Boring SB-

SB-5Page: 1 of 1

Project _	Conema	ugh Soil	Borings	s - GW In	vestig	ation Owner Keystone-Conemaugh Projects, LLC. COMMENTS
Location _	New FI	orence,	PA			Proj. No. <u>631016449</u> bgs = below ground surface Soil samples were collected
Surface El	ev10	54 ft.	Tot	tal Hole [Depth	
Top of Cas	sina <i>N</i>	Α	Wa	ater Leve	I Initia	NA Diameter 2 in. Soil samples were screened
						Type/Size NA Detector (PID)
						Surface elevation and coordinates are approximate
Fill Materia	s Soil	Boring C	Cuttings/	/Bentonite	 е	Rig/Core DPT Geoprobe 7822 DT based on use of a hand-held GPS device
						Hand clear to 5 feet, Direct-Push-Technology
						bein Date 9/22/20 Permit # NA
			•			icense No.
O TOOKOG E	,	II		I		
			r oʻ	o l	Class.	Description
Depth (ft.)	PID (ppm)		Cou	Graphic Log	Ö	·
	L G	Sample ID % Recovery	Blow Count o RQD Recovery	5 ¹	nscs	(Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
			Δ			Geologic Descriptions are based on the OSCS.
├ 0 ⊣			Н	.74 1×. 7/1 1×1	OPSO	Dark brown TOPSOIL, organic material, dry
			1/		<u> </u>	Dark gray SHALE, weathered, iron-staining between layering, breaking
	0.0	100%	/			down to silt and clay, dry
			//		SHALE	
⊢ 2 −			Н			
			1/			
	0.0	100%	/		IDST(NE Light gray SANDSTONE boulder, dry
			/			Dark gray CLAY, organic-rich, some silts and pebbles, trace coal,
├ 4 -			Н		CL ML	iron-staining, dry
		SB-5(5-	1/		IVIL	
	0.0	6) 100%	/	hinin		Orangish-brown SAND, very fine-medium grained, some clay and coal
		100 /0	/		SW	fragments, damp
├ 6 ⊣			Н			Orangish-brown to dark gray clayey SAND, mottled, some silt and pebbles,
			1/1		sc	moist
† †	0.0	100%	/			Dark brown clayey SAND, fine-medium grained, some pebbles(<1mm),
						moist-wet
8			П			
			1/1		SC	
	0.0	100%	/			
- 10 ▽			/			
2 10 =			П			SAA, increasing moisture content, wet at 10' bgs
//28/2			1/1			
	0.0	100%	/		sc	
10 10 10 10 10 10 10 10 10 10 10 10 10 1						
12 -			П			
₹		SB-5(12	_ /			Tan to light brown SAND, very coarse grained, some quartz pebbles
H.GP	0.0	14.5)	- /		SP	(1-3mm), wet
		100%	//		35	
CONEMAUGH.GPJ APTIM.GDT 10/28/20						
[S				::::SAI	IDST	
1 1						Bottom of boring at 15 feet bgs
Rev: 7/13/17						
Sev.						
APTIM						

Soil Boring SB

SB-6Page: 1 of 1

Project _	Project Conemaugh Soil Borings - GW Investigation Owner Keystone-Conemaugh Projects, LLC. Location New Florence, PA Proj. No. 631016449 Surface Elev. 1054 ft. Total Hole Depth 15.0 ft. North 40.3811 ft. East -79.0622 ft. Fop of Casing NA Water Level Initial 10.0 ft. Static NA Diameter 2 in. Casing: Dia NA Length NA Type/Size NA Casing: Dia NA Length NA Type NA Casing: Dia NA Length NA Type NA Cill Material Soil Boring Cuttings/Bentonite Rig/Core DPT Geoprobe 7822 DT Checked By D. Shott License No. Checked By D. Shott License No. Commany Projects, LLC. Reystone-Conemaugh Projects, LLC. Proj. No. 631016449 Soil samples were collected from SB-6(4-5), SB-6(6-8), and SB-6(1-5), SB-6(1-5), SB-6(6-8), and SB-6(1-5),														
Location .	New FI	orence, i	PA			bgs = below ground surface Soil samples were collected									
				al Hole D	Depth	15.0 ft									
Top of Cas	sing N	Α	Wa	iter I evel	l Initia	Soil Samples were screened									
Casing. Di	a <u></u> Soil	Borina (Lei	/Rentonite	·	Pinto and DPT Geographe 7822 DT based on use of a hand-held									
Checked E	3y <u>D.</u>	SHOLL				icense No									
		خ ا	t or		SS.	Description									
Depth (ft.)	PID (mdd)	Sample ID % Recovery	Blow Count or RQD Recovery	Graphic Log	Class.	Description									
De De	ਰ ਕੁ	Seg	Nec Rec	Gra	nscs	(Color, Texture, Structure)									
		01%	8 1		Geologic Descriptions are Based on the USCS.										
├ 0			П	71 1/2 X 1/2 T	OPSO	L Dark brown TOPSOIL, organic material, dry									
			- 1/1			Dark gray to brownish-red SHALE, weathered, some coal fragments and									
	0.0	100%	/			organic matter, breaking down to silt and clay, dry									
			/ /		l]										
├ 2 -			П		SHALE										
			- 1/1												
	0.0	100%	- 1/1												
			/ /			Dark gray weathered SHALE, dry									
4			Н		\$HALE										
		SB-6(4-	- 1/1		CLS	Orangish-brown sandy CLAY, mottled dark black, some coal fragments,									
	0.0	<u>5)</u> 100%	- 1/1			iron-oxidation, and angular pebbles, dry									
			/ / /			SAA, increasing coal fragments, moist									
6			П												
		SB-6(6-	- 1/1		CLS										
<u> </u>	0.0	<u>8)</u> 100%	- 1/1												
		,	/ /												
8			Н			Dark brown to orangish-brown clayey SAND, fine-medium grained, some									
			1/1			pebbles (iron-coated), moist - wet									
	0.0	100%	- 1/1		sc										
			/ /												
_ 10 ♀			H			SAA, increasing grain size and pebbles, wet									
28/2			- 1/1												
)	0.0	100%	- 1/1												
GDT			/ /												
[12 -			Н												
₽		SB-6(12-	. 1/1		sc										
	0.0	1 <u>4)</u> 100%	- 1/1												
JGH.		10070	/												
[14 -			Н												
CONEMAUGH.GPJ APTIM.GDT 10/28/20	0.0	100%	/												
			Ч	11.1.1.1.1		Bottom of boring at 15 feet bgs									
Rev: 7/13/17															
[≥] 16 −															
APTIM															
∢∟	1	Ш				II .									

Soil Boring SB

SB-7Page: 1 of 1

Location _ Surface Ele Top of Cas Screen: Di Casing: Di Fill Materia Drill Co Driller _Pa	New Florev. 100 a NA a NA Soil Soil	orence, PA 158 ft. Total A Wa Let Boring Cuttings. ergers, Inc.	tal Hole Exter Level agthMagthM //Bentonite M g By	Depth I Initia A A E Bethoo	ation Owner Keystone-Conemaugh Projects, LLC. Proj. No. 631016449 15.0 ft. North 40.3813 ft. East -79.0608 ft. Static NA Diameter 2 in. Type/Size NA Type NA Rig/Core DPT Geoprobe 7822 DT Hand clear to 5 feet, Direct-Push-Technology bein Date 9/22/20 Permit # NA Description COMMENTS bgs = below ground surface Soil samples were collected from SB-7(6-8) and SB-7(12-14) Soil samples
De De	<u>а</u>	Sam % Re- Slow C Rec	Gra	nscs	(Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
- 0 - 2 - 	0.0	100%	<u> </u>	OPSO CL ML	Dark brown TOPSOIL, organic material (twigs, roots), moist Corangish-brown silty CLAY, some shale fragments, wet
- 4 - 6 - 	0.0	100% SB-7(6- 8) 100%		IVIL	Dark brown clayey SAND, very fine-medium grained, some small pebbles and yellowish-orange sandstone fragments, wet (trace coal at 7.3')
- 8 - - 10 -	0.0	100%		sc	
CONEMAUGH.GPJ APTIM.GDT 10/28/20	0.0	SB-7(12- 14)		CL ML	Orangish-brown silty CLAY, some pebbles and organic matter, moist Dark brown SAND, coarse grained, well-rounded, some sandstone
CONEMAUGH.GF	0.0	100%		SP	fragments, wet
APTIM Rev. 7/13/17					Bottom of boring at 15 feet bgs

Soil Boring SB

SB-8Page: 1 of 1

Location Surface E Top of Ca: Screen: D Casing: Di Fill Materia Drill Co. Driller	Project Conemaugh Soil Borings - GW Investigation Owner Keystone-Conemaugh Projects, LLC. Location New Florence, PA Proj. No. 631016449 Surface Elev. 1064 ft. Total Hole Depth 25.0 ft. North 40.3803 ft. East -79.0606 ft. Top of Casing NA Water Level Initial Static NA Diameter 2 in. Screen: Dia NA Length NA Type/Size NA Casing: Dia NA Length NA Type NA Fill Material Soil Boring Cuttings/Bentonite Rig/Core DPT Geoprobe 7822 DT Drill Co. Eichelbergers, Inc. Method Hand clear to 5 feet, Direct-Push-Technology Driller Paul Wirrick Log By T. Hochbein Date 9/23/20 Permit # NA Checked By D. Shott License No. License No.												
Depth (ft.)	Old (mdd)	П	RQD Recovery		USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.							
— 0 — 2 — 4 — 6 — 10 — 10 — 10 — 10 — 10 — 10 — 10	0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0	100% 100% 100% 100% 100% SB-8(8-10) 100% 100% 100% 100%			OPSO GW ML ML ML ML ML	Dark brown TOPSOIL, organic material, dry Brown SILT, SAND, CLAY, and COBBLES, 25% each, sub-rounded, moist Dark gray to black clayey SILT, some sand and organic material, trace pebbles and coal fragments, moist Dark gray to black clayey SILT, some yellowish-tan sandstone fragments, organic matter, large coal and wood fragments, mosit SAA, increasing sand content, moist Orangish-brown silty SAND, very fine-fine grained, some rounded pebbles and sandstone fragments, wet Dark gray to black sandy SILT, some clay, coal fragments, and organic material, wet							
Rev: 7/13/17	0.0	SB-8(22- 24) 100%			sw	Dark brown to black SAND, fine-coarse grained, some sandstone fragments, wet Bottom of boring at 25 feet bgs							
<u>MITH</u> — 26 —													

Soil Boring SB

SB-9Page: 1 of 1

Project _0 Location _				s - GW In	vestig	nation Owner _		e-Conemau				COMMENTS bgs = below ground surface Soil samples were collected
Surface El	lev10	086 ft.	Tot	al Hole [Depth	20.0 ft.	North _	10.3844 ft.	_ East	-79.06	626 ft.	from SB-9(4-5), SB-9(8-10), and SB-9(18-20)
Top of Cas	sina <i>N</i>	Ά	Wa	iter Leve	I Initia	al <u> </u>	Static _	NA	_ Diame	eter _2	in.	Soil samples were screened
												Detector (PID)
Casing: Di	ia NA		Lon	nath M	4		Type	NA				Surface elevation and coordinates are approximate
Casing. Di	a Soil	Borina (Lei Cuttinas/	/Bentoniti	<u> </u>	Rig/Core	DPT G	eonrobe 78	122 DT			based on use of a hand-held
						Hand clear to 5						GPS device
						bein [
			_	-								
Checked E	3y <u>D.</u>	311011			L	icense No						
Depth (ft.)	PID (mdd)	Sample ID % Recovery	Blow Count or RQD Recovery	Graphic Log	USCS Class.			-	Desc	ure, Str	ucture)	upon
		, °	<u>m</u>		ر			Geologic De	scriptions a	are Base	ed on the t	USCS.
- 0 -				<u> 7,1</u> 2. 7,14	Opeo	L Dark brown	TORSO	II. organi	o motori	ial aas	mo grav	ol dn
			/		UPSU							sand and coal
	0.0	100%	/			fragments, o		nayisii-bic	ick Silty	OLAT	, some	Sand and Coal
- 2 -			Н				·					
			1/		CL							
	0.0	100%	/		ML							
⊢ 4 −			Н									
'		SB-9(4-	1/									
F 1	0.0	<u>5)</u> 100%	/			Orangish-br	own cla	ev SAND	, fine-co	oarse (grained	, well-rounded, some
F 6 -		100%	Ц			sandstone f						
			1/									
+ +	0.0	100%	/									
⊢ 8 −			Ц		SC							
		SB-9(8-	1/									
	0.0	10)	/									
- 10 -		100%	Ш									
			П			SAA, increa	sing san	d content	, increa	sing g	rain size	e and pebbles, moist
	0.0	100%	/									
40			/									
- 12 -			П		SC							
	0.0	100%	/									
8/20		.55,0	/									
аРТІМ Rev. 7/13/17 СОИЕМАЦОН.GPJ АРТІМ.GDT 10/28/20 10			П		SP							rse grained, some clay
타 직	0.0	100%	/		<u> </u>			nents, tra	ce orgai	nics, ir	on-oxid	lation on sandstone
Σ 1.0		100/0	/			∖ fragments, v Dark brown		ish-hrowr	SAND	. medi	นm-๓๐ล	rse grained,
16			П			sub-rounded	d, some	sandstone	e pebble	es and	cobble	s, and coal fragments,
<u>a</u> -	0.0	100%	/			fizzes, wet						- · · ·
9.H		100%			SP							
ĭ¥ 18 −			Н									
SI I	0.0	SB-9(18 20)	- /									
8		100%	/									
들는 20 -			Ч	1941 (494)		Bottom of bo	oring at 2	20 feet ba	S			
<u> </u>								9				
Se Se												
<u></u>												
ΑĀ												

Soil Boring SB-10

SB-10Page: 1 of 1

Location Surface El Top of Cas Screen: D Casing: Di Fill Materia Drill Co. Driller	New Flev. 10 sing Na ia NA ia Soil Eichelbe	Boring Cuttir ergers, Inc.	Total Hole Water Leve LengthN LengthN ngs/Bentonii N Log ByT	Depth el Initia A A te Method	North A0.3844 ft. East -79.0638 ft. Static NA Diameter 2 in. Sufface elevation and coordinates are approximate based on use of a hand-held GPS device
Dek (ft.	H	Samp % Rec low Co	Reco Grap	SCS	, , , , , , , , , , , , , , , , , , , ,
- 0 -	0.0	100%			ME Gray LIMESTONE GRAVEL, dry Dark gray to back SAND, medium grained, some coal fragments, moist
- 2 - 4 -	0.0	100%		SP	
- 6 -	0.0	<u>SB-10(5-5.5)</u> 100%		ML SP	Orangish-brown clayey SILT, some sandstone pebbles and coal fragments, moist Black SAND, medium grained, some coal fragments, moist Orangish-brown clayey SILT, some sandstone fragments, sand, and
- 8 -	0.0	100%		ML	sub-rounded pebbles, trace organic material and coal, dry
	0.0	100%			
- 10 - 12 -	0.0	SB-10(10- 12) 100%			SAA, increasing sand and pebble content (coal seam from 10.5-11'), dry-moist
	0.0	100%		ML	
CONEMAUGH.GPJ APTIM.GDT 10/28/20	0.0	100%		MLS	SAA, increasing sand content, wet
- 18 - 18 -	0.0	100%		SP	Dark brown SAND, coarse grained, well-rounded, some yellowish-tan sandstone fragments and pebbles, wet
	0.2	SB-10(18- 20) 100%		31	Dettern of hovings at 20 feet has
Rev: 7/1:					Bottom of boring at 20 feet bgs
₩ — 22 —					

Soil Boring SB-1

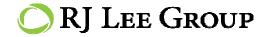
SB-11Page: 1 of 1

•				- GW In	vestig		Keystone-Cone				COMMENTS bgs = below ground surface	00		
Location							Proj. No. <u>631016449</u> Soil samples were from SB-11(4-5) ar							
Surface E	lev. <u>10</u>	048 ft.	_ Tota	al Hole [Depth	15.0 ft.	_ North <u>40.388</u>	ft.	East _	79.0733 ft.	— SB-11(10-13) ´			
							_ Static _ <i>NA</i>					ed ization		
							_ Type/Size <u>Λ</u>			Detector (PID)				
Casing: D	ia <i>_NA</i> _		_ Len	ngth _ <i>N</i> /	4		_ Type _ <i>NA</i>			coordinates are approxima				
Fill Materia	al <i>Soil</i>	Boring Cu	uttings/	Bentonite [®]	е	Rig/Co	re DPT Geopro	be 7822	2 DT		based on use of a hand-h	based on use of a hand-held GPS device		
Drill Co.	Eichelb	ergers, In	C.	M	lethod	Hand clear to	5 feet, Direct-Pus	sh-Tech	nology					
Driller _P	aul Wirn	ick	_ Log	ву <u>Т.</u>	Hoch	bein	Date _9/23/20	F	Permit #	NA				
Checked E	зу <u>_</u> <i>D.</i> S	Shott			L	icense No								
		ا ا	o (SS.				Dagari	ntion	<u> </u>			
Depth (ft.)	PID (ppm)	Sample ID % Recovery	Blow Count o RQD Recovery	Graphic Log	USCS Class.				Descri	puon				
Del (f	<u>a</u> g	Sec	Sec 2	Gra	SSS			(Color	r, Texture	e, Structur	e)			
		ol%	8		SN		Geolog	gic Descr	riptions ar	e Based on t	he USCS.			
L 0 -				[A 1 A 1 .		D 1:	- TODOC''			1 -1.				
			1/		OPSO		n TOPSOIL, or	-		-				
-	0.0	100%	1/1				n to orangish-b ents, damp	rown s	silty CL/	AY, mottle	ed gray, some sand, trace	•		
		100%	1/1			Joan Hagin	onto, damp							
- 2 -			Н											
			1/		CL									
-	0.0	100%	1/1		ML									
		10070	//											
⊢ 4 −			Н											
		SB-11(4-	- 1/											
-	0.0	<u>5)</u> 100%	- 1/1			SAA incre	asing sand cor	ntent a	nd grai	n size mo	oist-wet			
		100%	//			C7 (7 1, 111010	aoing cana coi	itorit a	ina gran	11 0120, 111	SIGE WOL			
⊢ 6 −			Н		CL ML									
			1/1											
<u> </u>	0.0	100%	- 1/1			Orangish-l	orown to dark b	rown s	silty SA	ND, some	e clay, coal fragments,			
			/ /								dstone fragments, wet			
8			Н											
			/		SM									
	0.0	100%	/											
4.0			/											
10 -			П			Dark brow	n to orangish-r	ed SAN	ND, fine	e-coarse (grained, some coal and			
1/28/2		SB-11(10-	- /			sandstone	fragments, we	t						
5	0.0	13) 100%	/											
			/											
ĭ 12 −			П		sw									
₹ _	0.0		/		J SVV									
H.GF	0.0	100%	/											
14 —			Ц											
CONEMAUGH.GPJ APTIM.GDT 10/28/20 T	0.0	1000/	1/1											
8 _	5.0	100%	Ц			D " 1	L	-41						
3/17						Bottom of	boring at 15 fe	et bgs						
[€] - 16 -														
Rev: 7/13/17														
APTIM														
AP														

Soil Boring SB-12

SB-12Page: 1 of 1

Project _	Conema	ugh Soil	Borings	- GW In	vestig	nation Owner Keystone-Conemaugh Projects, LLC. COMMENTS
Location .						Proj. No. 631016449 bgs = below ground surface Soil samples were collected
Surface El	ev10	62 ft.	Tot	al Hole [Depth	<u>24.0 ft.</u> North <u>40.3887 ft.</u> East <u>-79.0541 ft.</u> from SB-12(8-10), SB-12(18-20), and SB-12(23-24)
Top of Cas	sina <i>N</i>	Α	Wa	iter Leve	I Initia	Soil Samples were screened
						Type/Size NA Detector (PID)
						Type NA Surface elevation and coordinates are approximate
Fill Materia	a Soil	Boring C	 Cuttings/	Bentonite	<u> </u>	Rig/Core DPT Geoprobe 7822 DT based on use of a hand-held GPS device
Drill Co	Eichelbe	ergers. Ii	nc.	M	lethoo	Hand clear to 5 feet, Direct-Push-Technology
						bbein Date 9/23/20 Permit # NA
				, ,		icense No
O TOOKOG E		П				
		er√	Blow Count or RQD Recovery	U	Class.	Description
Depth (ff.)	PID (ppm)	Sample ID % Recovery	Soul	Graphic Log	Ö	·
	<u> </u>	San &	Rec Rec	يق ا	nscs ((Color, Texture, Structure)
			В			Geologic Descriptions are Based on the USCS.
├ 0 -				7/1/8. 7/1/V	0000	TOPOOU :
			1/		(ESTC	Dark brown TOPSOIL, organic material, dry Gray LIMESTONE GRAVEL, dry
	0.0	100%				Light gray to tan SHALE, weathered, breaking down to silt and clay, dry
├ 2 -			Н			Light gray to tail of http://www.norda, broaking down to one and day, ary
	0.0	100%	/		SHALE	
L 4 -		10070	Ш			
4			1/			
	0.0	100%	/			Tan to brown sandy SILT, some clay, gravel, and shale fragments, trace
⊢ 6 −			Н			coal, iron-oxidation between shale fragment layers, dry
	0.0		1/1			
	0.0	100%	//		MLS	
8		SB-12(8-	. H			
	0.0	10)	· /			
⊢ 10 −		100%	Ц			
			1/			Orangish-brown to grayish-black clayey SILT, some sub-rounded pebbles and shale framents, trace coal fragments, moist
	0.0	100%	/			and shale framents, trace coar fragments, moist
├ 12 ├			Н		ML	
<u> </u>	0.0	100%	/			
1 44		100%	V 1			
14			П		CL	Orangish-brown CLAY, some silt, moist (thin layer of coal at 14.2' bgs)
	0.0	100%	/			SAA, increasing silt and shale fragments, moist
잃는 16 -			Ц			
16 -	0.0		/			
	0.0	100%	/		CL	
CONEMAUGH GPJ APTIM GDT CONEMAUGH GDT CONEMAUGH GDT CONEMAUGH GDT CONEMAUGH GDT CONEMAUGH GDT CONEMAUGH GDT CONEMAUGH GDT CONEMAUGH GDT CONEMAUGH GDT CONEMAUGH GDT CONEMAUGH		QD 40/44	. H			
	0.0	SB-12(18 20)	<u>-</u> /			
ਫ਼ੋ– 20 –		100%	ackslash			
E 20 —			П			Bright orangish-red clayey SILT, mottled gray, some sand and weathered
NAUG -	0.0	100%	/			shale fragments, moist to wet (wet at 23' bgs)
- 22 -			Н		ML	
	0.0	SB-12(2)	<u>3-</u> /			
2/17	0.0	2 <u>4)</u> 100%				
— 24 — — — — — — — — — — — — — — — — — —			7			Bottom of boring at 24 feet bgs
Kek						
<u></u>						
EA						


Soil Boring SB-13

SB-13Page: 1 of 1

Location Surface E Top of Ca Screen: D Casing: D Fill Materia Drill Co. Driller	New Flev. 10 sing Na ia NA ia NA Soil Eichelb	A Wa Lei Lei Boring Cuttings ergers, Inc.	tal Hole [ater Leve ngth _N/ ngth _N/ /Bentonite M g By _T.	Depth I Initia A A e Iethod	Proj. No. 631016449 15.0 ft. North 40.3831 ft. East -79.0647 ft. Type/Size NA Type NA Rig/Core DPT Geoprobe 7822 DT Hand clear to 5 feet, Direct-Push-Technology bein Date 9/23/20 Permit # NA icense No. Description (Color, Texture, Structure) Geologic Descriptions are Based on the Use	bgs = below ground surface Soil samples were collected from SB-13(6-8) and SB-1(12-14) Soil samples were screened using a 10.6 eV Photoionization Detector (PID) Surface elevation and coordinates are approximate based on use of a hand-held GPS device
- 0 -				MEST C	NE Gray LIMESTONE GRAVEL, dry	
- 2 -	0.0	100%	* N * * * * * * * * * * * * * * * * * *	CL	Dark gray to brownish-black silty CLAY, some coal f sandstone pebbles, dry	ragments and
- 4 -	0.0	100%		CL	Orangish-brown to dark brown silty CLAY, some coasandstone pebbles, dry	al fragments and quartz
- 6 -	0.0	100%		CL	SAA, dry	
- 8 -	0.0	SB-13(6- 8) 100%			Dark brown to orangish-brown clayey SAND, very fi	
- 10 -	0.0	100%		SC SM	silt and sandstone pebbles, trace coal fragments, m bgs) Dark brown clayey SAND, medium-coarse grained,	
CONEMAUGH GPJ APTIM GDT 10/28/20 1 1	0.0	100%		SC	sub-rounded sandstone pebbles, wet	
AP - 14 -	0.0	(SB-13(12- 14) 100%		SM		
Rev. 7/13/17 CONE	0.0	100%			Bottom of boring at 15 feet bgs	
APTIM Rev						

Appendix F

Laboratory Analytical Reports—Cobalt in Soils

APTIM 500 Penn Center Blvd Suite 1000 Pittsburgh, PA 15235

Attn: David Shott Phone: 412-858-3329

Email: david.shott@aptim.com

RJ Lee Group Job No.: TLH008881 RJ Lee Group Chemistry Job No.: IN24092020P019 Samples Received: September 24, 2020 Report Date: October 8, 2020 Client Project: 631016449 Purchase Order No.: N/A

Matrix: Solid

Prep/Analysis: Acid Digestion / EPA 6010C

ASTM D4698 mod (borate fusion) / EPA 6010C

Moisture / Moisture

							wioisture / wiois			
					Sample C	oncentration	Minimum R	eporting Limit	<u>.</u>	
Client Sample ID	RJ Lee Group ID	Sampling Date	Preparation/ Analysis	Analyte	Weight Percent (%)	Parts per Million (PPM) - mg/kg	Weight Percent (%)	Parts per Million (PPM) - mg/kg	Analysis Date	Q
SB-1 (5-7)	3165456	09/21/2020	Acid Digestion / EPA 6010C	Cobalt	0.00340	34.0	0.00095	9.5	10/2/2020	_
SB-1 (5-7)	3165456	09/21/2020	Acid Digestion / EPA 6010C	Iron	4.86	48600	0.238	2380	10/2/2020	_
SB-1 (5-7)	3165456	09/21/2020	Acid Digestion / EPA 6010C	Manganese	0.125	1250	0.00095	9.5	10/2/2020	_
SB-1 (5-7)	3165456	09/21/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	5.11	51100	0.471	4710	9/30/2020	_
SB-1 (5-7)	3165456	09/21/2020	Moisture / Moisture	% Moisture	11				9/29/2020	_
SB-1 (7-8)	3165457	09/21/2020	Acid Digestion / EPA 6010C	Cobalt	0.00175	17.5	0.00098	9.8	10/2/2020	_
SB-1 (7-8)	3165457	09/21/2020	Acid Digestion / EPA 6010C	Iron	5.55	55500	0.245	2450	10/2/2020	_
SB-1 (7-8)	3165457	09/21/2020	Acid Digestion / EPA 6010C	Manganese	0.0380	380	0.00098	9.8	10/2/2020	_
SB-1 (7-8)	3165457	09/21/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	6.92	69200	0.489	4890	9/30/2020	_
SB-1 (7-8)	3165457	09/21/2020	Moisture / Moisture	% Moisture	22				9/29/2020	_
SB-1 (18-20)	3165458	09/21/2020	Acid Digestion / EPA 6010C	Cobalt	0.00113	11.3	0.00094	9.4	10/2/2020	_
SB-1 (18-20)	3165458	09/21/2020	Acid Digestion / EPA 6010C	Iron	6.02	60200	0.234	2340	10/2/2020	_
SB-1 (18-20)	3165458	09/21/2020	Acid Digestion / EPA 6010C	Manganese	0.0295	295	0.00094	9.4	10/2/2020	_
SB-1 (18-20)	3165458	09/21/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	3.25	32500	0.478	4780	9/30/2020	_
SB-1 (18-20)	3165458	09/21/2020	Moisture / Moisture	% Moisture	12				9/29/2020	_
SB-2 (6-8)	3165459	09/21/2020	Acid Digestion / EPA 6010C	Cobalt	0.00214	21.4	0.00094	9.4	10/2/2020	_
SB-2 (6-8)	3165459	09/21/2020	Acid Digestion / EPA 6010C	Iron	4.66	46600	0.234	2340	10/2/2020	_
SB-2 (6-8)	3165459	09/21/2020	Acid Digestion / EPA 6010C	Manganese	0.0801	801	0.00094	9.4	10/2/2020	_
SB-2 (6-8)	3165459	09/21/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	5.42	54200	0.474	4740	9/30/2020	_
SB-2 (6-8)	3165459	09/21/2020	Moisture / Moisture	% Moisture	12				9/29/2020	_
SB-2 (13-13.5)	3165460	09/21/2020	Acid Digestion / EPA 6010C	Cobalt	0.00148	14.8	0.00097	9.7	10/2/2020	_
SB-2 (13-13.5)	3165460	09/21/2020	Acid Digestion / EPA 6010C	Iron	3.88	38800	0.242	2420	10/2/2020	_
SB-2 (13-13.5)	3165460	09/21/2020	Acid Digestion / EPA 6010C	Manganese	0.0425	425	0.00097	9.7	10/2/2020	_
SB-2 (13-13.5)	3165460	09/21/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	4.75	47500	0.491	4910	9/30/2020	_
SB-2 (13-13.5)	3165460	09/21/2020	Moisture / Moisture	% Moisture	13				9/29/2020	_
SB-2 (18-20)	3165461	09/21/2020	Acid Digestion / EPA 6010C	Cobalt	0.00227	22.7	0.00096	9.6	10/2/2020	_
SB-2 (18-20)	3165461	09/21/2020	Acid Digestion / EPA 6010C	Iron	4.36	43600	0.240	2400	10/2/2020	_
SB-2 (18-20)	3165461	09/21/2020	Acid Digestion / EPA 6010C	Manganese	0.0537	537	0.00096	9.6	10/2/2020	_
SB-2 (18-20)	3165461	09/21/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	6.59	65900	0.484	4840	9/30/2020	_

Philip Grindle

Laboratory Supervisor

APTIM 500 Penn Center Blvd Suite 1000

Pittsburgh, PA 15235

Attn: David Shott Phone: 412-858-3329

Email: david.shott@aptim.com

RJ Lee Group Job No.: TLH008881
RJ Lee Group Chemistry Job No.: IN24092020P019
Samples Received: September 24, 2020
Report Date: October 8, 2020
Client Project: 631016449
Purchase Order No.: N/A

Matrix: Solid

Prep/Analysis: Acid Digestion / EPA 6010C

ASTM D4698 mod (borate fusion) / EPA 6010C

Moisture / Moisture

							woisture / wiois	ture		
					Sample C	oncentration	Minimum R	eporting Limit	-	
Client Sample ID	RJ Lee Group ID	Sampling Date	Preparation/ Analysis	Analyte	Weight Percent (%)	Parts per Million (PPM) - mg/kg	Weight Percent (%)	Parts per Million (PPM) - mg/kg	Analysis Date	Q
SB-2 (18-20)	3165461	09/21/2020	Moisture / Moisture	% Moisture	10				9/29/2020	_
SB-3 (6-8)	3165462	09/22/2020	Acid Digestion / EPA 6010C	Cobalt	0.00265	26.5	0.00095	9.5	10/2/2020	_
SB-3 (6-8)	3165462	09/22/2020	Acid Digestion / EPA 6010C	Iron	3.59	35900	0.238	2380	10/2/2020	_
SB-3 (6-8)	3165462	09/22/2020	Acid Digestion / EPA 6010C	Manganese	0.0169	169	0.00095	9.5	10/2/2020	_
SB-3 (6-8)	3165462	09/22/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	3.60	36000	0.479	4790	9/30/2020	_
SB-3 (6-8)	3165462	09/22/2020	Moisture / Moisture	% Moisture	10				9/29/2020	_
SB-3 (9-10)	3165463	09/22/2020	Acid Digestion / EPA 6010C	Cobalt	0.00244	24.4	0.00096	9.6	10/2/2020	_
SB-3 (9-10)	3165463	09/22/2020	Acid Digestion / EPA 6010C	Iron	4.70	47000	0.241	2410	10/2/2020	_
SB-3 (9-10)	3165463	09/22/2020	Acid Digestion / EPA 6010C	Manganese	0.108	1080	0.00096	9.6	10/2/2020	_
SB-3 (9-10)	3165463	09/22/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	6.55	65500	0.476	4760	9/30/2020	_
SB-3 (9-10)	3165463	09/22/2020	Moisture / Moisture	% Moisture	18				9/29/2020	_
SB-3(18-20)	3165464	09/22/2020	Acid Digestion / EPA 6010C	Cobalt	0.00099	9.9	0.00094	9.4	10/2/2020	_
SB-3(18-20)	3165464	09/22/2020	Acid Digestion / EPA 6010C	Iron	3.37	33700	0.234	2340	10/2/2020	_
SB-3(18-20)	3165464	09/22/2020	Acid Digestion / EPA 6010C	Manganese	0.0183	183	0.00094	9.4	10/2/2020	_
SB-3(18-20)	3165464	09/22/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	3.73	37300	0.465	4650	9/30/2020	_
SB-3(18-20)	3165464	09/22/2020	Moisture / Moisture	% Moisture	13				9/29/2020	_
SB-4 (5-7)	3165465	09/22/2020	Acid Digestion / EPA 6010C	Cobalt	0.00152	15.2	0.00097	9.7	10/2/2020	_
SB-4 (5-7)	3165465	09/22/2020	Acid Digestion / EPA 6010C	Iron	3.31	33100	0.244	2440	10/2/2020	_
SB-4 (5-7)	3165465	09/22/2020	Acid Digestion / EPA 6010C	Manganese	0.0632	632	0.00097	9.7	10/2/2020	_
SB-4 (5-7)	3165465	09/22/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	5.26	52600	0.461	4610	9/30/2020	_
SB-4 (5-7)	3165465	09/22/2020	Moisture / Moisture	% Moisture	19				9/29/2020	_
SB-4 (8-10)	3165466	09/22/2020	Acid Digestion / EPA 6010C	Cobalt	0.00171	17.1	0.00095	9.5	10/5/2020	_
SB-4 (8-10)	3165466	09/22/2020	Acid Digestion / EPA 6010C	Iron	3.60	36000	0.237	2370	10/5/2020	_
SB-4 (8-10)	3165466	09/22/2020	Acid Digestion / EPA 6010C	Manganese	0.0429	429	0.00095	9.5	10/5/2020	_
SB-4 (8-10)	3165466	09/22/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	5.22	52200	0.486	4860	10/1/2020	_
SB-4 (8-10)	3165466	09/22/2020	Moisture / Moisture	% Moisture	15				9/29/2020	_
SB-5 (5-6)	3165467	09/22/2020	Acid Digestion / EPA 6010C	Cobalt	0.00114	11.4	0.00094	9.4	10/5/2020	_
SB-5 (5-6)	3165467	09/22/2020	Acid Digestion / EPA 6010C	Iron	2.83	28300	0.236	2360	10/5/2020	_
SB-5 (5-6)	3165467	09/22/2020	Acid Digestion / EPA 6010C	Manganese	0.0227	227	0.00094	9.4	10/5/2020	_

Philip Grindle

APTIM 500 Penn Center Blvd Suite 1000

Pittsburgh, PA 15235

Attn: David Shott Phone: 412-858-3329

Email: david.shott@aptim.com

RJ Lee Group Job No.: TLH008881
RJ Lee Group Chemistry Job No.: IN24092020P019
Samples Received: September 24, 2020
Report Date: October 8, 2020
Client Project: 631016449
Purchase Order No.: N/A

'urchase Order No.: N/ A Matrix: Solid

Prep/Analysis: Acid Digestion / EPA 6010C

ASTM D4698 mod (borate fusion) / EPA 6010C

Moisture / Moisture

							Moisture / Mois	sture		
					Sample C	oncentration	Minimum R	Leporting Limit		
Client Sample ID	RJ Lee Group ID	Sampling Date	Preparation/ Analysis	Analyte	Weight Percent (%)	Parts per Million (PPM) - mg/kg	Weight Percent (%)	Parts per Million (PPM) - mg/kg	Analysis Date	Q
SB-5 (5-6)	3165467	09/22/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	5.63	56300	0.470	4700	10/1/2020	_
SB-5 (5-6)	3165467	09/22/2020	Moisture / Moisture	% Moisture	18				9/29/2020	_
SB-5 (12.5-14.5)	3165468	09/22/2020	Acid Digestion / EPA 6010C	Cobalt	0.00175	17.5	0.00095	9.5	10/5/2020	_
SB-5 (12.5-14.5)	3165468	09/22/2020	Acid Digestion / EPA 6010C	Iron	4.17	41700	0.238	2380	10/5/2020	_
SB-5 (12.5-14.5)	3165468	09/22/2020	Acid Digestion / EPA 6010C	Manganese	0.0524	524	0.00095	9.5	10/5/2020	_
SB-5 (12.5-14.5)	3165468	09/22/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	3.85	38500	0.489	4890	10/1/2020	_
SB-5 (12.5-14.5)	3165468	09/22/2020	Moisture / Moisture	% Moisture	9.3				9/29/2020	_
SB-6 (4-5)	3165469	09/22/2020	Acid Digestion / EPA 6010C	Cobalt	0.00295	29.5	0.00095	9.5	10/5/2020	_
SB-6 (4-5)	3165469	09/22/2020	Acid Digestion / EPA 6010C	Iron	5.80	58000	0.236	2360	10/5/2020	_
SB-6 (4-5)	3165469	09/22/2020	Acid Digestion / EPA 6010C	Manganese	0.161	1610	0.00095	9.5	10/5/2020	_
SB-6 (4-5)	3165469	09/22/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	10.6	106000	0.491	4910	10/1/2020	_
SB-6 (4-5)	3165469	09/22/2020	Moisture / Moisture	% Moisture	13				9/29/2020	_
SB-6 (6-8)	3165470	09/22/2020	Acid Digestion / EPA 6010C	Cobalt	0.00280	28.0	0.00094	9.4	10/5/2020	_
SB-6 (6-8)	3165470	09/22/2020	Acid Digestion / EPA 6010C	Iron	5.50	55000	0.236	2360	10/5/2020	_
SB-6 (6-8)	3165470	09/22/2020	Acid Digestion / EPA 6010C	Manganese	0.130	1300	0.00094	9.4	10/5/2020	_
SB-6 (6-8)	3165470	09/22/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	10.2	102000	0.460	4600	10/1/2020	_
SB-6 (6-8)	3165470	09/22/2020	Moisture / Moisture	% Moisture	14				9/30/2020	_
SB-6 (12-14)	3165471	09/22/2020	Acid Digestion / EPA 6010C	Cobalt	0.00280	28.0	0.00093	9.3	10/5/2020	_
SB-6 (12-14)	3165471	09/22/2020	Acid Digestion / EPA 6010C	Iron	6.15	61500	0.232	2320	10/5/2020	_
SB-6 (12-14)	3165471	09/22/2020	Acid Digestion / EPA 6010C	Manganese	0.247	2470	0.00927	92.7	10/5/2020	_
SB-6 (12-14)	3165471	09/22/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	5.27	52700	0.474	4740	10/1/2020	_
SB-6 (12-14)	3165471	09/22/2020	Moisture / Moisture	% Moisture	12				9/30/2020	_
SB-7 (6-8)	3165472	09/22/2020	Acid Digestion / EPA 6010C	Cobalt	0.00267	26.7	0.00097	9.7	10/5/2020	_
SB-7 (6-8)	3165472	09/22/2020	Acid Digestion / EPA 6010C	Iron	5.20	52000	0.242	2420	10/5/2020	_
SB-7 (6-8)	3165472	09/22/2020	Acid Digestion / EPA 6010C	Manganese	0.160	1600	0.00097	9.7	10/5/2020	_
SB-7 (6-8)	3165472	09/22/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	5.52	55200	0.488	4880	10/1/2020	_
SB-7 (6-8)	3165472	09/22/2020	Moisture / Moisture	% Moisture	12				9/30/2020	_
SB-7 (12-14)	3165473	09/22/2020	Acid Digestion / EPA 6010C	Cobalt	0.00154	15.4	0.00096	9.6	10/5/2020	_
SB-7 (12-14)	3165473	09/22/2020	Acid Digestion / EPA 6010C	Iron	3.84	38400	0.240	2400	10/5/2020	_

Philip Grindle

APTIM 500 Penn Center Blvd Suite 1000

Pittsburgh, PA 15235

Attn: David Shott Phone: 412-858-3329

Email: david.shott@aptim.com

RJ Lee Group Job No.: TLH008881
RJ Lee Group Chemistry Job No.: IN24092020P019
Samples Received: September 24, 2020
Report Date: October 8, 2020
Client Project: 631016449
Purchase Order No.: N/A

urchase Order No.: N/A Matrix: Solid

Prep/Analysis: Acid Digestion / EPA 6010C

ASTM D4698 mod (borate fusion) / EPA 6010C

Moisture / Moisture

					Sample Co	oncentration	Minimum Reporting Limit			
Client Sample ID	RJ Lee Group ID	Sampling Date	Preparation/ Analysis	Analyte	Weight Percent (%)	Parts per Million (PPM) - mg/kg	Weight Percent (%)	Parts per Million (PPM) - mg/kg	Analysis Date	Q
SB-7 (12-14)	3165473	09/22/2020	Acid Digestion / EPA 6010C	Manganese	0.0381	381	0.00096	9.6	10/5/2020	_
SB-7 (12-14)	3165473	09/22/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	3.75	37500	0.461	4610	10/1/2020	_
SB-7 (12-14)	3165473	09/22/2020	Moisture / Moisture	% Moisture	12				9/30/2020	_
SB-8 (8-10)	3165474	09/23/2020	Acid Digestion / EPA 6010C	Cobalt	0.00181	18.1	0.00096	9.6	10/5/2020	_
SB-8 (8-10)	3165474	09/23/2020	Acid Digestion / EPA 6010C	Iron	3.93	39300	0.241	2410	10/5/2020	_
SB-8 (8-10)	3165474	09/23/2020	Acid Digestion / EPA 6010C	Manganese	0.0831	831	0.00096	9.6	10/5/2020	_
SB-8 (8-10)	3165474	09/23/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	5.44	54400	0.479	4790	10/1/2020	_
SB-8 (8-10)	3165474	09/23/2020	Moisture / Moisture	% Moisture	18				9/30/2020	_
SB-8 (13-15)	3165475	09/23/2020	Acid Digestion / EPA 6010C	Cobalt	0.00101	10.1	0.00096	9.6	10/5/2020	_
SB-8 (13-15)	3165475	09/23/2020	Acid Digestion / EPA 6010C	Iron	2.81	28100	0.239	2390	10/5/2020	_
SB-8 (13-15)	3165475	09/23/2020	Acid Digestion / EPA 6010C	Manganese	0.00818	81.8	0.00096	9.6	10/5/2020	_
SB-8 (13-15)	3165475	09/23/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	7.61	76100	0.478	4780	10/1/2020	_
SB-8 (13-15)	3165475	09/23/2020	Moisture / Moisture	% Moisture	31				9/30/2020	_
SB-8 (22-24)	3165476	09/23/2020	Acid Digestion / EPA 6010C	Cobalt	0.00215	21.5	0.00096	9.6	10/5/2020	_
SB-8 (22-24)	3165476	09/23/2020	Acid Digestion / EPA 6010C	Iron	8.16	81600	0.240	2400	10/5/2020	_
SB-8 (22-24)	3165476	09/23/2020	Acid Digestion / EPA 6010C	Manganese	0.0569	569	0.00096	9.6	10/5/2020	_
SB-8 (22-24)	3165476	09/23/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	4.94	49400	0.467	4670	10/1/2020	_
SB-8 (22-24)	3165476	09/23/2020	Moisture / Moisture	% Moisture	16				9/30/2020	_
SB-13 (6-8)	3165477	09/23/2020	Acid Digestion / EPA 6010C	Cobalt	0.00182	18.2	0.00097	9.7	10/5/2020	_
SB-13 (6-8)	3165477	09/23/2020	Acid Digestion / EPA 6010C	Iron	4.01	40100	0.242	2420	10/5/2020	_
SB-13 (6-8)	3165477	09/23/2020	Acid Digestion / EPA 6010C	Manganese	0.0858	858	0.00097	9.7	10/5/2020	_
SB-13 (6-8)	3165477	09/23/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	5.77	57700	0.473	4730	10/1/2020	_
SB-13 (6-8)	3165477	09/23/2020	Moisture / Moisture	% Moisture	15				9/30/2020	_
SB-13(12-14)	3165478	09/23/2020	Acid Digestion / EPA 6010C	Cobalt	0.00120	12.0	0.00094	9.4	10/5/2020	_
SB-13(12-14)	3165478	09/23/2020	Acid Digestion / EPA 6010C	Iron	2.43	24300	0.235	2350	10/5/2020	_
SB-13(12-14)	3165478	09/23/2020	Acid Digestion / EPA 6010C	Manganese	0.0192	192	0.00094	9.4	10/5/2020	_
SB-13(12-14)	3165478	09/23/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	3.26	32600	0.477	4770	10/5/2020	_
SB-13(12-14)	3165478	09/23/2020	Moisture / Moisture	% Moisture	12				9/30/2020	_
SB-10 (5-5.5)	3165479	09/23/2020	Acid Digestion / EPA 6010C	Cobalt	0.00248	24.8	0.00097	9.7	10/5/2020	

Philip Grindle

APTIM 500 Penn Center Blvd Suite 1000

Pittsburgh, PA 15235

Attn: David Shott Phone: 412-858-3329

Email: david.shott@aptim.com

RJ Lee Group Job No.: TLH008881
RJ Lee Group Chemistry Job No.: IN24092020P019
Samples Received: September 24, 2020
Report Date: October 8, 2020
Client Project: 631016449
Purchase Order No.: N/A

urchase Order No.: N/A Matrix: Solid

Prep/Analysis: Acid Digestion / EPA 6010C

ASTM D4698 mod (borate fusion) / EPA 6010C

Moisture / Moisture

					0 10		Moistare / Mois			
					Sample C	oncentration	Minimum R	eporting Limit		
Client Sample ID	RJ Lee Group ID	Sampling Date	Preparation/ Analysis	Analyte	Weight Percent (%)	Parts per Million (PPM) - mg/kg	Weight Percent (%)	Parts per Million (PPM) - mg/kg	Analysis Date	Q
SB-10 (5-5.5)	3165479	09/23/2020	Acid Digestion / EPA 6010C	Iron	6.75	67500	0.242	2420	10/5/2020	_
SB-10 (5-5.5)	3165479	09/23/2020	Acid Digestion / EPA 6010C	Manganese	0.0411	411	0.00097	9.7	10/5/2020	_
SB-10 (5-5.5)	3165479	09/23/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	8.23	82300	0.482	4820	10/5/2020	_
SB-10 (5-5.5)	3165479	09/23/2020	Moisture / Moisture	% Moisture	12				9/30/2020	_
SB-10 (10-12)	3165480	09/23/2020	Acid Digestion / EPA 6010C	Cobalt	0.00282	28.2	0.00095	9.5	10/5/2020	_
SB-10 (10-12)	3165480	09/23/2020	Acid Digestion / EPA 6010C	Iron	7.94	79400	0.238	2380	10/5/2020	_
SB-10 (10-12)	3165480	09/23/2020	Acid Digestion / EPA 6010C	Manganese	0.177	1770	0.00095	9.5	10/5/2020	_
SB-10 (10-12)	3165480	09/23/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	6.71	67100	0.496	4960	10/5/2020	_
SB-10 (10-12)	3165480	09/23/2020	Moisture / Moisture	% Moisture	13				10/2/2020	_
SB-10 (18-20)	3165481	09/23/2020	Acid Digestion / EPA 6010C	Cobalt	0.00249	24.9	0.00093	9.3	10/5/2020	_
SB-10 (18-20)	3165481	09/23/2020	Acid Digestion / EPA 6010C	Iron	8.09	80900	0.233	2330	10/5/2020	_
SB-10 (18-20)	3165481	09/23/2020	Acid Digestion / EPA 6010C	Manganese	0.0853	853	0.00093	9.3	10/5/2020	_
SB-10 (18-20)	3165481	09/23/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	5.89	58900	0.458	4580	10/5/2020	_
SB-10 (18-20)	3165481	09/23/2020	Moisture / Moisture	% Moisture	12				10/2/2020	_
SB-9 (4-5)	3165482	09/23/2020	Acid Digestion / EPA 6010C	Cobalt	0.00281	28.1	0.00097	9.7	10/5/2020	_
SB-9 (4-5)	3165482	09/23/2020	Acid Digestion / EPA 6010C	Iron	5.10	51000	0.243	2430	10/5/2020	_
SB-9 (4-5)	3165482	09/23/2020	Acid Digestion / EPA 6010C	Manganese	0.0903	903	0.00097	9.7	10/5/2020	_
SB-9 (4-5)	3165482	09/23/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	8.65	86500	0.492	4920	10/5/2020	_
SB-9 (4-5)	3165482	09/23/2020	Moisture / Moisture	% Moisture	12				10/2/2020	_
SB-9 (8-10)	3165483	09/23/2020	Acid Digestion / EPA 6010C	Cobalt	0.00293	29.3	0.00095	9.5	10/5/2020	_
SB-9 (8-10)	3165483	09/23/2020	Acid Digestion / EPA 6010C	Iron	7.24	72400	0.238	2380	10/5/2020	_
SB-9 (8-10)	3165483	09/23/2020	Acid Digestion / EPA 6010C	Manganese	0.0858	858	0.00095	9.5	10/5/2020	_
SB-9 (8-10)	3165483	09/23/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	5.79	57900	0.468	4680	10/5/2020	_
SB-9 (8-10)	3165483	09/23/2020	Moisture / Moisture	% Moisture	12				10/2/2020	_
SB-9 (18-20)	3165484	09/23/2020	Acid Digestion / EPA 6010C	Cobalt	0.00237	23.7	0.00097	9.7	10/5/2020	_
SB-9 (18-20)	3165484	09/23/2020	Acid Digestion / EPA 6010C	Iron	8.38	83800	0.242	2420	10/5/2020	_
SB-9 (18-20)	3165484	09/23/2020	Acid Digestion / EPA 6010C	Manganese	0.0341	341	0.00097	9.7	10/5/2020	_
SB-9 (18-20)	3165484	09/23/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	6.23	62300	0.482	4820	10/5/2020	_
SB-9 (18-20)	3165484	09/23/2020	Moisture / Moisture	% Moisture	11				10/2/2020	_

Philip Grindle

APTIM 500 Penn Center Blvd Suite 1000

Pittsburgh, PA 15235

Attn: David Shott Phone: 412-858-3329

Email: david.shott@aptim.com

RJ Lee Group Job No.: TLH008881
RJ Lee Group Chemistry Job No.: IN24092020P019
Samples Received: September 24, 2020
Report Date: October 8, 2020
Client Project: 631016449
Purchase Order No.: N/A

'urchase Order No.: N/A Matrix: Solid

Prep/Analysis: Acid Digestion / EPA 6010C

ASTM D4698 mod (borate fusion) / EPA 6010C

Moisture / Moisture

					Sample C	oncentration	Minimum Reporting Limit			
Client Sample ID	RJ Lee Group ID	Sampling Date	Preparation/ Analysis	Analyte	Weight Percent (%)	Parts per Million (PPM) - mg/kg	Weight Percent (%)	Parts per Million (PPM) - mg/kg	Analysis Date	Q
SB-4R (18-20)	3165485	09/23/2020	Acid Digestion / EPA 6010C	Cobalt	0.00236	23.6	0.00095	9.5	10/5/2020	_
SB-4R (18-20)	3165485	09/23/2020	Acid Digestion / EPA 6010C	Iron	4.80	48000	0.237	2370	10/5/2020	_
SB-4R (18-20)	3165485	09/23/2020	Acid Digestion / EPA 6010C	Manganese	0.0515	515	0.00095	9.5	10/5/2020	_
SB-4R (18-20)	3165485	09/23/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	4.31	43100	0.493	4930	10/5/2020	_
SB-4R (18-20)	3165485	09/23/2020	Moisture / Moisture	% Moisture	11				10/2/2020	_
SB-12 (8-10)	3165486	09/23/2020	Acid Digestion / EPA 6010C	Cobalt	0.00292	29.2	0.00093	9.3	10/5/2020	_
SB-12 (8-10)	3165486	09/23/2020	Acid Digestion / EPA 6010C	Iron	6.51	65100	0.231	2310	10/5/2020	_
SB-12 (8-10)	3165486	09/23/2020	Acid Digestion / EPA 6010C	Manganese	0.174	1740	0.00093	9.3	10/5/2020	_
SB-12 (8-10)	3165486	09/23/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	10.3	103000	0.464	4640	10/5/2020	_
SB-12 (8-10)	3165486	09/23/2020	Moisture / Moisture	% Moisture	9.8				10/2/2020	_
SB-12 (18-20)	3165487	09/23/2020	Acid Digestion / EPA 6010C	Cobalt	0.00591	59.1	0.00094	9.4	10/5/2020	_
SB-12 (18-20)	3165487	09/23/2020	Acid Digestion / EPA 6010C	Iron	4.01	40100	0.235	2350	10/5/2020	_
SB-12 (18-20)	3165487	09/23/2020	Acid Digestion / EPA 6010C	Manganese	0.0417	417	0.00094	9.4	10/5/2020	_
SB-12 (18-20)	3165487	09/23/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	7.32	73200	0.494	4940	10/5/2020	_
SB-12 (18-20)	3165487	09/23/2020	Moisture / Moisture	% Moisture	9.5				10/2/2020	_
SB-12 (23-24)	3165488	09/23/2020	Acid Digestion / EPA 6010C	Cobalt	0.00321	32.1	0.00092	9.2	10/5/2020	_
SB-12 (23-24)	3165488	09/23/2020	Acid Digestion / EPA 6010C	Iron	5.82	58200	0.231	2310	10/5/2020	_
SB-12 (23-24)	3165488	09/23/2020	Acid Digestion / EPA 6010C	Manganese	0.0205	205	0.00092	9.2	10/5/2020	_
SB-12 (23-24)	3165488	09/23/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	8.28	82800	0.499	4990	10/5/2020	_
SB-12 (23-24)	3165488	09/23/2020	Moisture / Moisture	% Moisture	24				10/2/2020	_
SB-11 (4-5)	3165489	09/23/2020	Acid Digestion / EPA 6010C	Cobalt	0.00265	26.5	0.00096	9.6	10/5/2020	_
SB-11 (4-5)	3165489	09/23/2020	Acid Digestion / EPA 6010C	Iron	4.21	42100	0.240	2400	10/5/2020	_
SB-11 (4-5)	3165489	09/23/2020	Acid Digestion / EPA 6010C	Manganese	0.127	1270	0.00096	9.6	10/5/2020	_
SB-11 (4-5)	3165489	09/23/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	6.33	63300	0.489	4890	10/5/2020	_
SB-11 (4-5)	3165489	09/23/2020	Moisture / Moisture	% Moisture	14				10/2/2020	_
SB-11 (10-13)	3165490	09/23/2020	Acid Digestion / EPA 6010C	Cobalt	0.00248	24.8	0.00098	9.8	10/5/2020	_
SB-11 (10-13)	3165490	09/23/2020	Acid Digestion / EPA 6010C	Iron	6.59	65900	0.244	2440	10/5/2020	_
SB-11 (10-13)	3165490	09/23/2020	Acid Digestion / EPA 6010C	Manganese	0.144	1440	0.00098	9.8	10/5/2020	_
SB-11 (10-13)	3165490	09/23/2020	ASTM D4698 mod (borate fusion) / EPA 6010C	Aluminum	5.90	59000	0.458	4580	10/5/2020	_

Philip Grindle

APTIM 500 Penn Center Blvd

Suite 1000 Pittsburgh, PA 15235

Attn: David Shott Phone: 412-858-3329

Email: david.shott@aptim.com

RJ Lee Group Job No.: TLH008881 RJ Lee Group Chemistry Job No.: IN24092020P019 Samples Received: September 24, 2020 Report Date: October 8, 2020 Client Project: 631016449

Purchase Order No.: N/A Matrix: Solid

Prep/Analysis: Acid Digestion / EPA 6010C

ASTM D4698 mod (borate fusion) / EPA 6010C

Moisture / Moisture

					Sample C	oncentration	Minimum R	eporting Limit		
Client Sample ID	RJ Lee Group ID	Sampling Date	Preparation/ Analysis	Analyte	Weight Percent (%)	Parts per Million (PPM) - mg/kg	Weight Percent (%)	Parts per Million (PPM) - mg/kg	Analysis Date	Q
SB-11 (10-13)	3165490	09/23/2020	Moisture / Moisture	% Moisture	12				10/2/2020	_

Comments: Metals analysis reported on a dried weight basis.

Report Qualifiers (Q):

P: PA-DEP Accredited (PA DEP Lab ID 02-00396, NELAP)

N: NY ELAP Accredited (NY ELAP Lab Code 10884)

C: CA ELAP Accredited (CA ELAP Certificate 1970)

A: AIHA-LAP, LLC Accredited (Lab ID 100364)

E = Value above highest calibration standard

J = *Value below lowest calibration standard but above MDL (Method Detection Limit)*

L = LCS (Laboratory Control Standard)/SRM (Standard Reference Material) recovery

outside accepted recovery limits

H = Holding times for preparation or analysis exceeded

- : Test (analyte-matrix-preparation-analysis) is performed under RJLG's General Quality System requirements and is not part to any of the above scopes of accredidations

B = Analyte detected in the associated Method Blank

S = Spike Recovery outside accepted limits

R = RPD (relative percent difference) outside accepted limits

D = *RL* (reporting limit verification) outside accepted limits

NP = Not Provided

These results are submitted pursuant to R] Lee Group's current terms and conditions of sale, including the company's standard warranty and limitation of liability provisions. No responsibility or liability is assumed for the manner in which the results are used or interpreted. Unless notified in writing to return the samples covered by this report, RJ Lee Group will store the samples for a period of thirty (30) days before discarding. A shipping and handling fee will be assessed for the return of any samples.

This laboratory operates in accord with ISO 17025:2017 guidelines, and holds a limited scope of accreditations under different accrediting agencies; refer to http://www.rilg.com/about-us/accreditations/ for more information and current status. Unless it is specifically stated otherwise (under the Q column using the appropriate accrediting agency qualifier(s)) the work contained in this report is performed under RJLG's General Quality System requirements and is not part of any scope of accreditations. This report may not be used to claim product endorsement by any laboratory accrediting agency. The results contained in this report relate only to the items tested or to the sample(s) as received by the laboratory. Any reproduction of this document must be in full for the report to be valid.

Unless otherwise noted (either in the comments section of the report and/or with the appropriate qualifiers under the report qualifiers (Q) column) the following apply: (a) Samples were received in good condition, (b) All QC samples are within acceptable established limits, (c) All samples designated as NELAP meet the requirements of the NELAC standard; if not applicable qualifiers will be used to designate the non-compliance and (d) Results have not been blank corrected. Quality Control data is available upon request.

Philip Grindle

Laboratory Supervisor

Mr. Andrew Wheeler, Administrator, US EPA December 2020	
	ATTACHMENT 5
Documentation that AFPs Meet	Location Restrictions per § 257.71(d)(1)(i)(B)(3)

CCR COMPLIANCE LOCATION RESTRICTIONS DEMONSTRATION REPORT CONEMAUGH ASH FILTER PONDS

Prepared for:

GenOn Northeast Management Company Conemaugh Generating Station New Florence, Pennsylvania

Prepared by:

Aptim Environmental & Infrastructure, Inc. St. Charles, Illinois

October 2018

TABLE OF CONTENTS

1.0 INTRODUCTION AND PURPOSE	.1
2.0 OVERVIEW OF SURFACE IMPOUNDMENTS	.1
3.0 LOCATION DEMONSTRATIONS	.2
3.1 PLACEMENT ABOVE UPPERMOST AQUIFER (§257.60(a))	.2
3.2 WETLANDS (§257.61(a))	.4
3.3 FAULT AREAS (§257.62(a))	.4
3.4 SEISMIC IMPACT ZONE (§257.63(a))	
3.5 UNSTABLE AREAS (§257.64(a))	.5
4.0 SUMMARY	.7
5.0 QUALIFIED PROFESSIONAL ENGINEER CERTIFICATION (§§257.60(B), 257.61(B) 257.62(B), 257.63(B), 257.64(C))	
6 0 DEEEDENCES	0

i

LIST OF FIGURES AND APPENDICES

FIGURES

Figure 1 – Site Location Plan

Figure 2 – Groundwater Monitoring Network

Figure 3 – Uppermost Aquifer Potentiometric Surface: May 2018

Figure 4 – National Wetlands Inventory

Figure 5 – Map of Seismic Horizontal Acceleration

1.0 INTRODUCTION AND PURPOSE

GenOn Northeast Management Company (GenOn) operates the coal-fired Conemaugh Generating Station located in New Florence, Pennsylvania. The Conemaugh Generating Station utilizes surface impoundments for the purpose of managing coal combustion residuals (CCR).

In 2015, the *Disposal of Coal Combustion Residuals from Electric Utilities Final Rule* (CCR Rule) was enacted within the Federal Register under 40 CFR §257. The CCR Rule establishes technical requirements for CCR landfills and surface impoundments under Subtitle D of the Resource Conservation and Recovery Act (RCRA), which is the primary law regulating solid waste. Under the CCR Rule, the Conemaugh Station surface impoundments are designated as "existing CCR impoundments" as defined in §257.53. Multiple location restrictions are identified for landfills and surface impoundments to ensure that they are not placed in environmentally sensitive areas. These location requirements are defined under 40 CFR §257.60 through §257.64.

Demonstrations of compliance with location restrictions for an existing CCR surface impoundment are required to be placed in the facility's operating record [§257.105(e)] by October 17, 2018. In addition, the owner or operator must notify the State Director [§257.106(e)] that the demonstrations have been placed in the operating record and on the owner or operator's publicly accessible CCR internet site [§257.107(e)].

Per the applicable sections of the Rule, the location restrictions for CCR surface impoundments require that these units are NOT located:

- with a base that is constructed no less than 5 feet above the upper limit of the uppermost aquifer (§257.60);
- in wetlands (§257.61);
- within 200 feet of the outermost damage zone of a fault which has been displaced in Holocene time (§257.62);
- within a seismic impact zone (§257.63); or
- in an unstable area (§257.64).

The location restriction details are further described within **Section 3** of this report.

2.0 OVERVIEW OF SURFACE IMPOUNDMENTS

Four CCR surface impoundments are located at the Conemaugh Generating Station, and are referred to as Ash Filter Ponds A through D (ponds). The ponds have been in operation since 1986, and are aligned in a side-by-side layout in a southward progression. At a minimum, two ponds are in service at all times with the third being drained and cleaned (as needed) and the fourth used to store decant water for later use. **Figure 1** shows the location of the ponds.

The bottom liner system for each of the ponds, from top to bottom is comprised of 2.5 feet of bottom ash protective cover, 1.5 feet of American Association of State Highway and Transportation Officials (AASHTO) No. 8 coarse aggregate for pond dewatering, 1.5 feet of impervious fill, and an impervious liner comprised of 0.67 foot of bentonite-amended low-permeability compacted soil underlain by 1.33 feet of low-permeability compacted soil. The total liner system thickness is 7.5 feet of which the low-permeability soil barrier layer is the lowermost two feet.

The crest elevation is approximately 1,092 feet above mean sea level (ft MSL) and the elevation of the top of the protective bottom ash layer ranges from 1,084.6 ft MSL on the eastern end of each ash pond to 1,083.0 ft MSL on the western end. This provides an average pond depth of approximately eight (8) feet. The bottom elevation of the base liner is approximately 1,077.1 ft MSL on the eastern end and 1,075.5 ft MSL on the western end, with an estimated elevation of 1,076.3 ft MSL at the midpoint across each pond.

3.0 LOCATION DEMONSTRATIONS

3.1 PLACEMENT ABOVE UPPERMOST AQUIFER (§257.60(a))

Per §257.60(a) of the Rule, "new CCR landfills, existing and new CCR surface impoundments, and all lateral expansions of CCR units must be constructed with a base that is located no less than 1.52 meters (five feet) above the upper limit of the uppermost aquifer, or must demonstrate that there will not be an intermittent, recurring, or sustained hydraulic connection between any portion of the base of the CCR unit and the uppermost aquifer due to normal fluctuations in groundwater elevations (including the seasonal high water table)."

The ponds are underlain by recent alluvium that was deposited by the Conemaugh River. The alluvium typically ranges from 20 to 25 feet thick but can extend to depths as great as 32 feet below ground surface (bgs). The alluvium directly overlies shale and siltstone bedrock and is comprised of clayey sand to sandy clay that extends from ground surface to depths ranging from 12 to 18 feet bgs. The alluvial materials become coarser grained with increasing depth and grade into silty sand and sand and gravel near the upper bedrock surface. Groundwater beneath the Ash Filter Ponds resides within the alluvium. This water-bearing zone further represents the uppermost aquifer in this area and exists in an unconfined condition.

Groundwater flow is topographically controlled and flows toward the Conemaugh River which is the naturally occurring groundwater discharge zone in the area of the ponds. Groundwater flowing from upgradient of the ponds will pass beneath the CCR unit and through the areas in which the downgradient monitoring wells are located.

The groundwater monitoring system for the ponds is comprised of five wells, including Wells MW-1B and MW-2 (upgradient), and Wells MW-3, MW-4, and MW-23 (downgradient). All five wells communicate with the alluvium, which is the uppermost aquifer. The locations of the groundwater monitoring wells are shown on **Figure 2**, along with depiction of the generalized groundwater flow direction in the area of the ponds.

The groundwater elevation in each of these wells (representing the upper surface of the uppermost aquifer) has been monitored on a routine basis since the inception of the CCR Rule. A summary of these observations is provided in **Table 1**.

Grour	TABLE 1 Groundwater Level Observations Near Ponds										
Monitoring Data	Monitoring Date Groundwater Elevation (ft MSL)										
Wionitoring Date	MW-1B	MW-2	MW-3	MW-4	MW-23						
December 16, 2015	1070.99	1072.72	1065.24	1069.53	1068.03						
January 26, 2016	1071.19	1072.42	1065.89	1069.73	1069.08						
April 25, 2016	1071.69	1073.02	1066.14	1070.08	1069.38						
July 25, 2016	1071.69	1073.72	1064.99	1068.98	1067.93						
October 24, 2016	1072.99	1073.82	1066.19	1070.08	1068.83						
January 17, 2017	1072.54	1072.92	1066.94	1070.88	1070.13						
April 25, 2017	1072.69	1073.02	1067.09	1070.93	1069.68						
July 25, 2017	1072.04	1072.57	1065.99	1070.23	1069.18						
October 1, 2017	1070.84	1071.17	1064.89	1068.83	1067.98						
May 23, 2018	1074.94	1075.57	1067.79	1070.53	1071.18						
Highest Water Level:	1074.94	1075.57	1067.79	1070.93	1071.18						
Lowest Water Level:	1070.84	1071.17	1064.89	1068.83	1067.93						
Average Water Level:	1072.16	1073.10	1066.12	1069.98	1069.14						

As shown in **Table 1**, the highest observed groundwater elevation across the majority of the wells was recorded on May 23, 2018. The groundwater elevations from this date have been developed into a potentiometric surface and overlain on an aerial image of the ponds, as presented on **Figure 3**. As shown, the groundwater surface is greater than elevation 1,071.3 ft MSL in the location of the Ash Filter Ponds. This elevation serves as the 5-foot vertical offset of the bottom of the ponds' base liners (midpoint elevation 1,076.3 ft MSL - 5 ft separation = elevation 1,071.3 ft MSL). This indicates that these ponds are located above the uppermost aquifer, but with less than five feet of separation.

However, §257.60 states that if the base of the surface impoundment is less than five feet above the upper limit of the uppermost aguifer, a demonstration must be made "that there will not be an intermittent, recurring, or sustained hydraulic connection between any portion of the base of the CCR unit and the uppermost aquifer due to normal fluctuations in groundwater elevations (including the seasonal high water table)." Based on the two and one-half years of groundwater elevation data collected (and reflecting seasonal variations), it is observed that the seasonal high water table was observed during May 2018. The May 2018 potentiometric surface is presented in Figure 3. As shown, the highest elevation contour underneath the base of the ponds is 1075 ft MSL, located under the northeast corner of Ash Filter Pond A. This elevation is approximately 1.3 feet below the average base elevation of 1076.3 ft MSL. Upon further examination of Figure 3, this separation distance increases in the southward direction moving from Pond A to Pond D, whereupon the five-feet separation distance is achieved. It is therefore concluded that there is not an intermittent, recurring, or sustained hydraulic connection between any portion of the base of the CCR unit and the uppermost aguifer due to normal fluctuations in groundwater elevations (including the seasonal high water table).

This information demonstrates compliance with the requirements of §257.60(a).

3.2 WETLANDS (§257.61(a))

Per §257.61 of the Rule, "new CCR landfills, existing and new CCR surface impoundments, and all lateral expansions of CCR units must not be located in wetlands, as defined in §232.2 of this chapter, unless the owner or operator demonstrates by the dates specified in paragraph (c) of this section that the CCR unit meets the requirements of paragraphs (a)(1) through (5) of this section."

Wetlands are defined under §232.2 as "those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances, do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs and similar areas."

APTIM reviewed the U.S. Fish and Wildlife Service National Wetlands Inventory (NWI) Database Surface Waters and Wetlands Map to determine whether wetlands are shown to overlap with the ponds. The map, presented as **Figure 4**, does not show any wetlands in or near the ponds.

Additionally, a wetland delineation report was completed by GAI Consultants, Inc. and a Pennsylvania Natural Diversity Inventory was completed in advance of the rail line construction in 2005. While there were several wetlands present in low-lying areas between the ponds and Conemaugh River, no wetlands were found in the location of the ponds. The study indicated that in general, the wetlands in the vicinity of the rail line and downstream of the ponds are palustrine emergent (with precipitation and runoff as the only water sources) and palustrine scrub-shrub wetlands.

These data sources are presented as a demonstration of compliance with the requirements of §257.61(a).

3.3 FAULT AREAS (§257.62(a))

Per §257.62 of the Rule, "new CCR landfills, existing and new CCR surface impoundments, and all lateral expansions of CCR units must not be located within 60 meters (200 feet) of the outermost damage zone of a fault that has had displacement in Holocene time unless the owner or operator demonstrates by the dates specified in paragraph (c) of this section that an alternative setback distance of less than 60 meters (200 feet) will prevent damage to the structural integrity of the CCR unit."

APTIM compared the location of the ponds to the location of faults that have undergone displacement during the Holocene time, as recorded in the United States Geological Survey (USGS) Quaternary Fault and Fold Database for the United States. There are no known faults that are identified within 200 feet of the ponds. This information demonstrates compliance with the requirements of §257.62(a).

3.4 SEISMIC IMPACT ZONE (§257.63(a))

Per §257.63 of the Rule, "new CCR landfills, existing and new CCR surface impoundments, and all lateral expansions of CCR units must not be located in seismic impact zones unless the owner or operator demonstrates by the dates specified in paragraph (c) of this section that all structural components including liners, leachate collection and removal systems, and surface water control systems, are designed to resist the maximum horizontal acceleration in lithified earth material for the site."

A seismic impact zone is an area with a ten percent or greater probability that the maximum horizontal acceleration in lithified earth material, expressed as a percentage of the earth's gravitation pull (g), will exceed 0.10g in 250 years. Probabilistically, this is equal to a two percent or greater probability within a 50-year timeframe.

APTIM compared the location of the ponds to the location of seismic impact zones, as defined in §257.53, using the USGS map "Two Percent Probability of Exceedance in 50 Years Map of Peak Ground Acceleration", shown in **Figure 5**. The maximum ground acceleration for the location of the ponds is estimated to be 0.046g, and is therefore not considered a seismic impact zone. This information demonstrates compliance with the requirements of §257.63(a).

3.5 UNSTABLE AREAS (§257.64(a))

Per §257.64 of the Rule, "an existing or new CCR landfill, existing or new CCR surface impoundment, or any lateral expansion of a CCR unit must not be located in an unstable area unless the owner or operator demonstrates by the dates specified in paragraph (d) of this section that recognized and generally accepted good engineering practices have been incorporated into the design of the CCR unit to ensure that the integrity of the structural components of the CCR unit will not be disrupted."

APTIM evaluated the location of the ponds for the presence of on-site or local unstable areas, as defined in §257.53. Evaluation of the conditions listed in §257.64(b)(1)-(3) were conducted and are discussed in the following subsections. Based on these evaluations, APTIM concludes that the ponds are not located within an unstable area and are compliant with the requirements of §257.64(a).

The owner or operator must consider all of the following factors, at a minimum, when determining whether an area is unstable:

3.5.1 Unstable Factors Considered: Differential Settling (§257.64(b)(1))

On-site or local soil conditions that may result in significant differential settling;

The alluvial soils underlying the ponds are typically in the range of 20 to 25 feet thick but extend to depths as great as 32 feet bgs and are comprised of sandy clay to clayey and silty sand that extends from ground surface to depths of 12 to 18 feet below ground surface. The alluvial soil becomes coarser grained with increasing depth grading into silty sand and sand and gravel. Standard penetration tests in the test boring for Monitoring Well MW-23 indicate that the cohesive alluvial soil is very stiff and that the granular alluvial soil is dense to very dense. The very stiff consistency and dense to very dense in place density indicate that the alluvial soil has low compressibility and will not undergo significant differential settling beneath the ponds. The bottoms of the ponds are very near original grade and the only increase in loads will be from the dikes and material contained within the ponds. Moreover, the ponds have existed for approximately 30 years and no measurable settling has occurred, based on the present topography.

Based on the information presented above, on-site and local soil conditions will not cause excessive differential settling of the ponds or any components thereof.

3.5.2 Unstable Factors Considered: Geologic/Geomorphologic Features (§257.64 (b)(2))

On-site or local geologic or geomorphologic features;

The ash ponds are underlain by alluvial soil which in turn is underlain by rocks of the Glenshaw Formation (Conemaugh Group) of the Pennsylvanian System. The Lower Mahoning Sandstone, which is the basal member of the Glenshaw Formation underlies the alluvium and is comprised of siltstone and argillaceous sandstone with some thin shale The Lower Mahoning Sandstone is approximately 80 feet thick but in the generating station proper, it has been eroded and approximately the lowermost 50 feet remains. Because the Lower Mahoning Sandstone is a clastic sedimentary rock rather than a carbonate sedimentary rock, there is no karst development in the area of the ash ponds. Moreover, the uppermost 150 feet of the Allegheny Group underlying the Glenshaw Formation is also largely comprised of clastic sedimentary rocks, including the Butler and Freeport Sandstones. No carbonate beds capable of karst development are present in the upper part of the Allegheny Group. Considering the absence of carbonate beds capable of karst development in either the Lower Mahoning Sandstone or in the rock units of the upper portion of the Allegheny Group, including the Butler and Freeport Sandstones, no on-site or local geologic or geomorphic features capable of producing unstable conditions exist within the area of the ash ponds.

3.5.3 Unstable Factors Considered: Human-made Features or Events (§257.64 (b)(3))

On-site or local human-made features or events (both surface and subsurface).

Deep mining of the Upper Freeport Coal, Lower Freeport Coal, and Lower Kittanning Coal Beds occurred within the Conemaugh Generating Station property. According to a study conducted by the John T. Boyd Company (Boyd), the Upper Freeport Coal Bed, which is discontinuous and of varying thickness in the area, was deep mined in the Florence Mining Company's Florence No. 2 Mine. This mine is located mostly west and southwest of the Conemaugh Station's Ash/Refuse Disposal Site. The mine operated from 1970 to 1992 when it was abandoned and sealed. Per the Boyd report, the Upper Freeport Coal Bed ranges from 36 to 84 inches thick in the area where it was mined. No portions of mining took place beneath the ponds based on mine location maps contained within the Boyd report.

Per the Boyd Report, the Lower Kittanning Coal Bed is 0 to 83 inches thick, has an average thickness of 52 inches, and was mined in the Conemaugh No. 1 Mine by various companies, including the North American Coal Company between 1914 and 1982. The Conemaugh No. 1 mine was later renamed the Penelec No. 5 Mine which was operated by the Pennsylvania Electric Company from 1940 to 1989. According to a map showing the limits of the Conemaugh No. 1/Penelec No. 5 Mine, the Lower Kittanning Coal Bed was underground mined mostly east of the Ash/Refuse Disposal Site, but the mine did not extend beneath the current station property proper.

Based on the evidence presented above in Sections 3.5.1 through 3.5.3, the ponds are not located in an unstable area and meet the requirements of §257.64(b)(1)-(3), and in, turn the requirements of §257.64(a).

4.0 SUMMARY

The Conemaugh Generating Station operates four CCR surface impoundments, which are collectively known as the Ash Filter Ponds (Ponds A, B, C, and D). These ponds meet all location restrictions, as defined within §257.60 through §257.64, and as summarized below in Table 2.

Table 2 Location Restriction Compliance Demonstration Summary					
40 CFR Section	Demonstration Provided				
§257.60(a)	Placement above the uppermost aquifer	Yes			
§257.61(a)	Wetlands	Yes			
§257.62(a)	Fault Areas	Yes			
§257.63(a)	Seismic Impact Zone	Yes			
§257.64(a)	Unstable Areas	Yes			

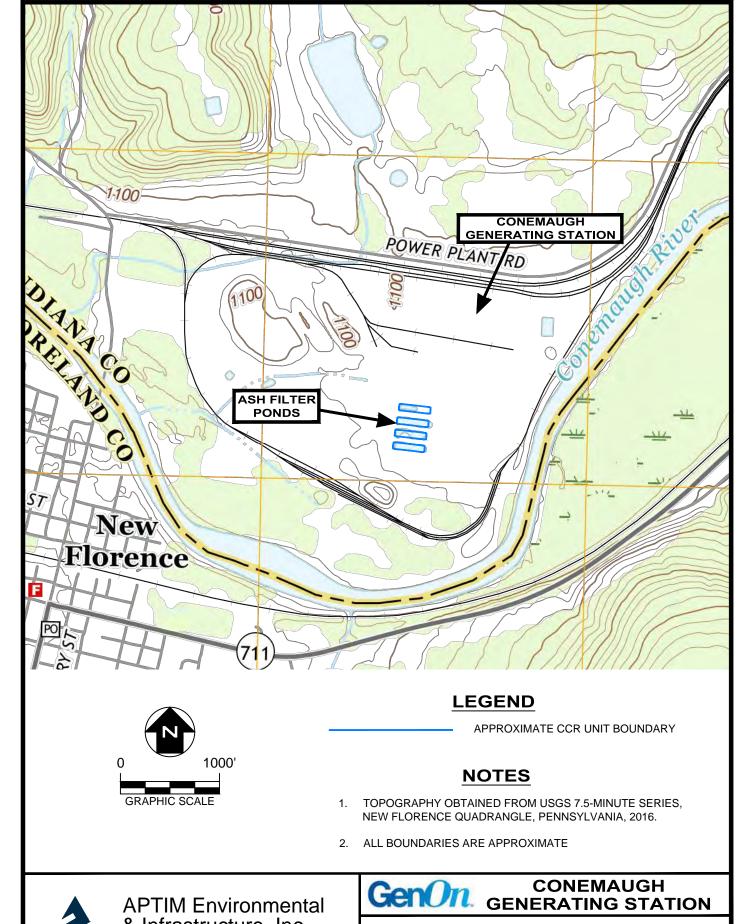
5.0 QUALIFIED PROFESSIONAL ENGINEER CERTIFICATION (§§257.60(b), 257.61(b), 257.62(b), 257.63(b), 257.64(c))

I, the undersigned Professional Engineer licensed in the Commonwealth of Pennsylvania, am familiar with the requirements of the CCR Rule Section 257. It is my professional opinion that the impoundments described in this report meet the requirements of §§257.60(a), 257.61(a), 257.62(a), 257.63(a) and 257.64(a). The basis of this professional opinion is described within this report and is limited to the available information known to APTIM. This professional opinion is not to be interpreted or construed as a guarantee, warranty, or legal opinion.

Name of Professional Engineer:	Richard Southorn, P.E. P.G.,
Company:	APTIM
PE Registration State:	Pennsylvania
PE Registration Number:	PE 085411
. L ragionation rambon.	1 2 000 111

Professional Engineer Seal:

6.0 REFERENCES


"Coal and Mineral Resource Study Conemaugh Generating Station Residual Waste Disposal Site, Indiana County Pennsylvania," John T. Boyd Company, December 1994.

"Pennsylvania Department of Environmental Protection Residual Waste Major Permit Modification, Conemaugh Station Disposal Site, New Florence, Pennsylvania, Volume 1, Form 6R – Geologic Information," GAI Consultants, Inc., May 1997.

U.S. Environmental Protection Agency (2015), Hazardous Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities, Federal Register Volume 80, No. 74 40 CFR Parts 257 and 261, April 17, 2015.

United States Geological Survey (USGS) Quaternary Fault and Fold Database for the United States.

& Infrastructure, Inc.

APTIM Environmental & Infrastructure, Inc. has prepared this document for a specific Project or purpose. All information contained within this document is copyrighted and remains intellectual property of APTIM Environmental & Infrastructure, Inc. This document may not be used or copied, in part or in whole, for any reason without expressed written consent by APTIM Environmental & Infrastructure, Inc.

FIGURE 1 SITE LOCATION PLAN

DATE:

SEPT. 2018

PROJ. NO.: 1009144003 APPROVED BY: RDS

APPROVED BY DRAWING 1009144003-B7 MW-1B UPGRADIENT MW-2 UPGRADIENT (1071.17) ASH FILTER POND A ASH FILTER POND B ASH FILTER POND C ASH FILTER POND D MW-4
DOWNGRADIENT
(1068.83) MW-3
DOWNGRADIENT
(1064.89) MW-23 DOWNGRADIENT 222

LEGEND:

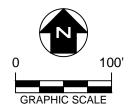
CCR GROUNDWATER MONITORING WELL WITH **GROUNDWATER ELEVATION MEASURED BETWEEN OCTOBER 1 AND 4, 2017**

GROUNDWATER FLOW DIRECTION

REFERENCE:

GOOGLE AERIAL PHOTOGRAPH, DATED 10/2015.

500 Penn Center Boulevard, Suite 1000 Pittsburgh, Pennsylvania 15235


FIGURE 2 CCR COMPLIANCE GROUNDWATER MONITORING WELL LOCATION MAP ASH FILTER PONDS

CONEMAUGH GENERATING STATION INDIANA COUNTY, PENNSYLVANIA

ROJECT\1009144003_Conemaugh\1009144003_B7. Time: Jan 31, 2018 — 9:02am Xref: Evan.Schlegel

File: Plot

MONITORING WELL

1070

POTENTIOMETRIC CONTOUR

NOTES

- AERIAL IMAGERY OBTAINED FROM GOOGLE EARTH PRO DATED APRIL 2016.
- POTENTIOMETRIC DATA COLLECTED ON MAY 2018.

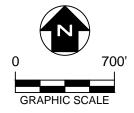
APTIM Environmental

& Infrastructure, Inc.

APTIM Environmental & Infrastructure, Inc. has prepared this document for a specific project or purpose. All Information contained within this document is copyrighted and remains intellectual property of APTIM Environmental & Infrastructure, Inc. This document may not be used or copied, in part or in whole, for any reason without expressed written consent by APTIM Environmental & Infrastructure, Inc.

CONEMAUGH **GENERATING STATION**

FIGURE 3 **UPPERMOST AQUIFER POTENTIOMETRIC SURFACE: MAY 2018**


APPROVED BY: RDS PROJ. NO.:

1009144003 DATE:

SEPT. 2018

APPROXIMATE NATIONAL WETLAND INVENTORY (NWI) WETLAND BOUNDARY

NOTES

- AERIAL IMAGERY OBTAINED FROM GOOGLE EARTH PRO DATED APRIL 2016.
- APPROXIMATE WETLAND BOUNDARIES OBTAINED FROM THE UNITED STATES FISH AND WILDLIFE SERVICES NATIONAL WETLANDS INVENTORY DATABASE. WETLAND DELINEATIONS ARE PHOTO INTERPRETED USING **IMAGERY FROM 1977.**

APTIM Environmental & Infrastructure, Inc.

APTIM Environmental & Infrastructure, Inc. has prepared this document for a specific Project or purpose. All information contained within this document is copyrighted and remains intellectual property of APTIM Environmental & Infrastructure, Inc. This document may not be used or copied, in part or in whole, for any reason without expressed written consent by APTIM Environmental & Infrastructure, Inc.

CONEMAUGH GenUn GENERATING STATION

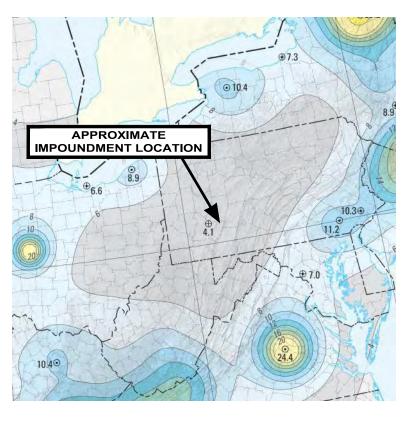
FIGURE 4 NATIONAL WETLANDS INVENTORY

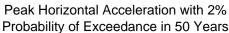
PROJ. NO.: APPROVED BY: RDS

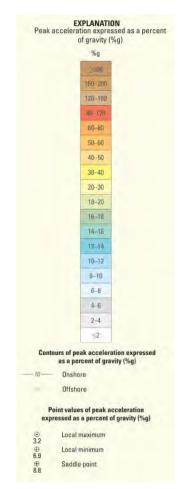
1009144003

DATE: SEPT. 2018

Earthquake Hazards Program


LOCATION 40.383316 Lat. -79.062566 Long.


The interpolated probabilistic ground motion values, in %g, at the requested point are:


P.E.	Exp. Time	Ground Motion
%	(years)	(g)

2 50 0.04617

U.S. NATIONAL SEISMIC HAZARD MAPS: Peterson, M.D., et al, 2014

NOTES

1. Information obtained from the United States Geological Survey website.

APTIM Environmental & Infrastructure, Inc.

APTIM Environmental & Infrastructure, Inc. has prepared this document for a specific project or purpose. All information contained within this document is copyrighted and remains intellectual property of APTIM Environmental & Infrastructure, Inc. This document may not be used or copied, in part or in whole, for any reason without expressed written consent by APTIM Environmental & Infrastructure, Inc.

CONEMAUGH GENERATING STATION

FIGURE 5 MAP OF HORIZONTAL ACCELERATION

APPROVED BY:

PROJ. NO.:

RDS

1009144003

DATE: SEPT. 2018

ATTACHMENT 6 Documentation of Design Specifications, Material Suitability, and

Construction Quality for Engineered Clay Liner per § 257.71(d)(1)(i)(C)

Attachment 6A Record Drawings

Construction Specification 140-4479-158 - Ash Filter Ponds and Ash Silo Ponds, Attachment 6B

November 1984

Attachment 6C Testing and Inspection Specification GDE-CON-983 – Soils, Concrete, and Grout

Testing and Inspection, April 1985

Preliminary Engineering Report #335-83, Rev 2, March 1984 Attachment 6D

Attachment 6E Correspondence – Letter from PaDER Regarding Requirements for AFPs Engineered

Liner System, January 1984

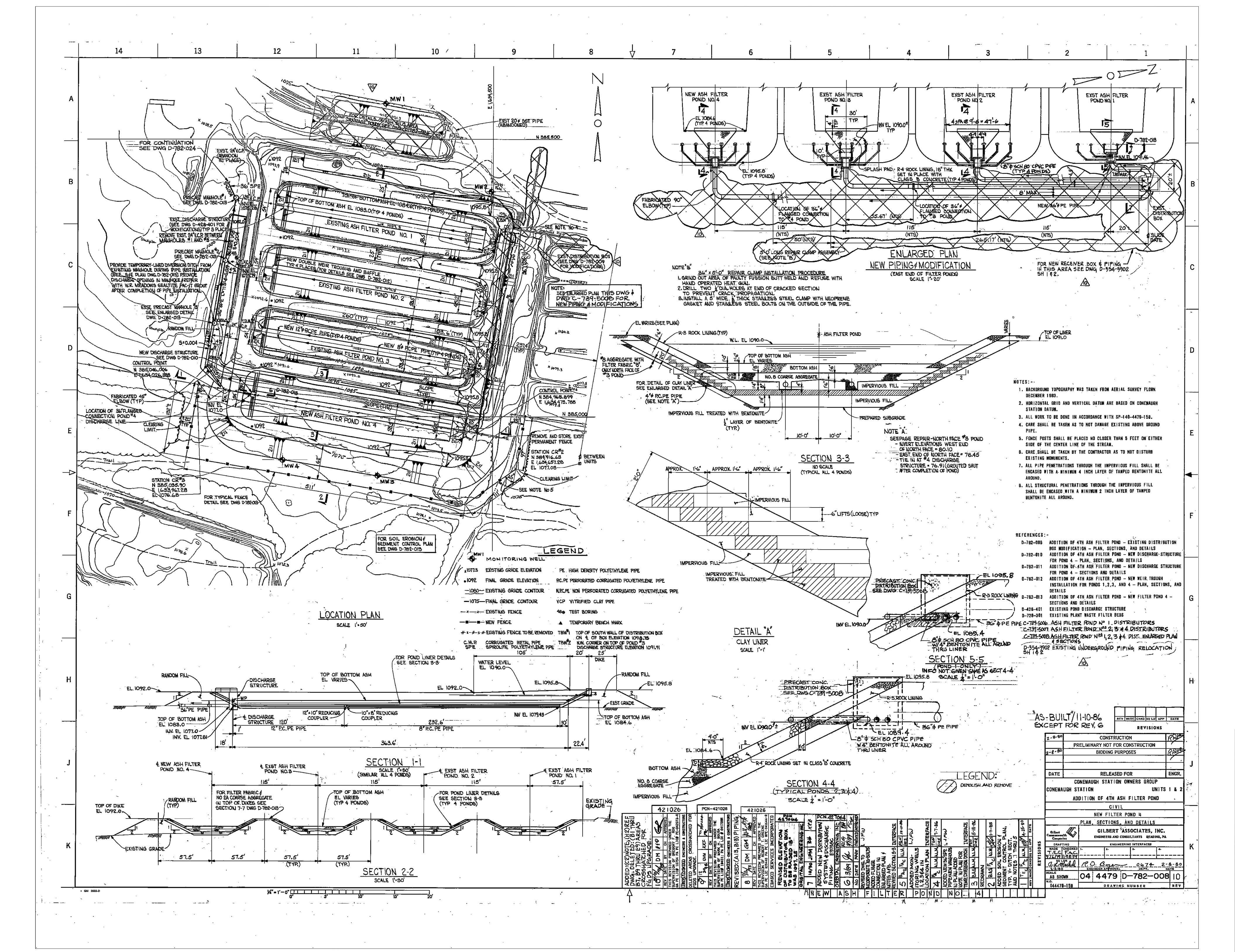
Attachment 6F Engineering Scope of Services for Ash Filter Pond Construction, August 1983

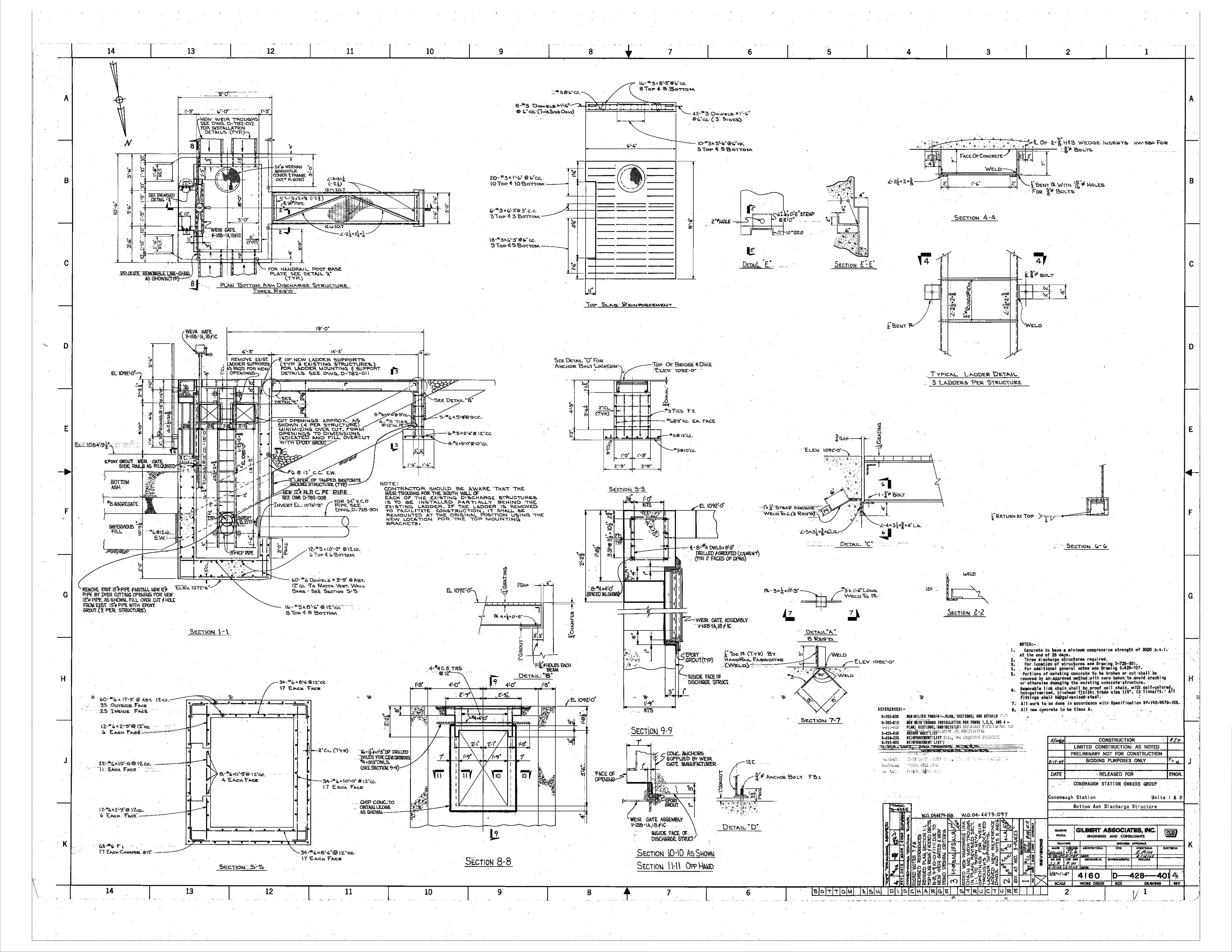
Attachment 6G Purchase Requisition for Lab and Field Testing, April 1985

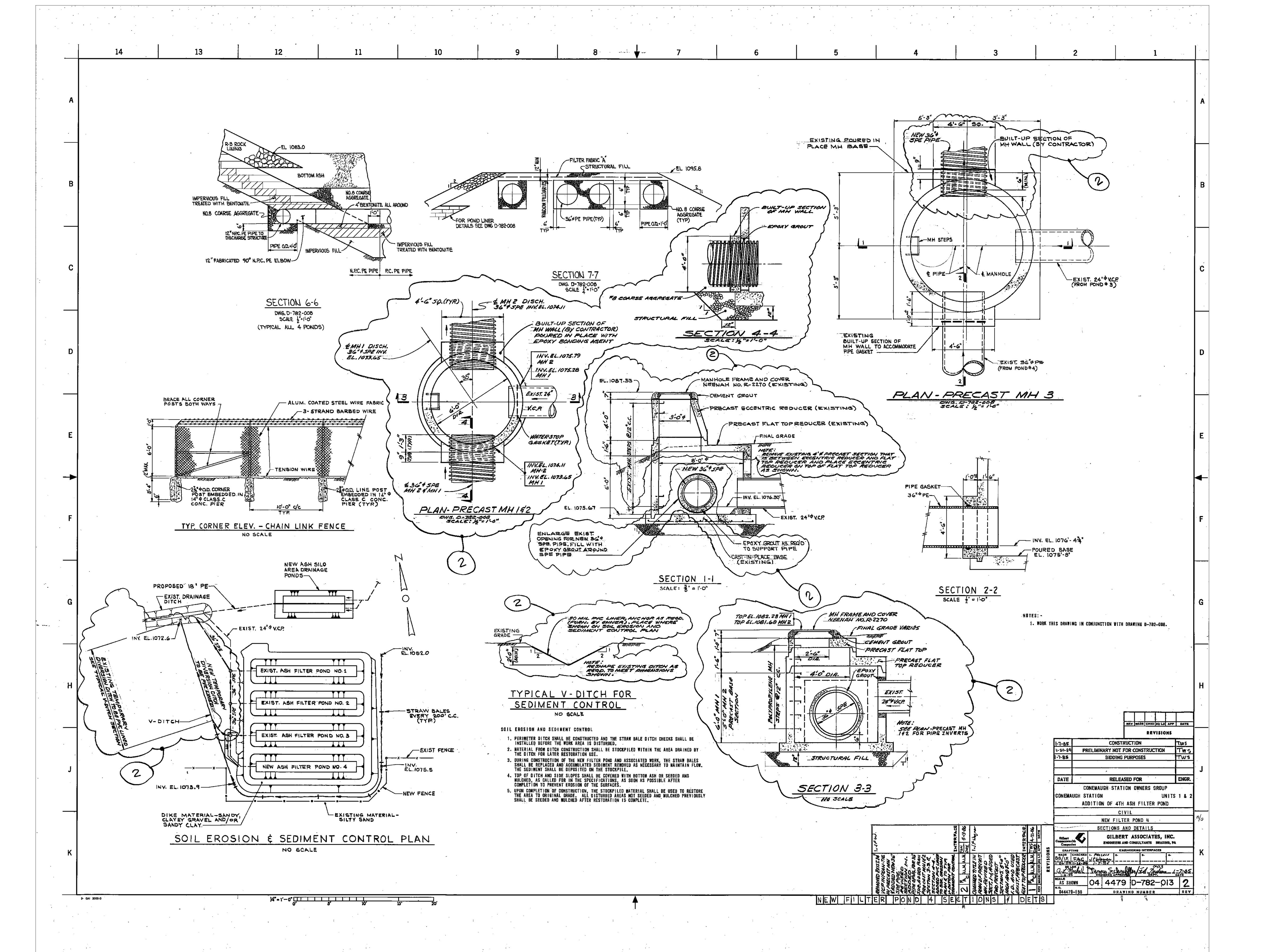
Attachment 6H Water Quality Management Permit Application for AFP Improvements, April 1984

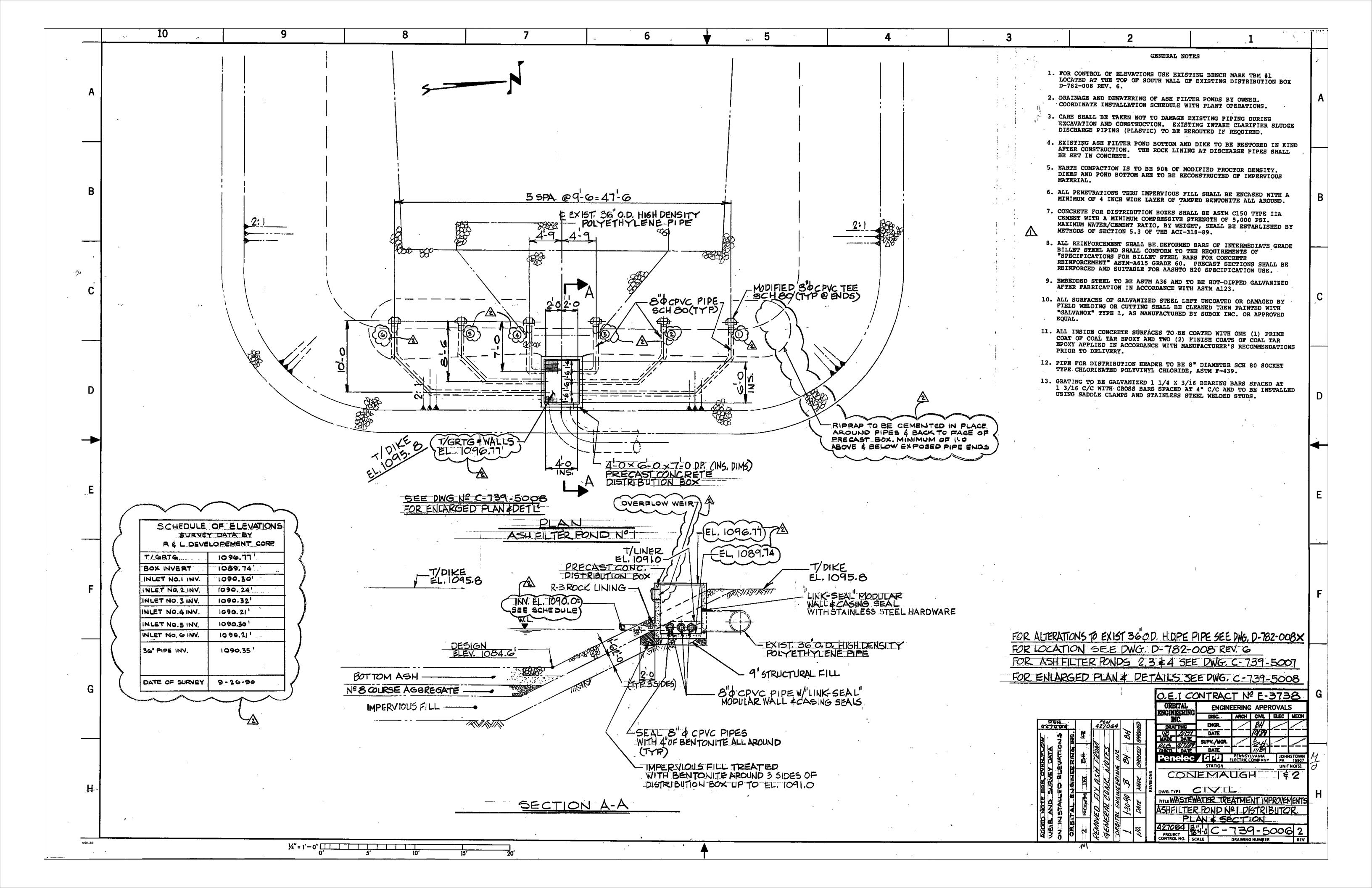
Ash Filter Ponds Liner Certification Report, August 2016 Attachment 6I

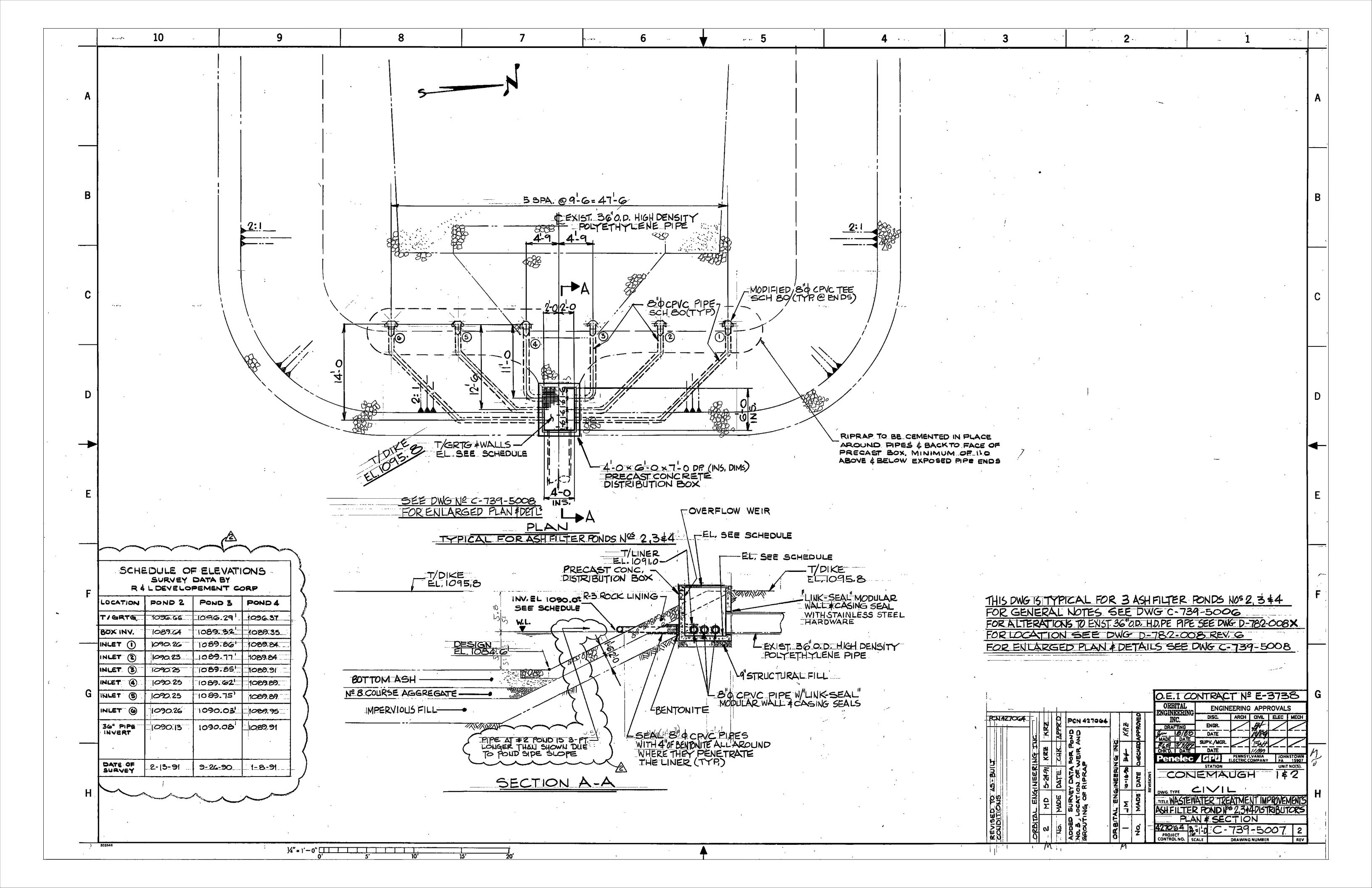
Notes are included on the individual fly sheets of some attachments to provide Notes:


context regarding the applicability of the document to the Part B application. Red boxes are used throughout the attachments to highlight pertinent information.


The historical documents provided in this application are for reference purposes only. The information related to the liners has been reviewed and deemed to be a reasonable representation of the permitting, design, and construction of the AFP liners. Other information presented in these documents may not be applicable to the AFPs and may include dated or inaccurate information regarding other facilities at the Station, which has not been fully evaluated. Since the time that many of these reference documents were prepared, facilities and operations at the Station have changed, along with applicable regulations and permit conditions under which they may operate. As such, information presented may no longer be applicable. For example, the permit application attachment includes reference to Ash Silo Ponds,


which are no longer present at the Station.


Mr. Andrew Wheeler, Administrator, US EPA December 2020


ATTACHMENT 6A Record Drawings

Mr. Andrew Wheeler, Administrator, US EPA December 2020

ATTACHMENT 6B

Construction Specification 140-4479-158 - Ash Filter Ponds and Ash Silo Ponds, November 1984

Note: This document presents the specifications for construction of the Ash Filter Pond engineered clay liners and associated protective cover.

SPECIFICATION 140-4479-158

ASH FILTER PONDS AND ASH SILO PONDS

CONEMAUGH STATION - UNITS 1 AND 2

PRELIMINARY - NOVEMBER 30, 1984

PENELEC W.O. C344

PENNSYLVANIA ELECTRIC COMPANY FOR THE CONEMAUGH STATION OWNERS GROUP

GCI APPROVAL	DATE
PENELEC ENGINEERING REVIEW	DATE
PENELEC QA REVIEW	DATE
PENELEC APPROVAL	DATE

Gilbert/Commonwealth, Inc. P.O. Box 1498 Reading, Pennsylvania

J.F.W.-D.G.G.-T.W.S. F.G.N.-D.R.E.-L.E.W. W.O. 04-4479-158

SP-140-4479-158 11-30-84

CONTENTS

Section	<u>Title</u>	<u>Pages</u>
I	SPECIAL CONDITIONS	
	Contents Page Text	I-i I-1 thru I-10
II.	SCOPE OF WORK AND DRAWING LIST	
	Contents Text	II-i II-l thru II-6
III	EXCAVATION AND FILL	
	Contents Page Text Test Pit Logs, Laboratory Test	III-i III-1 and III-16
	Results, and Test Boring Logs	19 sheets
IV	GENERAL SITE WORK	
	Contents Page Text	IV-i IV-1 thru IV-16
V	PIPING	
	Contents Page Text	V-i V-1 thru V-10
VI	FURNISHING AND DELIVERY OF CONCRETE	
	Contents Page Text	VI-i VI-1 thru VI-12
VII	PLACEMENT OF CONCRETE	
	Contents Page Text Attachment X	VII-i VII-1 thru VII-15 l of l
VIII	FABRICATION AND DELIVERY OF REINFORCIN	G STEEL
	Contents Page Text	VIII-i VIII-l and VIII-2
IX	PLACEMENT OF REINFORCING STEEL	
	Contents Page Text	IX-i IX-l and IX-2

SP-140-4479-158 11-30-84

CONTENTS (cont)

Section	<u>Title</u>	<u>Pages</u>
X	FURNISHING AND PLACING GROUT	
	Contents Page Text	X-i X-1 thru X-3
XI	FABRICATION AND DELIVERY OF STRUCTURA	AL STEEL
	Contents Page Text	XI-i XI-1 thru XI-8
XII	ERECTION OF STRUCTURAL STEEL	
	Contents Page Text	XII-i XII-1 thru XII-6
XIII	FABRICATION AND DELIVERY OF PIPE HAND	DRAIL
	Contents Page Text	XIII-i XIII-1 thru XIII-4
XIV	INSTALLATION OF PIPE HANDRAIL	1.5
Œ	Contents Page Text	XIV-i XIV-1 thru XIV-3
XV	FABRICATION AND DELIVERY OF GRATING	
	Contents Page Text	XV-i XV-l thru XV-4
XVI	INSTALLATION OF GRATING	
	Contents Page Text	XVI-i XVI-1 thru XVI-4
XVII	PAINTING	
	Contents Page Text	XVII-i XVII-1 thru XVII-4
XVIII	COATING	
	Contents Page Text	XVIII-i XVIII-l thru XVIII-4

CONTENTS (Cont)

Section		<u>Title</u>	<u>Pages</u>
<u>ATTACHMENTS</u>	•		
Penelec Quality	Assurance Specifica	tions Manuals:	
PS-8.01C and a	ttachment 7.1 attachments 7.1 and i attachment 7.1 attachment 7.1	7.2	2 pages 7 pages 5 pages 3 pages
Piping Line Spe	cifications:		
125-10 125-11 150-4			2 of 2 2 of 2 2 of 2
Specification 50	00-4479-158, "SOILS	TESTING AND INSPECTION"	:
(Cover Page Contents Text	ı	l of l i I-l thru I-14

Drawings listed in paragraph 2.04.

SECTION III

EXCAVATION AND FILL

- 3.01 SCOPE
- 3.01.1 Description of Work:

This section includes technical requirements for performing excavation and fill operations.

3.01.2 Items Included:

This section includes the following:

- 1. Establishing lines and grades.
- 2. Performing soil erosion and sedimentation control.
- 3. Clearing, grubbing, and disposition of materials.
- Excavation to the required lines and grades, including removal of unsuitable materials.
- 5. Dewatering of excavations and diversion of all surface water away from earthwork operations.
- 6. Subgrade preparation.
- 7. Furnishing, placing, and compacting of fill materials.
- 8. Excavation and fill of trenches.
- 9. Furnishing and placing of filter fabrics.
- 3.01.3 Items Not Included:

The following items are not included in this Section:

- 1. Providing bituminous and concrete pavement construction.
- 2. Providing soil testing and inspection.
- Establishing reference base lines and bench marks.
- 4. Qualification and in-process testing of materials.

3.02 APPLICABLE CODES AND STANDARDS

The following are referenced in this Section:

- 1. American Society for Testing and Materials (ASTM):
 - a. C 127-81, "Test Method for Specific Gravity and Absorption of Coarse Aggregate."
 - b. D 422-63 (1972), "Particle-Size Analysis of Soils."
 - c. D 423-66 (1972), "Test Method for Liquid Limit of Soils."
 - d. D 424-59 (1971), "Test Method for Plastic Limit and Plasticity Index of Soils."
 - e. D 751-79, "Testing Coated Fabrics."
 - f. D 1117-80, "Testing Nonwoven Fabrics."
 - g. D 1140-54 (1971), "Test Method for Amount of Material in Soils Finer Than the No. 200 (75-µm) Sieve."
 - h. D 1557-78, "Test Methods for Moisture-Density Relations of Soils and Soil-Aggregate Mixtures Using 10-1b (4.54-kg) Rammer and 18-in. (457-mm) Drop."
 - i. D 1682-64 (1975), "Test Methods for Breaking Load and Elongation of Textile Fabrics."
 - j. D 1777-64 (1975), "Measuring Thickness of Textile Fabrics."
 - k. D 2487-69 (1975), "Classification of Soils for Engineering Purposes."
- Commonwealth of Pennsylvania, Department of Environmental Resources, "Soil Erosion and Sedimentation Control Manual", March 1, 1982.
- Commonwealth of Pennsylvania, Department of Transportation, Publication 408, 1983 Edition and Supplements (PennDOT Pub. 408).
- 4. U.S. Army Corps of Engineers, CW-02215, "Plastic Filter Cloth."
- 5. U.S. Department of Labor, Occupational Safety and Health Administration (OSHA), "Construction Industry Standards and Interpretations," Volume III, 1980, Subpart P Excavations, Trenching, and Shoring.

3.03 MATERIAL REQUIREMENTS

3.03.1 Random Fill:

Random fill shall consist of onsite excavated soil and rock, with the maximum particle size not exceeding one-half the specified lift thickness. It shall not contain ash, organic matter, rubbish, ice, or frozen materials.

3.03.2 Structural Fill:

Structural fill shall be No. 2A Coarse Aggregate, Type A, in accordance with PennDOT Pub. 408, Section 703.2, except as modified herein. It shall consist of bank-run sand and gravel, crushed rock, screenings from crushed rock, crushed gravel, or combinations of these. It shall consist of hard, tough, durable, uncoated particles, free of organic matter, clay, or weak, flat, elongated, argillaceous, micaceous or decomposed material. The material shall conform to the following gradation:

Sieve Size U.S. Standard	Percent Passing By Dry Weight
2 in 3/4 in	100 52-100
3/8 in	36-70
No. 4	24-50
No. 16	10-30
No. 200	0-10

3.03.3 Sand Fill:

Sand fill shall be in accordance with PennDOT Pub. 408, Section 703.1, except as modified herein. It shall consist of hard, tough, durable, uncoated particles, free from clay, vegetation, or friable particles. The material shall conform to the following gradation:

Sieve Size <u>U.S. Standard</u>	Percent Passing By Dry Weight				
3/8 in	100				
No. 8	65-100				
No. 30	20-65				
No. 100	0-25				
No. 200	0-10				

3.03.4 Impervious Fill:

1. Impervious fill shall be CL or SC type material as per ASTM D 2487. The minimum liquid limit shall be 30 and the minimum plasticity index shall be 12 in accordance with ASTM D 423 and D 424. The minimum percent (by weight) passing the No. 200 sieve shall be 45% in accordance with ASTM D 1140. The maximum particle or clod size shall not exceed 3 inches.

It shall not contain ash, organic matter, rubbish, ice, or frozen materials.

- Impervious fill shall be obtained from suitable excavated material or from the Stage II Stockpile located in the onsite ash disposal area approximately 2 miles away. The Stage II Stockpile contains miscellaneous unsuitable fills and suitable impervious fill. The unsuitable impervious fills shall be segregated from the suitable impervious fill.
- 3.03.5 Uniformly Graded Coarse Aggregate:

Uniformly graded coarse aggregate shall be of the size shown on the Drawings and in accordance with PennDOT Pub. 408, Section 703.2, Type A, except as modified herein. It shall consist of hard, tough, durable, uncoated particles, free of organic matter, clay or weak, flat, elongated, argillaceous, micaceous or decomposed material. It shall not be made of acid forming or toxic-forming rock or slag.

3.03.6 Rock Lining:

Rock lining shall be of the size shown on the Drawings and in accordance with PennDOT Pub. 408, Section 850.2(a), except as modified herein. It shall be angular and irregular in shape, without shale or weak seams, with neither width nor thickness less than one-third its length, and shall have a minimum specific gravity of 2.6 when tested in accordance with ASTM C 127. Each load of rock shall be well-graded from the smallest to largest size.

3.03.7 Bentonite:

Bentonite shall be free flowing, semi-granular, high swelling Wyoming type bentonite, specially processed as a high efficiency soil sealant for the containment of liquid waste. It shall be Volclay PLS-50 as manufactured by American Colloid Company of Stokie, Illinois or OWNER-approved equivalent.

- 3.03.8 Filter Fabric:
 - 1. Filter Fabric "A" (beneath structural fill):

It shall be of nonwoven needle punched construction and consist of long-chain polymeric fibers composed of polypropylene, polyethylene, or polyamide that are formed whereby they retain their positions relative with each other. It shall be mildew, insect, and rodent resistant, and shall be inert to acidic water from coal mine drainage. It shall meet the physical property requirements listed below. Filter fabric "A" shall be Supac 8NB as manufactured by Philips Fibers Corp. of Greenville, South Carolina or approved equivalent.

2. Filter Fabric "B" (enveloping coarse aggregate):

It shall be of monofilament woven construction and consist of long-chain polymeric filaments or fibers composed of polypropylene, polyethylene, or polyamide. The fibers shall be oriented whereby they retain their relative position with each other and allow the passage of water. It shall be mildew, insect, and rodent resistant, and shall be inert to acidic water from coal mine drainage. It shall meet the physical property requirements listed below. Filter fabric "B" shall be Supac 6WM (uv) - uncalendered as manufactured by Philips Fibers Corp. of Greenville, South Carolina or approved equivalent.

	Property	<u>Test Method</u>	Minimum C	<u>riteria</u>	
			<u>Fabric A</u>	Fabric B	
1.	Tensile Strength (min in either principal direction), lb	ASTM D 1682, Method 16	330	225	
2.	Burst Strength, psi	ASTM D 751, Diaphram Method	450	430	
3.	Trapezoid Tear Strength, 1b	ASTM D 1117, Method 14	120	75	
4.	Pore Size, EOS	Corps of Engineers CW-02215	N/A	40-70	
5.	Effective Open Area, %	Corps of Engineers CW-02215	N/A	>8	
6.	Thickness, mils	ASTM D 1777	90	N/A	

3.03.9 Bottom Ash:

Bottom ash shall be obtained from the onsite stockpile. It shall contain less than 10% (by weight) passing the No. 200 sieve as determined by ASTM D 1140.

3.03.10 Silt Fence:

Silt fence shall be Envirofence as manufactured by Mirafi, Inc. of Charlotte, North Carolina or approved equal.

3.04 LINES AND GRADES

- 1. The Drawings indicate reference base lines and bench marks which will be established in the field by the OWNER. The Work shall be located from these base lines and bench marks.
- 2. Established reference base lines and bench marks shall be protected. If they are moved or destroyed they shall be replaced at no expense to the OWNER.

3.05 SOIL EROSION AND SEDIMENTATION CONTROL

- 1. Soil erosion and sedimentation control shall be implemented prior to the start of any construction activities.
- 2. Earthmoving operations shall be conducted in such a manner as to minimize accelerated soil erosion, in accordance with the Pennsylvania Department of Environmental Resources, "Soil Erosion and Sedimentation Control Manual", as specified herein, and as shown on the Drawings.
- 3. Silt barriers shall be installed downstream of construction, borrow, and stockpile areas to confine sediment that may be washed from new fill or cut slopes.
- 4. Ditches and silt barriers shall be inspected daily. Ditch erosion or silt barrier damage shall be repaired immediately. Sediment accumulations shall be removed and placed in the topsoil stockpile.
- 5. Silt barriers shall be maintained until final protective vegetation has been established, or other ground cover materials have been placed.

3.06 CONTROL OF WATER

- 1. Ditches, berms, site grading, sumps, and pumping facilities shall be constructed or provided to direct, collect, and remove water from the working areas. Water shall be conducted to areas away from the work in a manner to prevent erosion, damage to adjacent structures or utilities, or other OWNER requirements.
- Water shall not be allowed to accumulate in the excavation or low areas of the site.
- 3. Groundwater and surface runoff shall be controlled to preclude disturbance of the foundation bearing materials and adjacent structures. Water levels shall be maintained at or below the bottom of the liner until placement of the rock lining is completed. This may be accomplished by temporary sumps or other approved methods.

3.07 CLEARING AND GRUBBING

- Areas designated for excavation or fill shall be cleared and grubbed of objectionable material, rubbish, trees, stumps, brush, roots, down timber, and other vegetation or organic matter.
- 2. Materials removed in the clearing and grubbing operations shall be disposed of in the onsite ash disposal area.

3.08 STRIPPING AND STOCKPILING OF TOPSOIL

Cleared and grubbed areas shall be stripped of topsoil. The topsoil shall be stockpiled at the locations designated by the OWNER.

3.09 EXCAVATION

- 1. Excavation shall conform to the lines, grades, and outlines as shown on the Drawings. Excavation side slopes, bottoms of excavations, and ditches shall be shaped to a smooth and uniform surface free from bumps and hollows.
- 2. The final excavation lines shall be within 0.1 foot of grades as indicated on the Drawings, unless overexcavation is required.
- 3. Excavation operations shall be conducted so that material outside the excavation limits is not disturbed or loosened. Material disturbed or loosened shall be restored to at least its original condition. All excavation operations shall be conducted in accordance with OSHA Subpart P.
- 4. Excavation bottoms shall be approved by the OWNER prior to placement of backfill or structures.
- 5. To prevent damage to the subgrade from rainfall or other sources of water, the following shall be done:
 - a. The final 2 feet of excavation shall not be performed until immediately prior to placement of the fill material.
 - b. No final excavation shall be performed when rain is falling or when rain is threatening.
 - c. Fill shall be placed on the subgrade as soon as subgrade preparation is finished and approved.
- 6. Material suitable for fill shall be stockpiled at the locations designated by the OWNER.
- 7. Material unsuitable for fill shall be disposed of in the onsite ash disposal area (approximately 2 miles away). Disposition must be coordinated with the OWNER.

3.10 SUBGRADE PREPARATION

1. Excavation bottoms and fill areas shall be proofrolled with at least four passes of a large (greater than 10 tons) smooth-wheeled roller or other approved heavy compaction equipment. Confined areas inaccessible to heavy compaction equipment shall be compacted with a minimum of four passes with the largest practicable plate-compactor or roller. Soft or organic areas detected during subgrade preparation shall be overexcavated and backfilled with compacted fill. The

fill shall be the same material that is to be subsequently placed on the prepared subgrade. If a structure is to be placed directly on the subgrade, then the removed material shall be replaced with compacted structural fill.

- 2. The subgrade shall be compacted to a minimum density equal to 90 percent of the maximum dry density as determined by the Modified Proctor Test (ASTM D 1557) for all areas to receive random, sand, or impervious fill, and to 95 percent of the maximum dry density as determined by the Modified Proctor Test (ASTM D 1557) for all areas to receive structural fill or on which a structure is to be placed.
- 3. At least 24 hours notice shall be given to the OWNER prior to performing subgrade preparation.

3.11 FILL PLACEMENT

3.11.1 General Requirements:

- 1. The surface of the fill shall be kept approximately horizontal (unless the Drawings show otherwise) during construction, but shall be provided with sufficient longitudinal and transverse slope to allow for runoff of surface water.
- 2. Hauling equipment shall not be permitted to follow a single track on the same layer, but shall be directed to spread out in order to provide uniform compaction.
- 3. Fill materials shall not be placed against or upon an existing grade steeper than two horizontal to one vertical, unless the Drawings show otherwise. At junctions between fill and existing grade the existing grade shall be cut back, if necessary, to expose compact stable material. Rolling shall extend over this junction to provide a compact, stable mass. Similar care shall be taken at junctions between adjacent fills.
- 4. Fill shall not be placed while rain is falling. Prior to resuming fill operations after rainstorms, all muddy material shall be bladed off the surface to a depth necessary to expose firm compacted material.
- 5. Fill shall not be placed on frozen ground, and frozen material shall not be used for fill.
- 6. At the end of the days operation and when rain is threatening, the fill shall be sloped to provide drainage and shall be compacted over the entire cross section and length with a smooth-wheeled roller to seal it against the entry of water.

- When the top of the fill has dried out or become excessively wet, the surface on which additional fill or structure is to be placed shall be scarified to a minimum depth of 6 inches, brought to the specified moisture content, and recompacted to the specified density prior to the placement of additional fill or structure.
- 8. Fill which does not meet the requirements for moisture content at the time of compaction shall be dried or wetted to meet the specified requirements. If the fill material requires drying, this may be accomplished by reworking it under warm and dry atmospheric conditions. Water, if required, shall be added carefully by sprinkling and care shall be taken that no more than the amount needed is applied. Ponding or flooding shall not be permitted.
- 9. Only compaction equipment weighing less than 200 pounds shall be allowed within 3 feet of existing structures or retaining walls.
- 10. The final fill layer shall be placed within 0.1 foot of the grades as indicated on the Drawings.
- 11. Rock lining shall be placed in accordance with PennDOT Pub. 408, Section 850.3. It shall be carefully placed in a manner to prevent segregation and to prevent damage to adjacent structures, pipes, or the underlying fill and filter fabric.
- 12. Where the Drawings indicate that the rock lining is to be set in concrete, the concrete shall be Class B in accordance with Section VI of this Specification and shall be cured in accordance with Section VII of the Specification. The rock shall be thoroughly wet immediately before the concrete is applied. As soon as the concrete is deposited on the surface, it shall be thoroughly worked and racked into the joints to form a solid mass. The application of additional water to the concrete after it has been deposited will not be permitted.
- 13. The placing of fill shall cease in areas being tested or sampled.
- 14. Pipe penetrations through the clay liner shall be sealed with a minimum 4-inch thick layer of tamped bentonite around the circumference of the pipe. This layer shall extend through the entire thickness of the clay liner.
- 15. Concrete penetrations into or through the clay liner shall be sealed with a minimum 2-inch thick layer of tamped bentonite for the entire depth of the penetration.

3.11.2 Compaction Requirements:

1. Random Fill:

Random fill shall be compacted in maximum 12-inch lifts (loose) to a minimum density of 90 percent of the maximum dry density as determined by the Modified Proctor Test (ASTM D 1557) and Appendix A (if applicable). The moisture content at the time of compaction shall not vary from the optimum moisture content by more than three percentage points.

2. Structural Fill:

Structural fill shall be compacted in maximum 10-inch lifts (loose). The fill shall be compacted to a minimum density of 95 percent of the maximum dry density as determined by the Modified Proctor Test (ASTM D 1557) and Appendix A (if applicable). The moisture content at the time of compaction shall not vary from the optimum moisture by more than three percentage points.

3. Sand Fills:

Sand fills shall be compacted in maximum 12 inch lifts (loose) to a minimum density of 92 percent of the maximum dry density as determined by the Modified Proctor Test (ASTM D 1557). The moisture content at the time of compaction shall not vary from the optimum moisture content by more than three percentage points.

4. Impervious Fills:

Impervious fills shall be compacted in maximum 8-inch or 6-inch lifts (loose), as indicated on the Drawings, to a minimum density of 95 percent of the maximum dry density as determined by the Modified Proctor Test (ASTM D 1557). The moisture content at the time of compaction shall be between minus one and plus three percentage points of the optimum moisture content.

5. Uniformily Graded Coarse Aggregate and Bottom Ash:

Uniformily graded coarse aggregate and bottom ash shall be compacted in maximum 12-inch lifts with a minimum of two passes with a smooth-wheeled roller.

- 6. Impervious Fill Treated With Bentonite:
 - a. The bentonite shall be spread uniformly across the impervious fill, at the locations shown on the Drawings, using an agricultural seed or lime spreader or other approved equipment. Rotary-type spreaders will not be permitted.

- b. Application rate shall be at least 2.25 percent (by dry weight) of the impervious fill. This corresponds to approximately 1.60 pounds per square foot for an 8-inchthick lift and 1.20 pounds per square foot for a 6-inchthick lift.
- c. The bentonite shall be throughly mixed into the entire lift thickness. A minimum of two passes with an adjustable rototiller shall be used for the mixing operation.
- d. The impervious fill treated with bentonite shall be compacted to the same density and using the same methods as specified in paragraphs 3.11.2 and 3.11.3 for impervious fill.
- 7. In confined areas requiring compaction equipment weighing less than 200 pounds, random, structural and sand fill shall be placed in maximum 6-inch lifts (loose) and impervious fill and impervious fill treated with bentonite shall be placed in maximum 4-inch lifts (loose).

3.11.3 Compaction Equipment Requirements:

- 1. Compaction equipment shall be of the type and size required to produce the specified compaction. Compaction equipment shall be compatible with the types of materials being placed.
- 2. Sheepsfoot or rubber-tired rollers shall be used to compact cohesive soils and smooth-wheel vibratory rollers shall be used to compact granular materials unless otherwise approved.

3.12 TRENCH EXCAVATION AND BACKFILL

- 1. Trench excavations for buried pipes and utilities shall be performed to the lines and grades shown on the Drawings.
- 2. No damage shall occur to any structures, pipes, or utilities.
- 3. Sheeting, bracing, and shoring shall be installed as required to safely maintain excavations and protect existing structures, utilities, and personnel as required by federal, state, and local laws and ordinances, including OSHA Subpart P.
- Trenches for pipes or utilities shall be excavated through natural ground or as required within fills. For pipes or utilities to be installed within fills, the fill shall first be constructed to a minimum height of 4 feet above the required elevation of the top of the pipe or utility. The trench shall then be excavated into the fill, and the pipe or utility installed as required.
- 5. The minimum width of the trench shall be as shown on the Drawings and shall not be greater than that necessary to permit the work to proceed.

- 6. Soft or organic material encountered at the bottom of the trench shall be removed for the full width of the trench to the depths required by the OWNER and replaced with compacted sand fill.
- 7. Trench bottoms shall be accurately shaped so that the pipe or utilities will be in continuous and uniform contact with either undisturbed soil, sand fill material, or bedding material as shown on the Drawings.
- 8. If stones larger than 6 inch diameter are encountered in the bottom of the trench, they shall be removed and the void shall be backfilled with compacted sand fill.
- 9. When rock is encountered, it shall be removed to a minimum depth of 6 inches below the bottom of the pipe or utilities for the full width of the trench, and replaced with compacted sand fill.
- 10. Trenches shall not be backfilled until all joints are made, required tests performed, pipe encased as necessary, and OWNER approval is granted to proceed.
- 11. Bedding and backfill around the pipe shall be of the type and thickness indicated on the Drawings and compacted to the minimum density as specified in paragraph 3.11.
- 12. When the Drawings indicate that compacted random fill shall be placed around the pipe or utilities, the fill shall have a maximum particle size of 3 inches.
- 13. Backfill around pipes and utilities shall be placed so that the elevation of the fill is the same on both sides. Rammer type compactors shall be used with caution adjacent to pipes or utilities to avoid damage or movement.
- 14. After backfilling, the disturbed areas shall be fine graded to blend in with existing contours, left with puddle-free drainage, and seeded or otherwise protected as shown on the Drawings.
- 15. Trenches for underdrain pipes in impervious fill shall be performed in the following sequence:
 - a. The excavation shall be performed after compaction of the impervious fill.
 - b. After excavation of the trench, a minimum 1/2-inch thick layer of bentonite shall be spread along the bottom of the trench.
 - The bottom of the trench shall be recompacted as specified in paragraph 3.11.2.
 - d. Stone bedding and drain pipes shall be placed as shown on the Drawings.

3.13 PLACEMENT OF FILTER FABRICS

- Filter fabrics shall be placed in accordance with PennDOT Pub, 408, Section 212, except as modified herein.
- 2. The subgrade on which the filter fabric is to be placed shall be smooth with no depressions or rock projections.
- 3. The direction of the filter fabric laying on slopes shall be up and down the slope (parallel with slope direction).
- 4. The adjacent sheets of filter fabric shall be overlapped a minimum of 1 foot.
- 5. Securing pins (steel, 18 inches long by 3/16 inch diameter, pointed at one end, and with a 1-1/2-inch washer head at the other end, or an OWNER-approved alternative) shall be placed at maximum2-foot intervals along all overlaps and at the top of the slope. If necessary to prevent movement of the filter fabric during backfilling operations or if requested by the OWNER, securing pins shall be placed on a maximum 6-foot grid on the rest of the filter fabric. Securing pins will not be required for slopes flatter than 4:1 (horizontal:vertical).
- 6. Backfill shall be performed in a manner which prevents damage to the filter fabric.

APPENDIX A

MODIFICATION TO MODIFIED PROCTOR TEST (ASTM D 1557)

For structural or random fills having more than 30 but less than 50 percent (by weight) of material greater than 3/4 inch, the maximum dry density of the fill shall be determined by the following formula:

$$W = \frac{ww^{\dagger}}{Ow^{\dagger} + Cw}$$

W = maximum dry density (1bs/ft3)

- w = density of the material coarser than 3/4 inch, given by its bulk specific gravity (determined by ASTM C 127) multiplied by 62.4 (1b/ft3)
- w' = maximum dry density for the material passing the 3/4-inch sieve as determined by the Modified Proctor Test, Method C (ASTM D 1557) (1b/ft³)
- 0 = fraction by dry weight of the material coarser than the 3/4-inch sieve
- C = fraction by dry weight of the material finer than the 3/4-inch sieve

TABLE 1

DATA/MATERIAL REQUIREMENTS AND SUBMITTAL SCHEDULE

ME SOUTH SOU								
Paragrap Number	h	Submittal <u>Requirements</u>	Submittal <u>Address</u>	With <u>Proposal</u>	For A	pproval Copies	For R	ecord Copies
3.03.2	Str	uctural Fill:						
	a.	Source of material	Α	No	В	5	N/A	N/A
	b.	Material quality	Α	No	В	5	N/A	N/A
	С.	Grain-size analysis (ASTM D 422)	s A	No	В	5	N/A	N/A
	d.	25-1b representative sample	ve C	No	В	5	N/A	N/A
3.03.3	San	d Fill:			6			
	a.	Source of material	Α	No	В	5	N/A	N/A
	b.	Material quality	A	No	В	5	N/A	N/A
	С.	Grain-size analysis (ASTM D 422)	A A	No	В	5	N/A	N/A
	d.	7-1b representative sample	e C	No	В	5	n/A	N/A
3.03.5		formly Graded Coarse regate:	2	• •				
	a.	Source of material	A	No	В	5	N/A	N/A
	b.	Material quality	A	No	В	5	N/A	N/A
	C.	Grain-size analysis (ASTM D 422)	A A	No	В	5	N/A	N/A
3.03.6	Roc	k Lining:						
	a.	Source of material	Α	No	В	5	N/A	N/A
	b.	Material quality	Α	No	В	5	N/A	N/A
	С.	Grain-size analysis (ASTM D 422)	A .	No	В	5	N/A	N/A
3.03.7	Ben	tonite:						
	a.	Source of material	Α	No	В	5	N/A	N/A
	b.	Material quality	A	No	В	5	N/A	N/A
	с.	l-1b representative sample	e C	No	В	5	N/A	N/A

TABLE 1 (Cont'd)

DATA MATERIAL REQUIREMENTS AND SUBMITTAL SCHEDULE

Paragrap <u>Number</u>	h	Submittal Requirements	Submittal <u>Address</u>	With <u>Proposal</u>		pproval Copies	For R Date	ecord Copies
3.03.8	Fi1	ter Fabric:						
	a.	Source of material	Α	No	В	5	N/A	N/A
	b.	Manufacturer's list of physical properties	A	No	В	5	N/A	N/A
3.11.2-6	Spr	eader for Bentonite	:					
	Man	ufacturer's data	A	No	В	5	N/A	N/A
3.11.2-6	Rot	otiller:	`					
	Man	ufacturer's data	A	No	В	5	N/A	N/A
3.11.3	Com	paction Equipment:						
	a.	Manufacturers' data	a A	No	В	5	N/A	N/A
	b.	Intended use for eapiece of equipment	ach A	No	В	5	N/A	N/A

A = Pennsylvania Electric Company 1001 Broad Street Johnstown, Pennsylvania 15907 Attn: T.J. Simunich

B = One month prior to beginning the Work

C = Soils Testing firm as directed by the OWNER

APPENDIX B

SUBSURFACE DATA

The following Data is attached for information only:

- 1. Test pit logs (TP1 to TP5) excavated on January 25, 1984 in Stage I and II Storage Piles.
- 2. Laboratory test data from test pits (TP1 to TP5).
- 3 Test boring logs (42, 43, 48, 49, 50, 54, and 55) drilled December 1965 and March 1966.
- 4. Drawing D-746-010, Subsurface Exploration Test Boring Location Plan.

It is required that the users of this subsurface data understand that the information on the logs apply to the conditions encountered on the date, at the location, and to the depth to which the borings and test pits were made.

GILBERT ASSOCIATES, INC. TEST PIT LOG

CLIENT_ CONTRA CLASSIFI	PENELEC ACTOR R & L DEV. CO. HED BY D.R.ERALI ENT FORD 4500 BACKHOE	COORDINATES	SHEET 1 OF 1 LOG. NO. TP1 ELEVATION DATE 1-25-84 W.O. NO. 04-4479-158
DEPTH (FT)	Se	OIL OR ROCK DESCRIPTS (INCLUDING REMARKS	
- - - - 5	SANDY AND SILTY CLAY, I ROOTS AND COBBLES, BR		, SOME GRAVEL, OCCASIONAL
7.5	BOTTOM OF PIT AT 7.5 FT		
<u> </u>	NOTE: 1. LOCATION OF	PIT IS NORTHEAST COR	RNER OF STAGE 2 STORAGE PILE.
	2. TOP 2 FT IS FRO	ZEN.	
15	3. BAG SAMPLE C	BTAINED.	
20 20			

GILBERT ASSOCIATES, INC. TEST PIT LOG

		12311111200	
CLIENT_ CONTRA CLASSIF	CONEMAUGH STATION PENELEC ACTOR R & L DEV. CO. IED BY D.R.ERALI ENT FORD 4500 BACKHOE	COORDINATES	SHEET 1 OF 1 LOG. NO. TP2 ELEVATION DATE 1-25-84 W.O. NO. 04-4479-158
DEPTH (FT)	S	OIL OR ROCK DESCRIPTI (INCLUDING REMARKS	
5 5	SANDY AND SILTY CLAY,	MODERATELY PLASTIC,	SOME GRAVEL, BROWN, (CL)
_ 8 _ 10	BOTTOM OF PIT AT 8 FT		
15 20	NOTE: 1. LOCATION OF 2. TOP 2 FT IS FRO 3. BAG SAMPLE O	OZEN.	RNER OF STAGE 2 STORAGE PILE.

	GILB	ERT ASSOCIATES, INC. TEST PIT LOG	*
CLIENT_ CONTRA	T CONEMAUGH STATION PENELEC ACTOR R&LDEV.CO. FIED BY D.R.ERALI ENT FORD 4500 BACKHOE	COORDINATES	SHEET <u>1</u> OF <u>1</u> LOG. NO. <u>TP3</u> ELEVATION DATE <u>1-25-84</u> W.O. NO. <u>04-4479-158</u>
DEPTH (FT)		OIL OR ROCK DESCRIPTION (INCLUDING REMARKS)	
5	SANDY AND SILTY CLAY, N	MODERATELY PLASTIC, SON	ME GRAVEL, BROWN (CL)
7	BOTTOM OF PIT AT 7 FT		
10 10 15			TORAGE PILE.
20		4	

GILBERT ASSOCIATES, INC. TEST PIT LOG

CLIENT_ CONTRA CLASSIF	T CONEMAUGH STATION PENELEC ACTOR R & L DEV. CO. FIED BY D.R.ERALI ENT FORD 4500 BACKHOE	COORDINATES	SHEET 1 OF 1 LOG. NO. TP4 ELEVATION DATE 1-25-84 W.O. NO. 04-4479-158
OEPTH (FT)	S	OIL OR ROCK DESCRIPT (INCLUDING REMARK	
_ 5	SANDY AND SILTY CLAY, COBBLES AND ROOTS, BR		, SOME GRAVEL, OCCASIONAL
7	BOTTOM OF PIT AT 7 FT		
_ 10	NOTE: 1. LOCATION OF		STAGE 1 STORAGE PILE.
. 15	3. BAG SAMPLE (OBTAINED.	
. 20			

	GILB	BERT ASSOCIATES, INC. TEST PIT LOG	
CLIENT CONTRA CLASSII	T CONEMAUGH STATION PENELEC ACTOR R&L DEV. CO. FIED BY D.R.ERALI MENT FORD 4500 BACKHOE	COORDINATES	SHEET 1 OF 1 LOG. NO. TP5 ELEVATION DATE 1-25-84 W.O. NO. 04-4479-158
DEPTH (FT)		OIL OR ROCK DESCRIPTION (INCLUDING REMARKS)	
- - - - - 5	SANDY AND SILTY CLAY, N COBBLES AND ROOTS, BRO	MODERATELY PLASTIC, SON DWN, (CL)	ME GRAVEL, OCCASIONAL
_ 7 _ 10	BOTTOM OF PIT AT 7 FT		
-	NOTE: 1. LOCATION OF	PIT IS CENTER OF STAGE 1 S	STORAGE PILE.
_	2. TOP 2 FT IS FRO	ZEN.	
15 20	3. NO SAMPLE OB	TAINED.	

TABLE 1
LABORATORY TEST RESULTS (6)

Maximum Density	Permeability (cm/sec) (2) 1.1 x 10 ⁻⁷ 2.3 x 10 ⁻⁷ Impervious (3)	Sample Percent Compaction and Percent Over Optimum Moisture 95.1 @ 3.3 94.7 @ 1.6	Maximum Density and Optimum Moisture Content (PCF and 2) (1) 110.8 @ 18.6 112.6 @ 18.8 114.5 @ 16.9	Natural Moisture Content (%) 20.4 22.8 21.4	Atterberg Limits LL = 39.4; PI = 16.0 LL = 49.7; PI = 19.7 LL = 35.6; PI = 12.1	Test Pit No. TP-1 TP-2 TP-4 TP-7 - 12(4)
Moisture Content Compaction Moisture Content and Percent Over Content (%) (PCF and %) (1) Optimum Moisture 20.4 110.8 @ 18.6 95.1 @ 3.3 22.8 112.6 @ 18.8 94.7 @ 1.6 21.4 114.5 @ 16.9 95.4 @ 2.4	2.0 × 10 ′	95.8 @ 1.3	(5)	(5)	(5)	TP-4 - 2% ⁽⁴⁾
Moisture Moisture Content Compaction Moisture Moisture Content (%) Content (%) (PCF and %) (1) Optimum Moisture 20.4 110.8 @ 18.6 95.1 @ 3.3 22.8 112.6 @ 18.8 94.7 @ 1.6 21.4 114.5 @ 16.9 95.4 @ 2.4	2.0×10^{-7}	95.8 @ 1.3	(5)	(5)	(5)	TP-2 - 1% ⁽⁴⁾
Moisture Moisture Content and Percent Over Content (%) (PCF and %) (1) Optimum Moisture 20.4 110.8 @ 18.6 95.1 @ 3.3 22.8 112.6 @ 18.8 94.7 @ 1.6	Impervious (3)	95.4 @ 2.4	114.5 @ 16.9	21.4	LL = 35.6; PI = 12.1	-4
Moisture Moisture Content Content (%) (PCF and %) (1) Optimum Moisture 20.4 110.8 @ 18.6 95.1 @ 3.3	2.3×10^{-7}	94.7 @ 1.6	112.6 @ 18.8	22.8	LL = 49.7; PI = 19.7	-2
Moisture Moisture Content and Percent Over Content (%) (PCF and %) (1) Optimum Moisture	1.1×10^{-7}	95.1 @ 3.3	110.8 @ 18.6	20.4	LL = 39.4; PI = 16.0	÷
	Permeability (cm/sec) (2)	Compaction and Percent Over Optimum Moisture	and Optimum Moisture Content (PCF and %) (1)	Natural Moisture Content (%)	Atterberg Limits	st Pit No.

NOTES:

- (1) Determined by ASTM D-1557 (Modified Proctor),
- Falling head test conducted in Brainard-Kilman Triaxial Cell with backpressure of 80 110 psi and confining pressure of 3 psi. (2)
- Sample could not be saturated after 8 days in cell with backpressure up to 110 psi; thus, essentially impervious. (3)
- Samples treated with 1% and 2% (by dry weight) of PLS-50 bentonite. (4)
- (5) These tests not rerun for treated samples.
- (6) See following pages for gradation analyses.

GRADATION CURVE DATE 1-31-84 JOB NUMBER OH-4479-158 BORING NUMBER TP-1 SAMPLE NUMBER BAG 8 8 20 0 20 10 0.001 SILT OR CLAY 200 1.0 GRAIN SIZE IN MILLIMETERS S. STANDARD SIEVE SIZE MEDIUM 10 3/8" 10 SANDY ň COBBLES 8 0 3 TECHNICIAN REMARKS

PERCENT FINER BY WEIGHT

CHECKED BY

CHECKED BY

CHECKED BY

Gilbert/Commonwealth

DATE 131-84 JOB NUMBER 04-4479-15E BORING NUMBER 77-2 SAMPLE NUMBER 8A-G ON 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JOB NUMBER 04-4479-158 BORING NUMBER 7P-2 SAMPLE NUMBER BAG
100 200 100 20
100 200
100 200 100
100 200 100 20
100 200 100 20
100 200 100 20
100 200 PINE PINE PINE PINE PINE PINE PINE PINE
100 200 PINE PINE PINE PINE PINE PINE PINE PINE
30.1 30.1 30.1 30.1
30. 100 200 200 200 200 200 200 200 200 200
30. 100 200 200 200 200 200 200 200 200 200
30 P P P P P P P P P P P P P P P P P P P
20 40 20 40 ZE IN MILLIMETE SAND NAT. WC LL 19.2 499
ANDARD SIEV 20 20 ZE IN MILLI SAND NAT. WC 19.2
ANDARD NO ZE 1.0 O ZE IN MAT.
₹
3/4" 3/8" RAVEL CLASSIFICATI SANDY CL (1) TTLE C
GRAVEL CLASSIFIC SALIDY CASSIFICE SALIDY
1
COBBLES COBPLES
20 00 00 00 00 00 00 00 00 00 00 00 00 0
PERCENT FINER BY WEIGHT
PERCENT FINER BY WEIGHT TECHNICIAN COMPUTED BY CHECKED BY CHECKED BY Gilbert/Commonwealt

ENGINEERS/CONSULTANTS Reading.PA/Jackson MI

SALIS E 18-781

ENT <u>PEA</u> NUMBER <u>O</u>	16L	479	9-1	28		BORI	NG	NUM	- BER	PRO	JEC P-	4	C-0	A.IC	SA	MPLE	NUM	BER _	BA	1-5		
		100	8		98 T	06		8		20	<u> </u>		30		R 	707		0.001				
																		0.01	SILT OR CLAY			
	6	007								1	-	/							-	I d	72/	
;	ZE	_		_		-	-	-/	Å	-	-		-					0.1 RS	FINE	- F	6 24	
	0	E		-			-	1		-	-							1.0 IN MILLIMETERS	SAND	WC LL	10 36	
	STANDARD STEVE					/	1											SIZE	SAND	NAT.	19.	
	, ,				1	1				+	=			-				GRAIN	COARSE	TION	47	644.14
	0,0	- 1	/							Ī			-					10	EL. FINE	CLASSIFICAT	70	L1771E
	= 2/0 = 0/0 = 2/0																		GRAVE COARSE	CLA	SC SAMBY	1/10
.4.	•																	100	COBBLES	DEPTH		
NICIAN <u>Es</u> .		100	06		08	70	DE D	% %		000	D P	UF.	£ 242			10		1000		BORING	r.p. d	

MOISTURE - DENSITY RELATIONS CURVE

BORING NUMB	ER	SAMPLE !	IUMBER BAS
			Lanc. Co. V
	VIII.	-5	
	X		
	1		
	1		
HHH	\		
			
		1	
		$+\Lambda++$	
10 10	711111		
		1 6	CRP
E CONTENT \$ 1	ORT WEIGHT		2 105.8 P
			21%
		11	
10	_CYLINDER - CU	FT //30	
<u>/8</u>	AYERS	BLOWS PE	R LAYER 25
	E CONTENT \$ 1	CYLINDER - CU	E CONTENT & DRY WEIGHT

with the vehicles so

MOISTURE - DENSITY RELATIONS CURVE

LENT /2	16.17		0	DATE 2-2-
NUMBER _		PROJECT Z		
		BURING NUMBER 17	SAMPLE	NUMBER
113				
	14		22 24	
,		MOISTURE CONTENT % DRY WEIG	HT	
1	SAMPLE NUMBER NATURAL MOISTURE	TP-Z		
	OPTIMUM MOISTURE	17.4		
ŀ		18.8		
	MAXIMUM DRY DENSITY LB/CU FT	112.60		

MOISTURE - DENSITY RELATIONS CHRVE

2.1bert		PROJEC.	CONE	MALIGA	DATE _2
_	BOR	ING NUMBER _	P- 4	SAMPL	E NUMBER
		Thirt		·	
				and the second of the second o	
				demande de	TOTAL CONTRACTOR OF THE
				The second secon	
		/			
			/		
				Semantin Semantin in Semanting Semantin (Sec. 1977). Semantin Sema	This is a state of the control

					(
				and the second s	and the second second
	+++++		1-1-1-1-1		
14 15	16 17	18	19	20	
14 15	16 17			20	
SAMPLE NUMBER	•			20	
SAMPLE NUMBER NATURAL MOISTURE CONTENT \$	MOISTURE CONT			20	
SAMPLE NUMBER NATURAL MOISTURE CONTENT \$ OPTIMUM MOISTURE CONTENT \$ MAXIMUM DRY	MOISTURE CONT			20	
SAMPLE NUMBER NATURAL MOISTURE CONTENT \$ OPTIMUM MOISTURE	MOISTURE CONT			20	
SAMPLE NUMBER NATURAL MOISTURE CONTENT \$ OPTIMUM MOISTURE CONTENT \$ MAXIMUM DRY DENSITY LB/CU FT	MOISTURE CONT	ENT \$ DRY W	EIGHT		
SAMPLE NUMBER NATURAL MOISTURE CONTENT \$ OPTIMUM MOISTURE CONTENT \$ MAXIMUM DRY DENSITY LB/CU FT	MOISTURE CONT	ENT \$ DRY W	EIGHT	1/2	
SAMPLE NUMBER NATURAL MOISTURE CONTENT \$ OPTIMUM MOISTURE CONTENT \$ MAXIMUM DRY DENSITY LB/CU FT	MOISTURE CONT	ENT \$ DRY W	EIGHT	1/2	PER LAYER 2
SAMPLE NUMBER NATURAL MOISTURE CONTENT \$ OPTIMUM MOISTURE CONTENT \$ MAXIMUM DRY	MOISTURE CONT	ENT \$ DRY W	EIGHT	1/2	PER LAYER Z

DIAMOND CORE DRILLING

TEST BORING RECORD

339 FAWCETT CHURCH ROAD BRIDGEVILLE, PA. 15017	Hole No. 42	Sheet	1	of	1
Driller J. Bell, Sr. Helper J. Eger	Sta. No.				
Surface Elevation 1083.76	For Gilbert Associates				
Water Depth	Conemaugh Project			•••••	
Hammer Wt. Ca300 lbs. Drop.30 in.	Location Huff, Pa.	•••••		•••••	
Casing Size	12/3/65 Completed	12	<u> </u>	5	······•

ELEVATION	DEPTH	Hammer Blows Sample	Hammer Blows Casing	LOG OF HOLE	Condition	Depth Drilled	Ti Red
1083.06				0 to 0.7' Br. clay, top soil	Moist		
-				0.7' to 9.0' Br. silty clay, sand and gravel with rock frags.	11		
	3.5	9		rock frags.	"		
	5.0	17-30				K	l a
-			1				
	0 1				11		
1074.76	8.5	6					
_	10.0	9-11	5	9.0' to 13.5' Br. silty clay, little sand and rock			
- 1				frag.	11		
4070 26	10 -	40		Note: Hit water at 14.0'			
1070.26	13.5	12		13.5' to 15.5' Br. sand, little clay, with small	Wet		
106 8.26	15.0	12_17		gravels.	wet	1	70
3			- 7	to 25.0' Br. sand and gravels, with rock	Moist		
_	18.5	37		frag. and small boulders.			
-)							
_	20.0	75-89					-
	23.5	73					
1058.76	24.5		Snoon	refusal, sandstone boulder			
	25.0	DRII	LED	25.0' to 33.5' Gray shale	Soft		76
				317 31 2003 3000	to	1	
	20.0				Medium		
-	29.0					4.0	3
			1				1-
_							
1050.26	34.0				tt.	5.0	4
	J , • •			33.5' to 39.0' Gray sandy shale, partly broken	Hard		
	1						-
<u>-</u> c							
1044.76	39.0				11	5.0	5
			1	BOTTCM OF HOLE		ان.	
- 1				BOTTEM OF MOLE		1	
-							
						0.1	
- y							12
-							
5.4.0	- 1	1					

DIAMOND CORE DRILLING

TEST BORING RECORD

339 FAWCETT CHURCH ROAD	BRIDGEVILLE, PA. 15017
Driller	Bell, Sr.
Helper J.	Eger
Surface Elevation	1084.98
Water Depth17.	0 24 hrs 18.5
Hammer Wt. Sa140	lbs. Drop. 30 in.
Hammer Wt. Ca., 300	lbs. Drop. 30 in.
Casing Size	Sam. Size2 in.

Hole No. 43 Sheet 1 of 1

Sta. No.

For Gilbert Associates Conemaugh Project Location Huff, Pa.

ELEVATION	DEPTH	Hammer Blows Sample	Hammer Blows Casing	LOG OF HOLE	Condition	Depth Drilled	R
1084.38	1.5	2_2		0 to 0.5! Dark br. silty clay	Moist		K
	3.0	3-4 6-7		0.6' to 7.0' Br. and gray silty clay, a few rock frags.	"		
_	4.5 6.0	7 - 9 23 - 31 27 - 25					
1077.98	7.5	5-10			"		
	9.0	12 - 14 16 - 17		7.0' to 12.0' Br. silty clay with rock frags.	11		
_	10.5	11-15					3
1072.98	12.0	21 - 25 23 - 24		Note: Hit water at 12.0'. 12.0' to 16.5' Br. silty clay, with rock frags.	11		
2	13.5	27-15		12.0° to 10.5° br. sifty clay, with rock frags.	Met		
<u> </u>	15.0 16.5	15 - 13					
-	18.0	14 - 31 25 - 18	-	16.5' to 23.5' Br. sand and gravels, little clay	" Moist		
-)	19.5	15 - 25 22 - 14		and rock frag., and small boulders			
	21.0	19-27					100
1061.48	22.5	17 - 29 107 - 23					
1060.98	24.0	51_67 DRII	JED -	23.5' to 24.0' Gray weathered shale 24.0' to 32.0' Gray shale, broken	Soft Medium		
		J.12.		diay share, broken	to Soft		7
7	29.0				n l	5.0	4
1052.98	32.0				99	3.0	2
				32.0' to 35.0' Gray shale, broken	Med.Hard		
<u>104</u> 9.98			+	35.0' to 40.0' Gray sandy shale	Hard		
	37.0			Joseph Control of the State of	nard	5.0	4
1044.98	40.0				77	3.0	3
-				BOTTOM OF HOLE			
3				Note: Put 40.0' of plastic pipe in hole.		1	
- /				THE PART OF THE PART OF THE PROPERTY OF			-
+							
2							
				. [1]			

DIAMOND CORE DRILLING

TEST BORING RECORD

339 FAWCETT CHURCH ROAD	BRIDGEVILLE, PA. 15017
Driller J.	Schiffbauer
Helper D.	Spiker
Surface Elevation	1080,48 24 hrs. 4.0
Water Depth4.0	24 hrs. 4.0
Hammer Wt. Sa14	Drop. 30 in
Hammer Wt. Ca30	0 lbs. Drop30 in.
Cooling Sing 4 to	Sam Sim 2 :

Hole No. 48 Sheet 1 of 1

Sta. No.

For Gilbert Associates Conemaugh Project Location Huff, Pa.

3/11/66 3/14/66

ELEVATION	DEPTH	Hammer Blows Sample	Hammer Blows Casing	LOG OF HOLE	Condition	Depth Drilled	Tn Rec
1079.4		1_3	5	0 to 1.0' Top soil	Moist		
1078.48		5-12	7	1.0' to 2.0' Br. sandy silt	11		
-	3.0	13 - 18 25 - 28		2.0' to 4.5' Br. sandy silt with rock frags.	11		1
-1075.9 8	4.5	30-68					
	6.0	69-72	59	4.5' to 9.0' Br. sandy silt with sandstone cobbles	11		100
_	7.5	69-73	120				
=		82_13	142		11		
1071.48		25-36	156				
1069.98	10.5	20 _1 0 24 _1 8	165 172	9.0' to 10.5' Br. sandy silt with some gravel	11		-
	12.0	17-18	100	10.5' to 18.0' Br. sandy silt with some sandstone	,,		
3		10-11		Note: Hit water at 13.5'			1
=	13.5	11_14	79 63	11000 H20 H201 20 17.7			1
	15.0	17-21	52 57	1000	11		
-	16.5	23_36	57				
1062.48		41 - 31 45 - 72	132 192	Hit gray shale at 18.0'			
1002.40	10.0	DRIL		18/0' to 22.0' Gray shale with soft seams	Soft		
		2,,,,,,		10/0 00 22:0 dray share with soit seams	to		
					Hard		-
_1058.48	22.0				11	4.0	1.
-			1	22.0' to 27.0' Gray shale, badly broken	Hard		
7			1				
_		- 1					-
_1053.48	27.0				11	5.0	5.0
_1052.48				27.0' to 28.0' Gray shale	Soft	D. C	٠.٠٠
-				28.0' to 32.0' Gray shale, broken	Hard		
-					. 1		
_1048.48	32.0				91	٠, ١	- 1
	,,,,,		+			5.0	5.0
_				DOMBOW OF TOTAL			
				BOTTOM OF HOLE			
-							
-		1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
-							
							-
-							
- 1						- 1	
-							
-)		1				1	-
_ 1							
_							1
		1	1	1	- 1		

DIAMOND CORE DRILLING

CORE DRILLING

TOT INNEED CHOKEN I OND	BRIDGEVILLE, FA. 1301/
Driller J.	Schiffbauer
	Spiker
Surface Elevation	1080.79
Water Denth 10.0	24 hrs 2.0
Hammer Wt. Sa 140	lbs. Drop. 30 in. lbs. Drop. 30in.
Hammer Wt. Ca 300	lbs. Drop. 30in.
C . C. 4 .	

TEST BORING RECORD

	Hole No. 49	Sheet	1	of	1
	Sta. No.				
For	Gilbert Associate	s			
	Conemaugh Project				
Location	Huff, Pa.				
	/14/66	3/	1 - 16	6	••••••

VATION	DEPTH	Hammer Blows Sample	Hammer Blows Casing	LOG OF HOLE Condition	n Depth Drilled	d R
079.79			5	0 to 1.0' Top soil Mois		1
			15 20	1.0' to 21.4' Br. sandy silt with sandstone cobbles		
	3.5	7	22	Note: Hit water at 2.0'		1
	5.0	12-17	37			1
		W I	37 42 47 53 69 72 100			
	Q =	4.	53	11		И
	8.5	15	69	i i i i i i i i i i i i i i i i i i i		1
1	10.0	25-46	100			1
1			125 142			
	13.5	32	142	11		
- 1	15.0	49_52	233 245			
		.,	266	tt e		
1		1 1	273			1
× I	18.5	47	300 233			
1 1	20.0	56-71	220	TI TI		
59.39	21.4	DDTTIN	210	11		L
58.79	22.0	DRILLED	190 T	21.4' to 22.0' Gray sandstone Hard 22.0' to 32.0' Gray shale Soft		0
		D.C.		ELECT OF STATE		
						ŀ
	27.0			n e	5.0	3
- 1		1 1	4		J	
		1 1				
8.79	32.0			п п	5.0	4
				32.0' to 37.0' Gray sandstone with some small Hard		
			- 1	clay seams.	1	
		1 1	1/			J.
3.79	37.0	1 1	-	TI TI TI TI TI TI TI TI TI TI TI TI TI T	5.0	4
		1 1	1			k
- 17		1 1	- 1	BOTTOM OF KOLE	1	
		1 1	11/2			W.
31						
					1	1
			1			

DIAMOND CORE DRILLING

TEST BORING RECORD

339 FAWCETT CHURCH ROAD	BRIDGEVILLE, PA. 15017
Driller J. Schi	ffbauer
Helper D. Spik	er
Surface Elevation	1082,40
Water Depth10,0	24 hrs 10.0
Hammer Wt. Sa 140	lbs. Drop. 30 in.
Hammer Wt. Ca300	lbs. Drop. 30 in.
Casing Size 4 in	Sam. Size 2 in

Hole No. 50 Sheet 1 of 1

Sta. No.

For Gilbert Associates Conemaugh Project

Location Huff. Pa. 2/22/66 Completed 2/23/66

Casi	ng Size	4in.	Sam.	Size 2 in 2/22/66 Completed 2/2	23/66		
ELEVATION	DEPTH	Hammer Blows Sample	Hammer Blows Casing	LOG OF HOLE	Condition	Depth Drilled	Ft. Tnts. Rec'v's
1080.90	1.5	2_3	9	0 to 1.5' Top soil	Moist		
	-	4-5 5-10	15	1.5' to 3.0' Brown silt	"		-
	4.5	15-27	27	3.0' to 6.0' Br. sandy silt with rock frags.	"		
1076.40		31-27	47 65				
10/0.40		20_30		6.0' to 9.0' Br. sand silt with sandstone cobbles	"		- 4
-	7.5	42_25	73				2
_1073.40		20 - 26 15 - 20		9.0' to 11.5' Br. silty sand with sandstone	- "		-
1070.90	10.5	22_12	67	cobbles. Note: Hit water at 10.5'.	19-1.0		1
-10/0.90	12.0	18_20		11.5' to 18.0' Br. sandy silt with sandstone	11		-
	13.5	40 <u>-</u> 22 18 <u>-</u> 40		cobbles.			-
	15.0	47-52	57				
_ ′	16.5	47 - 43 37 - 24	66 105				-
_1044.40	18.0	32-37	1 2 2 2 2 2	1064.4	- 1		-
			LED	18.0' to 22.5' Gray and brown sandstone with	Hard		_
_				soft seams.	to Soft		
-1059 . 90	22.0				5010	4.0	1.9
-		8	1	22.5' to 29.0' Soft gray clay shale	Soft		_
							-
- 1	27.0				,,	5.0	2.3
Ε'						٠.٥	2.5
_1053.40							
- 1				29.0' to 35.0' Gray shale, Broken.	Med.Hard to		_
3	32.0				Hard	5.0	5.0
2							
1047.40	35.0				11	3.0	2.7
			ľ			•	
-				BOTTOM OF HOLE			_
							_
_							
-							-
							_
3							_
							_
-	1						_
-							-
_							
1	1	- 4	- 1				

DIAMOND CORE DRILLING

TEST BORING RECORD

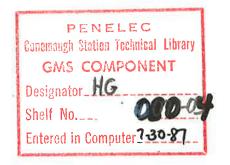
339 FAWCETT CHURCH ROAD BRIDGEVILLE, PA. 15017	
Driller J. Schiffbauer	Hole No. 54 Sheet 1 of
Helper D. Spiker Surface Elevation 1074.56 Water Depth 4.0 24 hrs 4.0	Sta. No. For. Gilbert Associates
Hammer Wt. Sa. 140 lbs. Drop. 30 in.	Conemaugh Project
Hammer Wt. Ca. 300 lbs. Drop. 30 in.	Location Huff, Pa.
Casing Size4 in. Sam. Size2 in.	3/3/66 Completed 3/4/66

	Blows Sample	Casing	LOG OF HOLE	Condition	Depth Drilled	R
		5 7	0 to 1.0' Top soil	Moist		-
3.5	7	12				
	10 /1	37	3.0' to 23.5' Br. sandy silt with sandstone cobble	- 11		
	1	74		"		
8 5	21	89	Notes Wet and a Cont	11		
	1	94	Note: Hit water at 8.5'.	Wet		
10.0	JJ=J/	159		••		
40.5		177 198		ı "		
	1	207				ľ
15.0	45-52		1			
		200		11		
18.5	37	192		3		
20.0	61_67	203	1			
	1	245		11		
23.5		267		11		
	DRIL	LED	23.5' to 27.0' Gray shale, badly broken.	Hard		
27.0				. 1		
-,		-	27.0' to 32.0' Gray sandy shale with some clay	- 1	3.5	3
	- 1		seams.	to		
20.0				Hard		
32.0		-	32.0' to 37.0' Gray sandy shale with a few clay	11	5.0	4
			seams.			
37.0		-		11	5.0	4
	- 1		POTTOM OF HOLE	- 1		
			BOTTOM OF HOLE	11		
			- A	- 8		
				- 1		l.
						ľ
	3.5 5.0 8.5 10.0 13.5 15.0	3.5 7 5.0 12-17 8.5 21 10.0 33-37 13.5 39 15.0 45-52 18.5 37 20.0 61-67 23.5 IRIL 27.0	3.5 7 12 25 5.0 12-17 37 74 83 8.5 21 94 10.0 33-37 127 159 177 13.5 39 207 15.0 45-52 225 233 200 179 192 20.0 61-67 203 233 245 267 27.0 RILLED 27.0	3.5 7 12 5.0 12-17 37 74 83 8.5 21 89 10.0 33-37 127 159 177 13.5 39 207 15.0 45-52 225 233 200 18.5 37 179 120.0 61-67 203 233 245 267 DRILLED 27.0 23.5' to 27.0' Gray sandy shale with some clay seams.	3.5 7 12 3.6 12-17 37 7/4 8.7	3.5 7 25 5.0 12-17 37 74 83 8.5 21 99 10.0 33-37 127 159 179 179 18.5 39 207 15.0 45-52 225 233 200 18.5 37 199 20.0 61-67 203 233 245 23.5 DRILLED 27.0' to 32.0' Gray sandy shale, with a few clay seams. 32.0' to 37.0' Gray sandy shale, with a few clay seams. 37.0 1.0' to 3.0' Fr. sandy silt 1.0' to 3.0' Fr. sandy silt 3.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' wet 1.0' to 33.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 25.5' Br. sandy silt with sandstone cobble 1.0' to 25.5' Br. sandy silt with sandstone cobble 1.0' to 25.5' Br. sandy silt with sandstone cobble 1.0' to 23.5' Br. sandy silt with sandstone cobble 1.0' to 25.5' Br. sandy silt with sandstone cobble 1.0' to 25.5' Br. sandy silt with sandstone cobble 1.0' to 25.5' Br. sandy silt with sandstone cobble 1.0' to 25.5' Br. sandy silt with sandstone cobble 1.0' to 25.5' Br. sandy silt with sandstone cobble 1.0' to 25.5' Br. sandy silt with sandstone cobble 1.0' to 25.5' Br. sandy silt with sandstone cobble 1.0' to 25.5' Br. sandy silt with sandstone cobble 1.0' to 25.5' Br. sandy silt with sandstone co

DIAMOND CORE DRILLING

TEST BORING RECORD

339 FAWCETT CHURCH ROAD BRIDGEVILLE, PA. 15017	TEST DORING REC	JUND
Driller J. Schiffbauer	Hole No. 55	Sheet 1 of 1
Helper D. Spiker Surface Elevation 1074-77	Sta. No.	
Water Depth4.024 hrsTop of hole	For. Gilbert Associates	••••
Hammer Wt. Sa	Conemaugh Project	
Hammer Wt. Ca 300 lbs Drop 30 :	Location Huff Pa	
Casing Size4in. Sam. Size2in.	3/2/66	3/2/66
The state of the s		


1001, 00	DEPTH	Blows Sample	Hammer Blows Casing	LOG OF HOLE	Condition	Depth Drilled	Tn Rec
1074.27	1.5	1-3 5-2	5	O to 0.5' Top soil	Moist		Rec
071.77	3.0	5-7	7 15	0.5' to 3.0' Br. sand silt	"		
	4.5	10_17	24	3.0' to 6.0' Br. sandy silt with sandstone cobble	s 11		1
68.77	6.0	21 - 19 25 - 32	27 39				L
	7.5	21_35	45	6.0' to 11.5' Br. silty sand	Wet		,
	9.0	37 - 7 9 - 11	59 7 2		1		
- 1	10.5	8_11	79	Note: Hit water at 6.01. (19 %)	11		
3.27	12.0	13-9	84		,,		-
1 77		14 - 19 17 - 29	89 7 9	11.5' to 13.0' Br. sandy silt	Moist		
	13.5	37-12	65	13.0' to 16.0' Br. sandy silt with sandstone	-		
0 00	15.0	14-17 13-17	72 92	cobbles.	11		1
- 1	16.5	19-13	100	16.0' to 18.5' Gray silt			
	18.0	17-19	142	030.0	"		
- (1	19.0	59-75 DRIL	175 LED	18.5' to 19.0' Gray clay shale 19.0' to 22.0' Gray clay shale	Soft		
				17.0 to 22.0. Gray clay shale	11		-
-77	22.0		-	22 01 +- 22 01 0	11	3.0	3.0
1	- 4			22.0' to 32.0' Gray shale badly broken, with many clay seams.	Soft		
	1				to Med.Hard		-
	27.0	- 1	- 1				_
İ			1		11	5.0	2.5
1		- 11	- 1				-
	- 1						-
77	32.0	- 1	1	00.01	11 11	5.0	2.7
- 1				32.0' to 37.0' Gray shale with some streaks of gray sandstone.	Hard		-
	- 1			gray sands cone.			-
.77 3	27.0	1	1		- 1		_
4	,,,.0		-		11	5.0	5.0
			1/8	BOTTOM OF HOLE			_
	1		- 1	DOTTON OF HOLE			_ ~
1							_
1			1			- 4	-
1		1	1	J.	1	- 1	_
	1					- 1	_
1	1			T and the second	- 1		
							_
	1		1				_

Mr. Andrew Wheeler, Administrator, US EPA December 2020

ATTACHMENT 6C

Testing and Inspection Specification GDE-CON-983 – Soils, Concrete, and Grout Testing and Inspection, April 1985

Note: This document presents specifications for the testing program that was implemented during the installation of the engineered clay liners.

SPECIFICATION #GDE-CON-983

SPECIFICATION TITLE: SOIL, CONCRETE & GROUT TESTING AND

INSPECTION

STATION: CONEMAUGH

DATE: APRIL 9, 1985

WORK ORDER: C344 - PHASE I - 1985 CONSTRUCTION

C423 - PHASE II - 1986 CONSTRUCTION

PROJECT: ASH FILTER PONDS AND ASH SILO PONDS

Pennsylvania Electric Company Johnstown, Pennsylvania

Prepared by:	(Lead Engr.) F. L. Straw & M. Straw	Date: 4/10/85
Reviewed by:	(Sect. Mgr.) A.T. Gallery	Date: 4/11/85
	(Q.A. Manager) RRS number	Date: 9/11/85
Approved by:	(Dept. Manager) the Hung	Date:_4/N/85
		/ /

TABLE OF CONTENTS

Section	Title	Pages
į I	Special Conditions	I-1 thru I-10
II	Soil Testing and Inspection	II-1 thru II-13
III	In-Process Grout Testing	III-1 thru III-4
IV	In-Process Concrete Testing	IV-1 thru IV-20

SECTION II

SOIL TESTING AND INSPECTION

SECTION CONTENTS

Paragraph	Title.	Page
2.01	Scope	II-1
2.02	Applicable Codes and Standards	II-1
2.03	Facility and Personnel Requirements	11-2
2.04	Testing Requirements	II - 4
2.05	Submittals	II - 5
Table 1	Required Tests	II-6
Table 2	Data Requirements and Submittal Schedule	II - 12
Appendix A	Modification to Modified Proctor Test (ASTM 1557)	II - 13

SECTION II

SOIL TESTING AND INSPECTION

- 2.01 Scope
- 2.01.1 Description of Work:

This Section includes technical requirements for soil testing and inspection of excavation and fill.

2.01.2 Items Included:

This section includes the following:

- 1. Furnishing a testing laboratory and equipment.
- 2. Providing qualified personnel in the testing laboratory.
- Providing laboratory testing.
- Submitting test and inspection reports.

2.01.3 Items Not Included:

The following items are not included in this section:

- 1. Providing excavation and fill.
- Providing roadway construction.
- Concrete and grout testing and inspection.
- Providing material and field testing.

2.02 Applicable Codes and Standards

The following are referenced in this Section:

- American Society for Testing and Materials (ASTM):
 - a. C 127-84, "Test Method for Specific Gravity and Absorption of Coarse Aggregate."
 - b. D 420-69 (1979), "Recommended Practice for Investigating and Sampling Soil and Rock for Engineering Purposes."
 - c. D 422-63 (1972), "Methods for Particle-Size Analysis of Soils."

- d. D 854-83, "Test Method for Specific Gravity of Soils."
- e. D 1140-54 (1971), "Test Method for Amount of Material in Soils Finer than the No. 200 (75-Cm) Sieve."
- f. D 1556-82, "Test Method for Density of Soil in Place by the Sand-Cone Method."
- g. D 1557-78, "Test Methods for Moisture-Density Relations of Soils and Soil-Aggregate Mixtures Using 10-1b (4.54- kg) Rammer and 18-in. (457-mm) Drop."
- h. D 1587-83, "Thin-Walled Tube Sampling of Soils."
- i. D 2167-66 (1977), "Test for Density of Soil in Place by the Rubber-Balloon Method."
- j. D 2216-80, "Method for Laboratory Determination of Water (Moisture) Content of Soil, Rock, and Soil-Aggregate Mixtures."
- k. D 2487-83, "Classification of Soils for Engineering Purposes.
- 1. D 2488-69 (1975), "Recommended Practice for Description of Soils (Visual-Manual Procedure)."
- m. D 2922-81, "Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)."
- n. D 3017-78, "Test Method for Moisture Content of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)."
- o. D 4318-83, "Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils."
- Commonwealth of Pennsylvania, Department of Transportation, Field Test Manual, PDT Pub. 19, July 1977 edition and updates:

Pa. Test Method No. 123-1968 (PTM-123), "Test for Determination of Moisture in Soils by Means of a Calcium Carbide Gas Pressure Meter."

2.03 . Facility and Personnel Requirements

- 1. An offsite laboratory shall be provided within an approved distance from the site. This facility shall be equipped with all items required to perform specified tests.
- 2. The test laboratory shall have its procedures and equipment inspected at intervals of not more than 3 years by a qualified national authority. A copy of the certification shall be submitted. The Material Reference Laboratories of the National Bureau of Standards are such qualified national authorities.

- 3. The testing or inspection services shall be under the direction of a person charged with an engineering-managerial responsibility. The person shall be a registered engineer and a full-time employee. He shall have at least 5 years experience in the inspection and testing of construction and materials.
- 4. The testing laboratory staff shall be supervised by a laboratory technician who shall have at least 5 years experience performing tests on soil and rock and be able to demonstrate the ability to perform the tests required in the manner stipulated by ASTM or other governing procedure.
- 5. The supervising field technician shall have a minimum of 2 years experience in soil and rock inspection. He shall be able to demonstrate either by oral or written examination, or both, the ability to correctly perform the duties required.
- 6. The onsite supervising field technician and on-site supervising laboratory technician may be the same person.
- 7. Inspection and testing personnel shall be qualified to Level I technician (in accordance with subparagraph 8. below), unless performing tests or inspections or preparing samples under the direct supervision of a Level II technician (in accordance with subparagraph 9. below).
- 8. A Level I technician shall be capable of performing the inspections, examinations, and tests that are required to be performed in accordance with documented procedures and/or industry practices. The individual shall be familiar with the tools and equipment to be employed and shall have demonstrated proficiency in their use. The individual shall also be capable of determining that the calibration status of inspection and measuring equipment is current, that the measuring and test equipment is in proper condition for use, and that the inspection, examination, and test procedures are approved. The educational and experience requirements shall be as follows:
 - Two years of related experience in equivalent inspection, examination, or testing activities, or
 - High school graduation and six months of related experience in equivalent inspection, examination, or testing activities, or
 - c. Completion of college level work leading to an Associate Degree in a related discipline plus three months of related experience in the equivalent inspection, examination, or testing activities.

- 9. A Level II technician shall have all of the capabilities of a Level I technician for the inspection, examination or test category or class in question. Additionally, a Level II technician shall have demonstrated capabilities in planning inspections, examinations, and tests; in setting up tests including preparation and set-up of related equipment, as appropriate; in supervising or maintaining surveillance over the inspections, examinations, and tests; in supervising and certifying lower level personnel; in reporting inspection, examination, and testing results; and in evaluating the validity and acceptability of inspection, examination, and test results. The educational and experience requirements shall be, as follows:
 - a. One year of satisfactory performance as Level I in the corresponding inspection, examination or test category or class, or
 - b. High school graduation plus three years of related experience in equivalent inspection, examination, or testing activities, or
 - c. Completion of college level work leading to an Associate Degree in a related discipline plus one year related experience in equivalent inspection, examination, or testing activities, or
 - d. Four-year college graduation plus six months of related experience in equivalent inspection, examination, or testing activities.
- 10. All necessary sampling, sample making, and inspection equipment shall be provided in sufficient quantities to support the Work.

2.04 <u>Testing Requirements</u>

- The number of personnel maintained at the site office per working shift shall be sufficient for the construction operation.
- 2. Tests shall be conducted in accordance with the methods and frequencies indicated in Table 1, and submitted in accordance with the requirements of Table 2 of this Section. The frequencies indicated are a minimum and are subject to change.
- 3. The test reports shall include the following information, as a minimum:
 - a. Project description and Job No.
 - b. Sample or Test No.

- c. Description of material.
- d. Location of sample or test (horizontal-within 5.0 feet, elevation-within 0.5 feet).
- e. Tested by.
- f. Date of testing.
- g. Temperature and weather conditions.
- h. References to any other tests used in the analysis.
- i. Results of the test.
- j. Any deviations from specified testing procedure.
- k. Any difficulties in performing test.
- 1. Whether material or test passes or fails, if applicable.
- 4. All samples shall be transported to the onsite or offsite laboratory and stored prior to testing in accordance with the applicable codes and standards.

2.05 Submittals

Submittals required by this Section are given in Table 2 herein.

TABLE 1

<u>It</u>	em Requirement	Test Method	Test Frequency
1.	Subgrade Inspection: Verification of subgrade preparation, including list of compaction equipment utilized	Visual*	All subgrades
	Proctor Test	ASTM D 1557 (Method as per Section 5 of ASTM Specification)	One test for each 50,000 square feet of subgrade, and one test for each type of material
	Field Density Test	Sand-Cone Method ASTM D 1556 or Nuclear Method ASTM D 2922, D 3017 or Rubber-Balloon Method ASTM D 2167	One test for each 1000 square feet of subgrade or at least one test at the bottom of each excavation, whichever is more frequent
	Soil Description	ASTM D 2488	Every time a test/ inspection is performed on the subgrade
	NOTE: *A report or su	mmary form shall be prepograde preparation.	ared on the observations
2.	Random Fill:		
	Gradation and Material Quality	Visual	As material is placed or excavated
	Proctor Test	ASTM D 1557 (Method as per Section 5 of ASTM Specification, or modification to this standard as per Appendix A)	One test for each 2000 cubic yards of fill material placed, and each time the type or source of fill material is changed

TABLE 1 (Cont'd)

m Requirement	Test Method	Test Frequency
Field Density Test	Sand-Cone Method ASTM D 1556 or Nuclear Method ASTM D 2922, D 3017 or Rubber-Balloon Method ASTM D 2167	One test for each 250 cubic yards of fill material placed or one test per lift, whichever is more frequent, and whenever i appears that a problem exists in the moisture content or density of th fill material
Soil Description	ASTM D 2488	Every time a test is performed on the fill material
Speedy Moisture Test	PTM-123	As required to verify th moisture content of the fill
Lift Thickness	Visual/Manual	One test per lift
Type of Compaction Equipment	Visual	Continuous during compaction work
Structural Fill:		
Gradation	ASTM D 422 (w/o Hydrometer)	One test for each 2000 cubic yards of fill material placed, and each time the type or source of material is changed, and whenever it appears that a problem exists in the gradation of the material
Material Quality	Visual	As the material is received at the jobsite

Item	Requirement	Test Method	Test Frequency
	Proctor Test	ASTM D 1557 (Method as per Section 5 of ASTM Specification or modification to this standard as per Appendix A)	One test for each 2000 cubic yards of fill material placed, and each time the type or source material is changed
	Specific Gravity	ASTM C 127	Whenever necessary as part of modification to Proctor test as per Appendix A
	Field Density Test	Sand-Cone Method ASTM D 1556 or Nuclear Method ASTM D 2922, D 3017 or Rubber-Balloon Method ASTM D 2167	One test for each 250 cubic yards of fill material placed or one test per lift, whichever is more frequent, and whenever it appears that a problem exists in the moisture content or density of the fill material
	Lift Thickness	Visual/Manual	One test per lift
	Type of Compaction Equipment	Visual	Continuous during compaction work
4.	Sand Fill:	3	5
ø	Gradation	ASTM D 422 (w/o Hydrometer)	One test for each 2000 cubic yards of fill material placed, and each time the type or source of material is changed, and whenever it appears that a problem exists in the gradation of the material
	Material Quality	Visual	As the material is received at the jobsite

TABLE 1 (Cont'd)

Item	Requirement	Test Method	Test Frequency
	Proctor Test	ASTM D 1557 (Method C)	One test for each 2000 cubic yards of fill material placed, and each time the type or source of material is changed
* ×	Field Density Test	Sand-Cone Method ASTM D 1556 or Nuclear Method ASTM D 2922, D 3017 or Rubber-Balloon Method ASTM D 2167	One test of each 250 cubic yards of fill material placed or one test per lift, whichever is more frequent, and whenever it appears that a problem exists in the moisture content or density of the fill material
	Lift Thickness	Visual/Manual	One test for each lift
	Type of Compaction Equipment	Visual	Continuous during compaction work
5.	Impervious Fill:		
s. S	Atterberg Limits	ASTM D 4318	One test for each 500 cubic yards of fill material placed, and whenever it appears that a problem exists in the quality of the fill material
	Percent Fines	ASTM D 1140	One test for each 500 cubic yards of fill material placed, and whenever it appears that a problem exists in the grain size of the fill material
9	Classification of Soils	ASTM D 2487	One test for each 500 cubic yards of fill material placed

TABLE 1 (Cont'd)

tem	Requirement	Test Method	Test Frequency
	Proctor Test	ASTM D 1557 (Method as per Section 5 of ASTM Specifications)	One test for each 1000 cubic yards of fill material placed, and each time the type or source of fill material is changed
	Field Density Test	Sand-Cone Method ASTM D 1556 or Nuclear Method ASTM D 2922, D 3017 or Rubber-Balloon Method ASTM D 2167	One test for each 250 cubic yards of fill material placed or one test per lift, whichever is more frequent, and whenever it appears that a problem exists in the moisture content or density of the fill material
	Soil Description	ASTM D 2488	Every time a test is performed on the fill material
	Speedy Moisture Test	PTM-123	As required to verify the moisture content of the fill
	Lift Thickness	Visual/Manual	One test for each lift
	Type of Compaction Equipment	Visual	Continuous during compaction work
	Uniformly Graded Coarse Aggregate:		
	Gradation and Material Quality	Visual	As the material is received at the jobsite
	Gradation	ASTM D 422	Whenever it appears that a problem exists in the gradation of the material
2 5	Lift Thickness	Visual/Manual	One test for each lift

Ite	em Requirement	Test Method	Test Frequency
	Type of Compaction Equipment and number of passes	Visual	Continuous during compaction work
7.	Rock Lining:		
	Gradation and Material Quality	Visual	As the material is received at the jobsite
⁷	Specific Gravity	ASTM C 127	Whenever it appears that a problem exists in the material quality
	Thickness Placed	Visual/Manual	One test per area
8.	Bottom Ash:		8
	Gradation	ASTM D 422	One test for each 250 cubic yards of fill placed and whenever it appears that a problem exists in the gradation of the fill material.
	Lift Thickness	Visual/Manual	One test for each lift.
:: :::::::::::::::::::::::::::::::::::	Type of Compaction Equipment and number of passes	Visual	Continuous during compaction work
9.	Bentonite:		
	Application rate	Visual/Manual	Continuous during spreading operations.
	Mixing with impervious fill	Visual	Continuous during spreading operations
10.	Filter Fabric:	-	
	Placement procedure (including overlaps and pinning)	Visual/Manual	Continuous during placement of filter fabrics

TABLE 2

DATA REQUIREMENTS AND SUBMITTAL SCHEDULE

Paragraph Nu Submittal Re		Submittal Address	With Proposal		oproval Copies	For Rec	ord Copies
Special cond Resumes of r personnel		A	Yes	В	5	N/A	N/A
Special cond forms and do sheets	itions/Sample cumentation	A	Yes	В	5	N/A	N/A
Special condequipment da	-	A	Yes	В	5	N/A	N/A
	cation of boratory	A	Yes	В	5	N/A	N/A
	spection rtification	A	Yes	N/A	N/A	В	5
	ternative st procedures	A	No	В	5	N/A	N/A
2.03 and 2.04 Tes	st results	С	No	N/A	N/A	D	5

A Pennsylvania Electric Company 1001 Broad Street Johnstown, PA 15907 Attn: T. J. Simunich

B One month prior to beginning the work.

Verbal reports to the Penelec site representative or the Penelec office in Johnstown, whichever is fastest. Written reports to the address in *A above.

For test results which meet project requirements, written report within 2 days following completion of the test. For test results which do not meet project requirements, verbal report immediately following completion of the test, followed by a written report within 2 days.

APPENDIX A

MODIFICATION TO MODIFIED PROCTOR TEST (ASTM D 1557)

For structural or random fills having more than 30 but less than 50 percent (by weight) of material greater than 3/4 inch, the maximum dry density of the fill shall be determined by the following formula:

$$W = \frac{ww^{\dagger}}{Ow^{\dagger} + Cw}$$

- W = maximum dry density (1b/ft3)
- w = density of the material coarser than 3/4 inch, given by its bulk specific gravity (determined by ASTM C 127) multiplied by 62.4 (1b/ft3)
- w' = maximum dry density for the material passing the 3/4-inch sieve as
 determined by the Modified Proctor Test, Method C (ASTM D 1557)
 (1b/ft3)
- 0 = fraction by dry weight of the material coarser than the 3/4-inch sieve
- C = fraction by dry weight of the material finer than the 3/4-inch sieve

Mr. Andrew Wheeler, Administrator, US EPA December 2020

ATTACHMENT 6D

Correspondence – Letter from PaDER Regarding Requirements for AFPs Engineered Liner System, January 1984

Note: This letter documents the design requirements established by the State Permitting Agency regarding construction of the Ash Filter Ponds.

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES BUR EAU OF WATER QUALITY MANAGEMENT 600 Highland Building

121 South Highland Avenue
Pittsburgh, Pennsylvania 15206-3988

(412) 665-2900

January 4, 1984

James L. Greco Environmental Licensing Manager Pennsylvania Electric Company 1001 Broad Street Johnstown, PA 15907

> RE: Industrial Waste Application 3283201 Conemaugh Generating Station West Wheatfield Township Indiana County

Dear Mr. Greco:

We have had several conversations regarding the above-referenced permit application. You have expressed concerns regarding the Department's permitting requirements for this facility. In particular, your concern has focused on the liners which are required for the ash filter ponds. You had indicated that the ponds at the Conemaugh facility should be subject to the same requirements for permitting as were similar ponds at the Homer City Station. You also indicated that the Homer City ponds were permitted without liners.

I have reviewed, with Hydrogeologist Harold Miller, the permit application for the Homer City facility (Industrial Waste Permit 3281205). That application was prepared by Gilbert Associates, Inc. and described numerous waste treatment and runoff control systems.

Of particular relevance to the issue at hand at Conemaugh are those systems described as the "Industrial Waste Treatment System" and the "Ash Recycle System". A review of the Homer City permit application reveals the following:

- The Industrial Waste Treatment System consists in part of several earthen settling or equalization basins. Each of these basins was described, within the narrative and the appended drawings, as having a clay liner, viz:
 - -Neutralization/Equalization Ponds Nos. 1 and 2 each have 2' clay liners throughout. Ref. Dwg. D-783-003. See also applicable Module Page 5-2 elsewhere in the application.
 - -Desilting Basins Nos. 1 and 2 each have clay liners of 3' thickness on the bottom and 2' thickness on the sides. Ref. Dwg. RDB-061179 and RDB-061479. See also applicable Module Page 5-2 elsewhere in the application.

Ponds 1 and 2 are described on Dwg. D-739-256. That drawing indicates that each of these ponds has a clay liner of 2' thickness throughout. These two ponds are also described elsewhere in the application in narrative and on modules. Ponds Nos. 3 and 4 are likewise described in narrative and module. The narrative and Module 5-2 discloses that all four ponds have 2' clay liners throughout.

There are several other ponds which are components of various other discharge treatment and control systems that are described in the Homer City application. Several of these ponds are lined; two are not. I don't believe further consideration of the merits of those ponds which do not have liners is warranted or will serve a useful purpose since the existence of liners on the two systems described above concludes the issue raised on the Conemaugh application. In particular, the Homer City Ash Recycle System, which from my understanding appears to serve a function similar to the ash system at Conemaugh, has clay lined ponds.

I trust that this letter has resolved the outstanding issue on the Conemaugh permit application. So that there be no confusion about what sort of liner is necessary for the ash ponds at Conemaugh station, I will reiterate the liner requirements that I have previously discussed with you and Jim King. The liners, of suitable material, must have a design specific discharge rate of 5×10^{-7} cm/sec or less. The "specific discharge" is the product of the hydraulic conductivity, expressed in cm/sec, and the hydraulic gradient. For the purposes of design the hydraulic gradient may be determined by dividing the normal water depth in the pond by the liner thickness, both expressed in identical units. If a clay or similar material is selected, groundwater monitoring wells must be established up and down gradient. If a synthetic liner is chosen groundwater monitoring for the ponds will not be necessary.

In addition, the revised application should propose a schedule for retro-fitting the two existing ponds in the Conemaugh Station Ash Filtration System with appropriate liners. Both existing ponds need not be lined at the same time and the retro-fit may take place at reasonable future dates during anticipated maintenance periods.

If you have any further questions please feel free to contact me at 412/665-2983.

Sincerely,

Ralph W. Waechter Environmental Engineer

RWW/1d: crt

cc: T. C. Callaghan H. Miller Operations Mr. Andrew Wheeler, Administrator, US EPA December 2020

ATTACHMENT 6E

Preliminary Engineering Report #335-83, Rev 2

Note: This document provides a summary of the original design of the engineered clay liners for the Ash Filter Ponds and identifies the measures taken to evaluate the suitability of impervious fill available for the construction.

PRELIMINARY ENGINEERING REPORT #335-83 - REV. 2

PROJECT: WASTE FILTER POND IMPROVEMENTS

STATION: CONEMAUGH

DATE: MARCH 30, 1984

WORK ORDER: C344 & C423

Pennsylvania Electric Company Johnstown, Pennsylvania

Prepared by: (Lead Engr.) F. L. STRAW 7. X Straw Date: 3/30/84

Reviewed by: (Sect. Supv.) RT Gallus by C Smith Date: 3/30/84

Approved by: (Dept. Mgr.) Date: 4-3-84

(Dept. Director) T.P. D. P. Date: 4/3/88

=

CONEMAUGH STATION WORK ORDER C344

Item: Waste Filter Pond Improvements

Cost: Phase I Proposed 1985 Construction \$1,800,000 Phase II Proposed 1986 Construction \$700,000

Cost Estimate

Phase I Proposed 1985 Construction	Material	Labor	Total Phase I
#4 Waste Filter Pond Construction #3 Waste Filter Pond Construction Ash Silo Drainage Ponds Construction	\$100,200 51,100 103,200	\$360,200 130,100 177,800	\$ 460,400 181,200 281,000
Sub Total	\$254,500	\$668,100	\$ 922,600
Gilbert Associates Engineering, Design Penelec Engineering and Construction	& Drafting		\$ 208,600
Supervision			\$ 117,800
Sub Total			\$1,249,000
Escalation (In-Service Date October 198 Contingency	35)		\$ 170,000 \$ 340,200
Total Phase I 1985 Cost Excluding Demolition and Removals			\$1,759,200
Demolition and Removals			\$ 40,800
Total Phase I 1985 Cost			\$1,800,000
Phase II Proposed 1986 Construction	Material	Labor	Total Phase II
#2 Waste Filter Pond Construction #1 Waste Filter Pond Construction	\$ 53,400 40,400	\$136,300 119,300	\$ 189,700 159,700
Sub Total	\$ 93,800	\$255,600	\$ 349,400
Penelec Engineering and Construction Supervision			24,500
Sub Total			\$ 373,900

Escalation (In-Service Date October 1986) Contingency	_	137,100
Total Phase II 1986 Cost Excluding Demolition and Removals	ś	692,100
Demolition and Removals	\$	7,900
Total Phase II 1986 Cost	\$	700,000

Description

Preliminary Engineering Report #335-83, Rev. 1, has been revised to reflect the additional requirement for lining the ash filter ponds with an impervious liner. Furthermore, due to the Pa. DER requirement for lining all earthen ponds containing process wastewater, the existing ash silo area drainage ponds must also be clay lined. PER #335-83, Rev. 2 is then required due to the change in the project scope.

An engineering study was performed in 1981 to project BAT and BCT effluent limitations and the probability of compliance with these limitations. The study concluded that the present waste treatment facilities were able to meet the current NPDES permit limits, as well as projected BCT limits, provided two ash filter ponds were operated in parallel, and additional improvements were implemented to the ash filter pond system. Additionally, due to the recent Pa. DER requirement for placing an impervious liner in all earthen ponds containing process wastewater, the four ash filter ponds and the ash silo area drainage ponds must be clay lined.

Investigations by Gilbert Associates and General Analytics, Inc. have shown that clay material, suitable to meet Pa. DER liner requirements, is sufficiently available in the Stage II development area of the Conemaugh Station ash/mine refuse disposal site. (Some clay material, however, may have to be supplemented with bentonite to meet Pa. DER permeability requirements.)

This PER covers the total project scope and includes the following:

Ash Filter Pond Improvements

- a. Addition of fourth ash filter pond. The fourth pond will enable two ash filter ponds to be operated in parallel continuously; provide sufficient time to drain, clean, and restore the ash ponds for service; and help to prevent operating a pond beyond its effective service time. The design will include improvements noted by the following items.
- b. Addition of slide gates at the inlet distribution box and replacement of inlet piping. The slide gates will enable a manual operation and will prevent leakage into the ash pond during cleaning. The inlet steel piping has corroded away and will be replaced with corrosion resistant polyethylene piping which will prevent leakage to the groundwater

- c. Addition of two double-sided weir troughs across the width of each pond. The weirs will prevent short circuiting; enable the entire surface of the pond to be used for settling; and significantly reduce velocities over the weir, which will reduce carryover of solids.
- d. Addition of a weir gate in place of stop logs at each discharge tower. The weir gate will allow the proper method of slowly decanting an ash pond; prevent major leakage into the discharge tower; and reduce the carryover of solids into the discharge structure.
- e. Replace the filter media and underdrain pipe in each existing ash pond. New filter media and underdrain piping is necessary due to the PaDER requiring the installation of an impervious liner in all earthen ponds.
- f. Addition of clay liner and protective stone cover. The addition of a two-foot clay liner will prevent leaching of process waste water into the groundwater and will meet Pa. DER lining criteria. The protective stone cover will protect the clay liner from being damaged during cleaning of the ponds by a drag line.
- g. Installation of four (4) groundwater monitoring wells upgradient and downgradient of the ash filter ponds. The monitoring wells are required by the PaDER whenever clay is used as a pond liner material.

2. Ash Silo Area Drainage Ponds Modifications

- a. Addition of clay liner, protective stone cover, and subdrain system. The ash silo area drainage ponds will be redesigned to include a two-foot clay liner which is required to prevent leakage of process wastewater into the underground. The stone cover will protect the liner from being damaged during cleaning of the ponds by a drag line or Gradall. The subdrain system beneath the clay liner will protect the liner from being damaged by high groundwater pressures.
- b. Addition of concrete separating wall. The concrete separating wall is required to enable full use of the limited width available for the ponds considering the required side slopes for clay stability of 2 H:1V.
- c. Addition of filter media and underdrain piping. The filter media and underdrain piping system are required to enable the ponds to be drained for more efficient cleaning.

All the modifications and additions described above will be funded under a capital work order. The work will be performed in two phases. Phase I will be performed in 1985 and will consist of the following:

Addition of 4th ash filter pond including clay lining, weirs, etc.

GDE0330E

- Modifications to ash filter pond No. 3 including discharge weir troughs, weir gate, filter media replacement, and clay lining.
- Modifications to inlet distribution box to include slide gates for ponds Nos. 3 and 4, and new inlet piping for ponds Nos. 3 and 4.
- Installation of four (4) groundwater monitoring wells upgradient and downgradient of the ash filter ponds.
- Construction of modifications to both ash silo area drainage ponds to include clay lining, concrete separating wall, discharge structure, inlet modifications, and filter media.

(Note: Total clay quantity required will be 12,000 cy. - assuming 50% contingency.)

Phase II will be performed in 1986 and will consist of the following:

- Modifications to ash filter ponds No. 2 and No. 1 including discharge weir troughs, weir gates, filter media replacement, and clay lining.
- Modifications to inlet distribution box to include slide gates for ponds Nos. 1 and 2, and new inlet piping for ponds Nos. 1 and 2.

(Note: Total clay quantity required will be 10,000 c.y. - assuming 50% contingency.)

Reasons and Benefits

The installation and modifications are required to enhance compliance with current NPDES permit limits for TSS and to comply with Pa. DER criteria for lining earthen impoundments with an impermeable liner.

Also, the present ash filter pond system (3 ponds) does not allow for guaranteed operation with two ponds in service. Due to unit outages and time required for cleaning, there are times when only one pond is available for service. This condition allows for overloading and resultant carry-over of solids. The existing design of the ponds accelerates carry-over possibilities especially in this case, but also during normal operation. Data also indicates that discharge limits are not consistently being met during decanting of the ponds for cleaning. The revisions to the existing ponds are designed to minimize this situation.

It is important to note that the loading of the waste filter system has been increased with the installation of the clarifier since the clarifier sludge is pumped to the ponds. The clarifier project originally called for a fourth pond, but it was delayed to observe the effects of increased loading on the existing ponds.

This increased loading, along with the design deficiencies and the need to have two ash filter ponds operating in parallel continuously, requires the addition of the fourth pond and the design modifications of the existing ponds to consistently meet NPDES discharge limits.

=

GDE0330E

Additional Manhours and Work

The PaDER requires that a groundwater monitoring program be established and implemented when clay is used as a pond liner. Additional manpower and costs will be incurred by the station for collecting and analysing water samples obtained from the four groundwater monitoring wells to be installed as a part of this project. These samples must be obtained per PaDER regulations.

kml I.D. 0330E Mr. Andrew Wheeler, Administrator, US EPA December 2020

ATTACHMENT 6F

1984 Water Quality Management Permit Application for AFP Improvements, April 1984

Note: This document is the permit application that was submitted to the State Permitting Agency to support construction of the Ash Filter Ponds. It includes a Design Engineer's Report identifying the design criteria that was utilized for the engineered clay liners.

Pennsylvania Electric Company

1001 Broad Street Johnstown, Pennsylvania 15907 814 533-8403 TR Seese

Eugene R. Cathcart
Vice President Generation Engineering
and Support

April 12, 1984

C-344

Ms. Deborah L. McDonald Bureau of Water Quality Management Department of Environmental Resources Region V 121 S. Highland Avenue Pittsburgh, PA 15206-3988

Dear Ms. McDonald:

SUBJECT:

Industrial Waste Application 3823201 Conemaugh Generating Station Wastewater Treatment System Improvements

Enclosed is a complete application, with duplicate, for improvements to the existing wastewater treatment system discharging from NPDES Discharge 007 to the Conemaugh River from the Conemaugh Generating Station.

The table of contents describes which portions have been revised from the original application of March 1, 1983, in accordance with Department requests to include pond liners in the design. Where appropriate, pages that have not been revised have been duplicated and included in this package, as you requested, including a copy of the check for the original filing fee.

Matters concerning this application should be directed to Mr. James King at the above address or call (814) 533-8568. For material purchasing and design/contractural arrangements to proceed on schedule, we request approval prior to September 28, 1984.

Sincerely,

E. R. Cathcart

El Catheast

trl

Enclosures

cc: Messrs: R. T. Gallus

J. L. Greco/J. R. King

T. J. Simunich

C. C. Stutzman

J. J. Wagner

TABLE OF CONTENTS

Transmittal Letter

Application for Part II Water Quality Management Permit (previously issued 3/83)

Photocopy of Filing Fee Check (previously issued 3/83)

Design Engineer's Report (revised 4/84)

Topographic Map (previously issued 3/83)

Wastewater Flow Schematic

(Drawing - 42D-0053) (revised 4/84)

Soil Erosion and Control Plan

(Letters to Indiana County Conservation District - 12/16/83, 1/6/83)

(Approval letters from Indiana County Conservation District - 1/17/83, 1/18/83) (previously issued 3/83)

Module A and Attachments (revised 4/84)

Module B and Attachments (revised 4/84)

Priority Pollutant Testing and NPDES Sampling Analyses (previously issued 3/83)

Drawings

D-782-018, Rev. B	Addition of Ash Filter Pond Modifications - Plan & Sections
D-782-019, Rev. A	Addition of Ash Filter Pond Modifications - Existing Distribution Box Modifications
D-782-020, Rev. A	Addition of Ash Filter Pond Modifications - New Trough Installation - Ash Filter Ponds 1, 2, 3, 4
D-782-023, Rev. C	Ash Silo Area Drainage Ponds A and B - Proposed Reconstruction - Plan and Sections
D-746-010, Rev. 3	Subsurface Exploration - Test Boring Location - Plan

Data Prepared

DEPARTMENT OF ENVIRONMENTAL RESOURCES WATER QUALITY MANAGEMENT

APPLICATION FOR PART II ... WATER QUALITY MANAGEMENT PERMIT INDUSTRIAL WASTES

Department Use	For D	F

A. TO BE COMPLETED BY THE APPLICANT:

TO BE COMPLETED BY I	HE APPLICANI:			
1. Applicant Informa	tion	2. Facility/Pro	ject Location	
Name: Pennsy	lvania Electric Co.	Name: Mr	. John E. Gritzer,	Superintende
	road Street	Mailing Co	nemaugh Generating	Station
Address: Johnst		Address: * P.		-
	3,111	100	w Florence, PA 159	44
Telephone:	(814) 533-8568	Telephone:	(412) 235-2711	
	AC.	Петериопет	AC PC	
Nature of Busines		*If differen	t from item 1.	
	services	County	Municipality	City
(Steam e	lectric power plant)	Indiana	West Wheatfield	Twp X
3. Description of pr	oject for Which Permit is Rec	uested		Boro
Wastewater tre	atment system improvemen	nts, see Engin	eer's Report attache	ed.
		100 111 6		
	it Applicant or Responsible			
I hereby certify	that I am authorized to make	this application	and that the accompanying	ng report
	g documentation designated th			
	owledge and belief.			
	/			
Signature (Xh/11	n ₂	te 2.11.83	
	President-Generation Eng			
11016	restraint someration in	brincer ring a ba	ppore	
	SWORN AND SUBSCRIBED TO			
	/: Day o	of Fullunity	1933	
JOHN A. DALEY, Notary F		25,1	NOTA	VRY
Johnstown, Cambria Coun		2 xlay	SEA	T.
My Commission Expires Jan.	28, 1987 Notary	Public //		_
	1 /,	//		
THIS GETTION TO BE T	OMPLETED BY THE REGISTERED PR	REFECTIONAL ENGINE	ED WHY DOEDADES THIS ADS	H TCATTONI
			EX NO FREFARES INTO AFF	LICALIUN,
	AND SUPPORTING DOCUMENTATION:			
This is to certify that	I have personally reviewed all engin	neering information co	entained in the accompanying m	odules, drawings,
pecifications, and other	documents which are part of this app a conformance with the requirements	of the Department of	ave round it to be good engir Environmental Resources. and	ir does not to
to best of my knowledge,	withhold information that is perting	ent to a determination	of compliance with the requi	rements of the
spartment.	die Dieserate Colore Cada de et			ha Dans wants
TICE: It is an cirense	under Pennsylvania Crimes Code to af	ille a false statemer	it in comments supplied to t	the peparement.
6 Danier Frances	mh D 11-166		ONWEAL	
me of Design Enginee	er: Thomas P. Wolff		EL STATE OF THE ST	
	Dornaulassia Flacta	: - 0-	ELSA REGISTERED AND	A
esign Firm:	Pennsylvania Electri	ic co.	E PROFESSIONAL	3
			THOMAS P. WOLVE	
ailing Address:	1001 Broad Street		ENGINE	A
			3079-E	7
	Johnstown, PA 15907		TANAL TANAL	
			THE STATE OF THE S	
			William .	
			market San 7	
	01/		1 1/1/2	11
elephone:	814 533-8300		1.000	1
	AC.		Signature of Profess	ional Engineer

(See Reverse Side For Application Checklist for Submittal)

Prepared
\$
Revised

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES WATER QUAILITY MANAGEMENT

INDUSTRIAL WASTE APPLICATION

CHECKLIST FOR SUBMITTAL

Accompanying materials and documentation (See General Instructions)	ATTACHED YES NA	COMPLETE YES NO
1. \$500.00 application fee (less than 15 days old)	X D	
2. Two (2) copies of application, design engineer's report, and accompanying drawings and plans.	X	
a. Affidavit and proper signatures b. Engineer's professional seal c. Properly notarized		
3additional copies of application, design engineer's report and accompanying drawings and plans, for review by DRBC or ECHD.		
4. Schematic flow diagram	\Box	
5. Other plans and drawings		
a. General layout b. Outfall/headwall/encroachment		
6. Topographic map with appropriate details	v	
7. Soil Erosion and Sedimentation Control Plan	X 🗆	
a. County Conservation District Comments (optional)	X 🗆	
8. Two (2) copies of Preparedness Prevention and Contingency (PPC) Plan		
9. Proof of Public Notice (Non-NPDES Cases)		
10,0ther:		
11.0ther:		

i televisijalis laus išljeva. Sušija si turi tili šija s	-	022	3	0	1 11/1 //	Last III
		238	PUNT	C# 500 . 00	37,000	CS-48 REV 681
		7101920 101717 1017	190 DAYS	******5		
្រាក់ ការប្រាប្រកាត់ការការការការប្រាប់ប្រកាត់ នៅពីការការការការការការការការការការការការការក	PUTED INVOICES	102.2	OID AFTER	ANN THE PERSON		
	N.LAYEO	2	DATE	25 83, PE		40 Bir
e de la completa de la completa de la completa de la completa de la completa de la completa de la completa de La completa de la completa de la completa de la completa de la completa de la completa de la completa de la comp	(P)	tric (02		-
កស៊ីចក្នុងកំនុស៊ីដូល ខេត្តកំនត់មូកក	DINECT PAY PER	nnsylvania E	iog di	KCES EMENT	ing in t	01 :
	CR.CHEDII MEM	Pen 100 Joh	-	SA		3000 26.1
	ECK	B	9	ENT LIT O F	15230	06 70:
*		ב ב		1 RU 3 W 06 15	n Bank N.A. ennsylvania	.u.2 2 O
	DUM REFORE	17.4		EPT OF AU UF NOT COSSMAN	Mello Piltsburgh, P	23802
	HIS MEMORAN			PA DI BURE, 600 P	7 +	
a	LASE DETACH I	Benzi		PAY TO THE URDER OF		HCA 781
		IIIIS MEMORANDIJM REFORE LIFPOSITING CHECK TO SALES TAK IDIRECT PAY PERMIT 1001211	NG CHECK F.P. SALES TAX IDINEET PAY PERMIT 00121, D-DISCOURING TO THE PAY PERMIT D-DISCOURING TO THE PAY PERMIT D-DISCOURING TO THE PAY PERMIT D-	NG CHECK THE WAR OF THE PRICE FROM THE PRICE OF THE PRIC	IRONMENTAL RESOURCES ROLL ITY MANAGEMENT 15.22 ROLL ITY MANAGEMENT 15.22 PENNSYLVA	IRONMENTAL RESOURCES COLOU FORBES AVE 15.222 NA. No. No. No. No. No. No. No.

PENNSYLVANIA ELECTRIC COMPANY CONEMAUGH STATION

APPLICATION FOR PART II WATER QUALITY MANAGEMENT PERMIT WASTEWATER TREATMENT SYSTEM IMPROVEMENTS DESIGN ENGINEER'S REPORT

PREPARED BY:

JOHN F. WAGNER, P.E.

Gilbert Associates, Inc.

P.O. Box 1498

Reading, Pennsylvania 19603

TABLE OF CONTENTS

DESIGN ENGINEER'S REPORT

			Page
\mathbf{I}_{0}	Ge	neral Information	1
	Α.	Plant Status	1
	В.	General Facility Layout Diagram	1
	С.	General Project Description	1
		Ash Filter Ponds	2
~		Ash Silo Area Drainage Ponds	2
		Proposed Facilities	3
	D.	Flow Diagram	4
	Ε.	Treatment Facility Size	4
II.	Des	scription of Proposed Modifications	
	Α.	Basis for Design	4
		Ash Filter Pond Improvements	4
		Modifications to Ash Silo Area Drainage Ponds	4
	В.	Supplemental Chemical Addition or Treatment	6
	c.	Pumping Equipment	7
	D.	Monitoring and Control Equipment	7
	E.	Handling, Storage, and Conditioning of Residual	8
	2.	Materials	8
III.	Оре	rational Flexibility and Reliability of the Treatment	
	Uni	ts	9
IV.	Pre	liminary and Supplemental Ground Water, Soils and	
	Geo	logy Information	9
₹.	Soi	l Erosion and Control Plan	9
ZI.	Con	struction Schedule	10

Revised: 4/84

PENNSVLVANIA ELECTRIC COMPANY CONEMAUGH STATION

APPLICATION FOR PART II WATER QUALITY MANAGEMENT PERMIT WASTEWATER TREATMENT SYSTEM IMPROVEMENTS DESIGN ENGINEER'S REPORT

I. General Information

A. Plant Status

This application is submitted by Pennsylvania Electric Company which operates, on behalf of the owners, the Conemaugh Generating Station. The nature of business of this facility is the generation of electric power. The facility contact and mailing address is:

Mr. John E. Gritzer, Superintendent, P.O. Box K, New Florence, PA 15944. The facility is located on LR 32008, West Wheatfield Township, Indiana County, PA.

Matters concerning this application should be directed to Mr. James R. King, Pennsylvania Electric Company, 1001 Broad Street (PT-4), Johnstown, PA 15907.

The facility operates under a variety of environmental permits including NPDES 0005011 and Industrial Waste Permit 3269202.

B. General Facility Layout Diagram

See attached Drawing D-746-010, Rev. 2.

C. General Project Description

This application is for a project which will improve the efficiency of the existing wastewater treatment system at Conemaugh Station and will prevent the seepage of ponded wastewater into groundwater. The system improvements are divided into two parts: the addition of a fourth ash filter pond and improvements to the three existing ash filter ponds; and modifications to the ash silo area drainage ponds. Both sets of ponds discharge through discharge monitoring point 007. These facilities are shown schematically on the attached plant wastewater flow diagram, Drawing 42D-0053 (Rev. 2).

Ash Filter Ponds

The ash filter ponds receive waste for final clarification from the neutralization facility, overflow from the bottom ash dewatering and intake water clarifier sludge. Currently, there are three ponds. Two of the three ponds are in service at one time. The ponds are presently constructed of earthen materials, partially above grade, and contain a filter media and underdrain system for dewatering before cleaning. The discharge structure presently consists of a concrete discharge tower located at the end of the pond at the center. Discharge from the pond is over a 3.5 foot weir consisting of stop logs which are also raised for decanting before cleaning. The overflow and underdrain underflow are collected in this structure and piped to a common discharge line from all ash filter ponds which discharge in a drainage ditch through NPDES discharge point 007. Additionally, each pond is equipped with a containment boom for retaining floating particulate matter and an oil absorbent boom across the effluent end.

Ash Silo Area Drainage Ponds

The ash silo area drainage ponds receive waste for final clarification from drainage around the bottom ash dewatering bins and the fly ash storage silos. Currently, there are two drainage ponds with one pond being in service at a time. The ponds are constructed as excavations into natural ground with the high water level being 3-4 feet below grade. There is no filter media or underdrain system and the ponds are cleaned by a drag line with the ponds filled with water. The discharge is through a 12-inch overflow pipe which

empties into the same drainage ditch which receives the discharge from the ash filter ponds and flows through NPDES discharge point 007.

Proposed Facilities

The proposed facilities for the ash filter pond improvements project will include the following:

- clay lining all four ash filter ponds, including a protective stone layer
- modifications to the inlet distribution box to facilitate maintenance
- replacement of filter media and underdrain pipe
- addition of weir troughs and weir gates at the discharge end of each pond.

The proposed facilities for the modification to the ash silo area drainage ponds will include the following:

- clay lining the two ash silo area drainage ponds including a protective stone layer
- addition of filter media and underdrain pipe
- addition of concrete separating wall
- modification to inlet configuration.

All work will be on station property above the 100-year flood plain elevation.

The water balance will not be affected.

Module A - See attached Module A.

Module B - See attached Module B.

D. Flow Diagram

See attached Drawing 42D-0053, Rev. 2.

E. Treatment Facility Size

See attached Drawing D-782-018, (Rev. B) and D-782-023, (Rev. C), which show sizes of ash filter ponds and ash silo area drainage ponds.

II. Description of Proposed Modifications

A. Basis for Design

Ash Filter Pond Improvements

An engineering study was performed in 1981 to project BAT and BCT effluent limitations and the probability of compliance with those limitations. The study concluded that the present waste treatment facilities were able to meet the current NPDES permit limits, as well as projected BCT limits, provided two ash filter ponds are operated in parallel, and additional improvements are implemented to the ash filter system. The proposed project is based on changes necessary to comply with BCT limits.

Additionally, the Pa. DER has required that these ponds be lined with a impervious liner capable of meeting a permeability requirement of 1×10^{-7} cm/sec. The proposed project will comply with this recent directive.

The present system of three ponds does not allow for guaranteed operation with two ponds in service. Due to unit outages and time required for cleaning, there are times when only one pond is available for service. This condition allows for overloading the resultant carryover of solids. The proposed modifications to the existing ponds are designed to minimize carryover and ensure

compliance with effluent limitations during decanting of the ponds for cleanout.

The loading of the waste filter system has been increased with the installation of the clarifier, since clarifier sludge is pumped to the ponds. The clarifier project originally called for the addition of a fourth pond, but that was delayed to observe the effects of increased loading to the existing ponds.

The scope of the proposed project includes:

- 1) Addition of a fourth ash filter pond. The fourth pond will enable two ash filter ponds to be operated in parallel continuously; provide sufficient time to drain, clean, and restore the ash ponds for service; and help to prevent operating a pond beyond its effective service time.
- 2) Addition of two double-sided weir troughs across the width of each ash filter pond. The weirs will prevent short circuiting; enable the entire surface of the pond to be used for settling; and significantly reduce velocities over the weir, which will reduce carryover of solids.
- 3) Addition of slide gates at the inlet distribution box. The slide gates will permit manual operation and prevent leakage into the ash pond during cleaning.
- 4) Addition of a weir gate in place of the stop logs at each discharge tower. The weir gate will allow slow decanting of the ash pond; prevent major leakage into the discharge tower; and reduce the carryover of solids into the discharge structure.
- 5) Addition of clay liner and protective layer of stone. The liner will be constructed of a minimum of two feet of clay from onsite. A present study is being conducted on the suitability of on-site clay materials. If the study shows that the on-site

clay material does not meet the permeability requirements, then sufficient bentonite material will be mixed with the clay to obtain the required permeability of 1×10^{-7} cm/sec. The addition of the clay liner will meet the Pa. DER permeability requirement.

A stone layer above the clay will be required to prevent erosion and cracking of the clay liner and to protect the liner during cleaning operations.

6) Replacement of filter media and underdrain. The filter media and underdrains must be replaced to allow installation of the clay liner beneath the media. In addition, a 1981 study showed that some portions of the filter media in the ash ponds had become plugged with sludge due to overexcavation of the bottom ash filter layer. Therefore, the filter media and underdrain system will be replaced to prevent leaching of ash sludge through the filter media and to facilitate dewatering for cleaning.

Modifications to Ash Silo Area Drainage Ponds

The present ash silo area drainage ponds are not lined with an impermeable liner and are not constructed to allow efficient dewatering and cleaning. The modifications necessary to meet these requirements include the following:

1) Clay liner, protective stone layer, and subdrain system. The liner will be constructed of a minimum of two feet of clay from on-site. A present study is being conducted on the suitability of on-site clay materials. If the study shows that on-site clay material does not meet the permeability requirements, then sufficient bentonite material will be mixed with the clay to obtain the required permeability of 1 x 10⁻⁷ cm/sec. The addition of the clay liner will meet the Pa. DER permeability requirement.

A stone layer above the clay will be required to prevent erosion and cracking of the clay liner and to protect the liner during cleaning operations.

The subdrain system beneath the clay liner is provided to protect the liner from being damaged by high groundwater while the pond is empty.

- 2) Concrete separating wall. A concrete separating wall is furnished to enable full use of the limited width available for the ponds considering the required side slopes for clay stability of 2 H:1V.
- 3) Addition of filter media and underdrain piping. A filter media and underdrain piping system is provided to enable the ponds to be dewatered so that the ponds can be cleaned more efficiently. Also, the continuous flow of water through the underdrain system will reduce the TSS levels in the discharge from the ponds.
- 4) Inlet distribution modifications. The ash silo area concrete drainage trench will be modified to include inlet shut off gates to enable diversion of flow to either pond in service. The trench will be extended to the center of the inlet end to each pond.

B. Supplemental Chemical Addition or Treatment

The proposed modifications to either the ash filter ponds or the ash silo area drainage ponds will not involve additional chemical treatment.

C. Pumping Equipment

The proposed modifications to either the ash filter ponds or the ash silo area drainage ponds will not require new pumping facilities.

D. Monitoring and Control Equipment

The proposed modification to either the ash filter pond or the ash silo area drainage ponds will not require new monitoring or control equipment for the discharge of treated wastewater to the receiving stream. Existing NPDES discharge point 007 will continue to be used as the monitoring point for discharge from both sets of ponds.

Since clay earthen materials are being used to prevent seepage of ponded wastewater to the groundwater, upgradient and downgradient wells are required to monitor any groundwater contamination. The proposed locations for the upgradient and downgradient monitoring wells are shown on Drawing D-782-023, (Rev. C). Four monitoring wells are shown, two upgradient of all six ponds, and two downgradient below the new fourth ash filter pond.

E. Handling, Storage, and Conditioning of Residual Materials

Residuals (sludge) from the ash filter ponds and the ash silo area drainage ponds will be handled and disposed of in the same manner as previously. Two ash filter ponds and one ash silo area drainage pond are in service at one time. When the ponds are to be cleaned, flow is diverted to the out of service pond or ponds. The ash filter ponds are decanted through the proposed weir gate and allowed to drain through the filter media until dry. The ash silo area ponds are drained through the filter media. The ponds are then cleaned by a drag line from the service roadways. The ash silo area drainage pond can also be cleaned by a Gradall moving into the pond from the discharge end. The sludge (mostly ash) is transported to the ash disposal area for disposal.

The nature and quantity of sludge will not change. An analysis of the waste filter pond sludge has been conducted. The results are:

EP Toxicity (Metals)

Arsenic	<0.001*
Barium	0.076
Cadmium	0.0015
Chromium	0.0060
Lead	0.001
Mercury	<0.0002*
Selenium	<0.001*
Silver	<0.001*

^{*}Represents less than detection limit used.

III. Operational Flexibility and Reliability of the Treatment Units

Supplemental information on the operational flexibility and reliability of the treatment works can be found in the PPC Plan for Conemaugh Station, prepared for the NPDES permit renewal application and filed October 6, 1982.

IV. Preliminary and Supplemental Ground Water, Soils and Geology Information

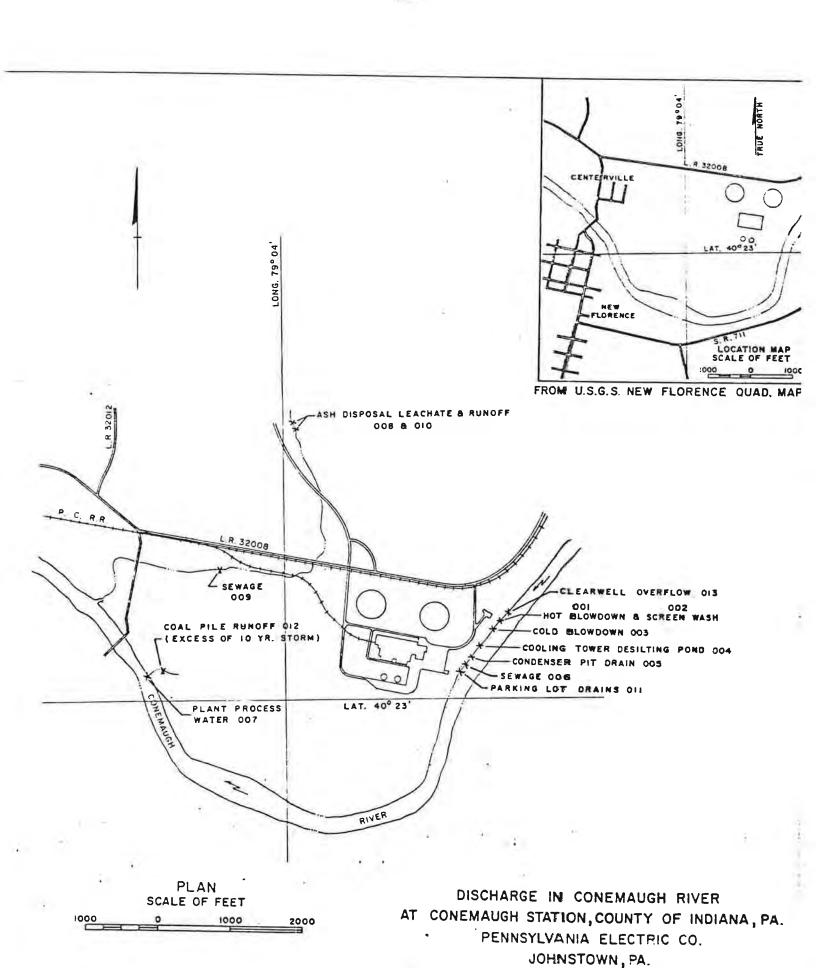
Drilling logs, representative of the area and identified on Drawing D-746-010, are attached.

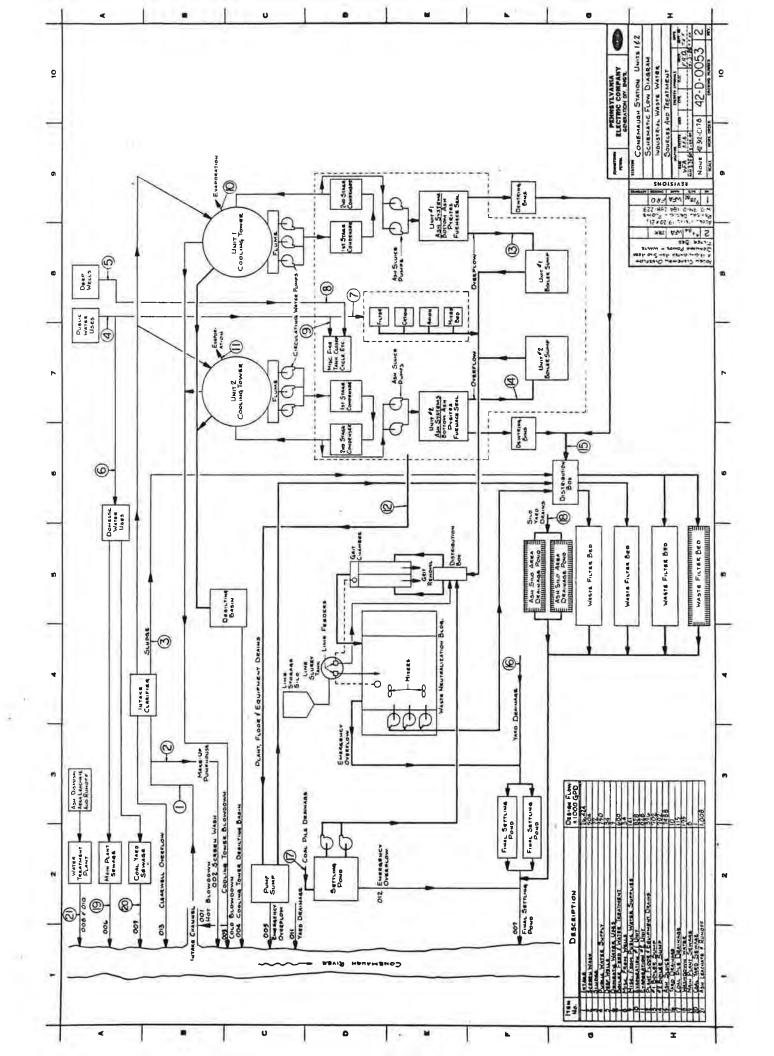
V. Soil Erosion and Control Plan

An SE&C Plan was presented to the Indiana County Conservation District. See attached letters dated December 16, 1982 and January 6, 1983. Approval of this plan by Indiana County Conservation District was granted under the attached letters dated January 12, 1983 and January 18, 1983.

Since this plan was presented and approved, additional new work will be performed at the site which includes clay lining the four ash filter ponds and clay lining the ash silo area drainage ponds. Clay lining inside slopes of the ash filter ponds will not affect the SE&C Plan. Modifications to the ash silo area drainage ponds will take place in and excavation below grade with no outlet. Therefore, this construction will also not affect the SE&C Plan.

Therefore, additional approval from the Indiana County Conservation District was not deemed necessary.


VI. CONSTRUCTION SCHEDULE


Construction of the fourth ash filter pond, modifications to the existing three ash filter ponds, and reconstruction of the ash silo area drainage ponds is proposed as follows:

- 1985 Construction of fourth ash filter pond
 - Modifications to ash filter pond No. 3 including clay lining, filter media, and underdrain replacement, and installation of weir troughs and weir gate
 - Modifications to the inlet distribution line and installation of new inlet piping for ash filter ponds Nos. 3 and 4.
 - Reconstruction of ash silo area drainage ponds Nos. A and B including:
 - clay lining and subdrain system
 - . installation of concrete separating wall
 - . installation of filter media and underdrain piping
 - . modification to inlet configuration
- Construction of modifications to ash filter ponds Nos. 1 and
 2 including clay lining, filter media and underdrain replacement,
 and installation of weir troughs and weir gates.
 - Modifications to inlet distribution box and installation of new inlet piping for ash filter ponds Nos 1 and 2.

Note: During construction of modifications to the ash filter ponds during each time period, the flow will be diverted to the remaining two ash filter ponds. However, these ponds will have to be operated alternately so that all flow will pass through one pond so that the remaining pond can be cleaned. Some reduction in TSS removals will be noted during this period, however, every effort will be made to minimize this reduction by cleaning the ponds as often as necessary to reduce carryover of solids.

During construction of modifications to the ash silo area drainage ponds, the inlet flow will be diverted to the yard drainage ditch (as shown on Drawing D-782-023, Rev. C). This ditch flows through the two final settling ponds where adequate removal of TSS will take place during this construction period.

Mr. Andrew Wheeler, Administrator, US EPA December 2020

ATTACHMENT 6G

Engineering Scope of Services for Ash Filter Ponds Construction, August 1983

Note: This document presents record of the engineering services that were performed to support design and permitting for construction of the Ash Filter Ponds.

RELEASE	NO.	
---------	-----	--

Date of Original Autho Nature of Job Four		Station Conemaugh	
Nature of Job Four	rth Ash Filter Pond	Penelec W.O. C344 GAI W.O. 04-4479-158	
		GAI W.O. 04-4479-158 Date Prepared 2/7/84	
GAI FUNCTION	DATE AUTHORIZED	GAI IS TO PREPARE:	
Study Estimate Schedule	1/16/84 1/16/84 8/1/83	Specifications Bills of Material Penelec Purchase Reqs.	000
Design	8/1/83	Material List	00
Expedite Drafting	8/1/83	Drawing List	
Drarering.	8/1/83	(
\ 		MATERIAL TO BE PURCHASED BY:	u
		PENELEC CONTRACTOR OTHER	_
NAT LEAD ENGINEED _			
AI LEAD ENGINEER		ESIGN ENGINEER F. Straw ROJECT ENGINEER T. J. Simunich	
	FEMELEC FI	ROJECT ENGINEER T. J. Simunich	
Scope: Change No. 1 (R	Revised)		
		sary for the following items:	
was ruled out due toprotective stone covfield investigation	o 3:1 slope requirements) ver over clay liner of soil stockpile for su	le clay materials (synthetic liner itable clay and fill materials	
	of four monitoring wells	wo ash silo area drainage ponds includ:	ina.
 ponds to include clay lining and s flow control on d enlargement of ex investigation int 	filter underdrain tone protective cover discharge and inlet to pos- disting ponds to obtain s	nds and method of decanting ponds ufficient volume of ash storage reating this source of waste other	•
		roject including a preliminary cost	
		ons to existing ash silo area drainage	
-	Quality Management Part	II permit application for these change	es
The revised PER, cost e ponds are required by 2 APPROVED: GAI	stimate, and preliminary /29/84. The preliminary Date 2/8/14	design of the ash silo area drainage permit design package is required by APPROVED: Penelec Technical	1/9/84
00	/	Date	
		Penelec Project	
		Date Penelec Materials Mgt.	
		remerce materials use.	

NO -	RELEASE
NO.	VETEWOR

	Fourth Ash Filter Pond	Penelec W.O. C344	
		GAI W.O. 04-4479-158 Date Prepared 2/7/84	
GAI FUNCTION	DATE AUTHORIZED	GAI IS TO PREPARE:	
Study Estimate Schedule Design Expedite Drafting	1/16/84 1/16/84 8/1/83 8/1/83 8/1/83 8/1/83	Specifications Bills of Material Penelec Purchase Reqs. Material List Drawing List	000001
		MATERIAL TO BE PURCHASED BY:	
		PENELEC CONTRACTOR OTHER	
Specific Tasks		of this area will be used as backgroun	d.
Specific Tasks I. Process Engineer 1. Additional c 2. Assist Civil 3. Assist Civil for all four	ring coordination as lead engine in preliminary design of and Soils in final design ash filter ponds	er 40 ash silo area drainage ponds 20 of clay liner and stone cover	d.
Specific Tasks I. Process Engineer 1. Additional c 2. Assist Civil 3. Assist Civil for all four 4. Investigatio 5. Revise Penel	ing coordination as lead engine in preliminary design of and Soils in final design ash filter ponds n into alternate treatment ec PER #335-83	er 40	d:

	RELEASE	NO.
--	---------	-----

Date of Original Autho Nature of Job Four	rization 8/1/83	Station Conemaugh	
Foul	th Ash Filter Pond	Penelec W.O. <u>C344</u> GAI W.O. <u>04-4479-158</u>	
		Date Prepared 2/7/84	
GAI FUNCTION	DATE AUTHORIZED	GAI IS TO PREPARE:	
Study Estimate Schedule Design Expedite Drafting	1/16/84 1/16/84 8/1/83 8/1/83 8/1/83 8/1/83	Specifications Bills of Material Penelec Purchase Reqs. Material List Drawing List	
		MATERIAL TO BE PURCHASED	BY:
		PENELEC CONTRACTOR	OTHER
 Input to const Field installa driller Preparation of Preliminary deadrainage ponds Preliminary deadrainage pond 	liner and details for a ruction specification for tion of monitoring wells final well logs sign of clay liner and design of filter media and	details for ash silo area	60 60 60 25 20
	f 1 · · · · · · ·	±	
ponds	for preliminary design o	of separating wall between	$\frac{10}{255}$

RELEASE	NO.	
---------	-----	--

Nature of Job For	orization8/1/83	Station Conemand	gh	
	irth Ash Filter Pond	Penelec W.O. C344		
		GAI W.O. 04-4479-		
		Date Prepared 2/7/8	34	
GAI FUNCTION	DATE AUTHORIZED	GAI IS TO PREPARE:		
Study	1/16/84	Specifications		_
Estimate	1/16/84	Bills of Material		
Schedule	8/1/83	Penelec Purchase Reqs		
Design	8/1/83	Material List	•	
Expedite	8/1/83	Drawing List		
Drafting	8/1/83	14.2=		
			_	
				_
	-	MATERIAL TO BE PURCHAS	SED BY:	
		PENELEC CONTRACTO	R OTHER	
AI LEAD ENGINEER	F. Wagner PENELEC DE	SIGN ENGINEER F. St		
	DENETEC DE	O IFCT ENCINEED TO		
	PENELEC PR	OJECT ENGINEER T. J.	Simunich	
	PENELEC PR	OJECT ENGINEER T. J.	Simunich	
Scope:		OJECT ENGINEER T. J.	Simunich	ı
		OJECT ENGINEERT. J.	Simunich	ç
Scope: III. <u>Civil Engineerin</u> g	s a de			·.
Scope: III. <u>Civil Engineering</u> 1. Preliminary d	esign of details for inst	allation of clay liner and	1	¢
Scope: III. <u>Civil Engineering</u> 1. Preliminary d cover materia	esign of details for inst 1 for four ash filter pon	allation of clay liner and	1 20	ς.
Scope: III. <u>Civil Engineering</u> 1. Preliminary d cover materia 2. Final design material incl	esign of details for inst l for four ash filter pon of details for installati uding input to constructi	allation of clay liner and ds on of clay liner and cover on specification	1 20	c
Scope: III. Civil Engineering 1. Preliminary d cover materia 2. Final design material incl 3. Preliminary d	esign of details for inst l for four ash filter pon of details for installati uding input to constructi esign of ash silo area dr	allation of clay liner and ds on of clay liner and cover on specification	1 20 30	
Scope: III. Civil Engineering 1. Preliminary d cover materia 2. Final design material incl 3. Preliminary d 4. Preliminary d	esign of details for inst l for four ash filter pon of details for installati uding input to constructi esign of ash silo area dr esign of wall between pon	allation of clay liner and ids on of clay liner and cover on specification almage ponds ds	1 20 30 20	•
Scope: III. Civil Engineering 1. Preliminary d cover materia 2. Final design material incl 3. Preliminary d 4. Preliminary d 5. Preliminary d	esign of details for inst l for four ash filter pon of details for installati uding input to constructi esign of ash silo area dr esign of wall between pon esign of modifications to	allation of clay liner and ids on of clay liner and cover on specification almage ponds ds	1 20 30	•
Scope: III. Civil Engineering 1. Preliminary d cover materia 2. Final design material incl 3. Preliminary d 4. Preliminary d 5. Preliminary d structure to	esign of details for inst l for four ash filter pon of details for installati uding input to constructi esign of ash silo area dr esign of wall between pon esign of modifications to distribute flow to ponds	callation of clay liner and ds on of clay liner and cover on specification almage ponds ds existing concrete inlet	1 20 30 20	•
Scope: III. Civil Engineering 1. Preliminary d cover materia 2. Final design material incl 3. Preliminary d 4. Preliminary d 5. Preliminary d structure to 6. Develop tempo	esign of details for install for four ash filter pon of details for installatiuding input to constructiesign of ash silo area dresign of wall between pon esign of modifications to distribute flow to ponds	allation of clay liner and ds on of clay liner and cover on specification alnage ponds ds existing concrete inlet	1 20 30 20 15	
Scope: III. Civil Engineering 1. Preliminary d cover materia 2. Final design material incl 3. Preliminary d 4. Preliminary d 5. Preliminary d structure to 6. Develop tempo 7. Preliminary d	esign of details for inst l for four ash filter pon of details for installati uding input to constructi esign of ash silo area dr esign of wall between pon esign of modifications to distribute flow to ponds rary diversion during con esign of discharge struct	callation of clay liner and ds on of clay liner and cover on specification almage ponds ds existing concrete inlet struction ure	20 30 20 15	
Scope: III. Civil Engineering 1. Preliminary d cover materia 2. Final design material incl 3. Preliminary d 4. Preliminary d 5. Preliminary d structure to 6. Develop tempo 7. Preliminary d 8. Preliminary d	esign of details for instal for four ash filter ponof details for installation uding input to constructions of ash silo area dresign of ash silo area dresign of wall between pondesign of modifications to distribute flow to ponds rary diversion during conesign of discharge structesign of filter underdrai	callation of clay liner and ds on of clay liner and cover on specification almage ponds ds existing concrete inlet struction ure	20 30 20 15 10	
Scope: III. Civil Engineering 1. Preliminary d cover materia 2. Final design material incl 3. Preliminary d 4. Preliminary d 5. Preliminary d structure to 6. Develop tempo 7. Preliminary d 8. Preliminary d bypass ditch	esign of details for instal for four ash filter pon of details for installatiuding input to constructiesign of ash silo area dresign of wall between ponesign of modifications to distribute flow to ponds rary diversion during conesign of discharge structesign of filter underdrai	callation of clay liner and ds on of clay liner and cover on specification almage ponds ds existing concrete inlet struction ure n and discharge piping to	20 30 20 15 10	
Scope: III. Civil Engineering 1. Preliminary d cover materia 2. Final design material incl 3. Preliminary d 4. Preliminary d 5. Preliminary d structure to 6. Develop tempo 7. Preliminary d 8. Preliminary d bypass ditch 9. Input to prel	esign of details for install for four ash filter pon of details for installating input to constructive sign of ash silo area dresign of wall between pont as a sign of modifications to distribute flow to ponds arry diversion during contesign of discharge struct esign of filter underdraitiminary report, design re	callation of clay liner and ds on of clay liner and cover on specification almage ponds ds existing concrete inlet struction ure n and discharge piping to	10 20 30 20 15 10 10	
Scope: III. Civil Engineering 1. Preliminary d cover materia 2. Final design material incl 3. Preliminary d 4. Preliminary d 5. Preliminary d structure to 6. Develop tempo 7. Preliminary d 8. Preliminary d bypass ditch	esign of details for install for four ash filter pon of details for installating input to constructive sign of ash silo area dresign of wall between pont as a sign of modifications to distribute flow to ponds arry diversion during contesign of discharge struct esign of filter underdraitiminary report, design re	callation of clay liner and ds on of clay liner and cover on specification almage ponds ds existing concrete inlet struction ure n and discharge piping to	1 20 30 20 15 10 10 10	

RELEASE	NO.	

PENELEC CONTINUING DESIGN SERVICES PROJECT

TASK SCOPE

ature of JobFour	rth Ash Filter Pond		
		Penelec W.O. C344	
		GAI W.O04-4479-15	8
		Date Prepared 2/7/84	
GAI FUNCTION	DATE AUTHORIZED	GAI IS TO PREPARE:	
Study	1/16/84	Specifications	
Estimate	1/16/84	Bills of Material	
Schedule	8/1/83	Penelec Purchase Reqs.	
Design	8/1/83	Material List	
Expedite	8/1/83	Drawing List	
Drafting	8/1/83	2131	
	31.21.32		
		MATERIAL TO BE PURCHASED	D BY:
		PENELEC CONTRACTOR	OTHER _
LEAD ENGINEER T		_	
LEAD ENGINEER J.		SIGN ENGINEER F. Straw	W
	PENELEC PR	ROJECT ENGINEER T. J. S.	imunich
		2, 3, 5,	I mairie ii
ODe:			
. Civil Drafting			
	to dogion imperior		2
COVER material	to design drawings to sh	now clay liner and protective	2
2. Plot monitoring	s including additional s	sections for details	60
Z. Plot monitoring	g wells on plot plan		60 25
3. Preparation of	g wells on plot plan preliminary drawings fo	or ash silo area drainage	25
3. Preparation of ponds including	g wells on plot plan preliminary drawings fo g plan sections and deta	or ash silo area drainage	•
3. Preparation of ponds including 4. Modification to	g wells on plot plan preliminary drawings fo g plan,sections and deta o permit drawings to ref	or ash silo area drainage	60
3. Preparation of ponds including 4. Modification to submittal to Pa	g wells on plot plan preliminary drawings fo g plan,sections and deta o permit drawings to ref	or ash silo area drainage	25 60 20
3. Preparation of ponds including 4. Modification to	g wells on plot plan preliminary drawings fo g plan,sections and deta o permit drawings to ref	or ash silo area drainage ils lect new work for	25 60 20 20
 Prot monitoring Preparation of ponds including Modification to submittal to Pa Administration 	g wells on plot plan preliminary drawings fo g plan,sections and deta o permit drawings to ref	or ash silo area drainage	25 60 20
 Prot monitoring Preparation of ponds including Modification to submittal to Pa Administration Cost Engineering	g wells on plot plan preliminary drawings fog plan, sections and deta permit drawings to ref a. DER	or ash silo area drainage Tils Tect new work for	25 60 20 20
3. Preparation of ponds including 4. Modification to submittal to Pa 5. Administration Cost Engineering 1. Preparation of	g wells on plot plan preliminary drawings fo g plan, sections and deta o permit drawings to ref a. DER preliminary cost estima	or ash silo area drainage ils ilect new work for Total	25 60 20 20
3. Preparation of ponds including 4. Modification to submittal to Pa 5. Administration Cost Engineering 1. Preparation of	g wells on plot plan preliminary drawings fo g plan, sections and deta o permit drawings to ref a. DER preliminary cost estima	or ash silo area drainage ils ilect new work for Total	25 60 20 20
3. Preparation of ponds including 4. Modification to submittal to Pa 5. Administration Cost Engineering 1. Preparation of of clay liner a escalation of c	g wells on plot plan preliminary drawings for g plan, sections and deta o permit drawings to reformation. DER preliminary cost estima and cover material for a	or ash silo area drainage ils lect new work for Total te for installation sh filter ponds and	25 60 20 20 185
3. Preparation of ponds including 4. Modification to submittal to Pa 5. Administration Cost Engineering 1. Preparation of clay liner a escalation of construction in	g wells on plot plan preliminary drawings for g plan, sections and deta o permit drawings to ref a. DER preliminary cost estima and cover material for a construction costs for w n 1985 and 1986.	or ash silo area drainage dils lect new work for Total te for installation sh filter ponds and ork in these ponds for	25 60 20 20
3. Preparation of ponds including 4. Modification to submittal to Pa 5. Administration Cost Engineering Preparation of of clay liner a escalation of construction in 2. Preparation of	g wells on plot plan preliminary drawings for g plan, sections and deta o permit drawings to reformation. DER preliminary cost estimation and cover material for a construction costs for well and 1985 and 1986. preliminary cost estimations	or ash silo area drainage ils ilect new work for Total te for installation sh filter ponds and ork in these ponds for	25 60 20 20 185
2. Plot monitoring 3. Preparation of ponds including 4. Modification to submittal to Pa 5. Administration Cost Engineering 1. Preparation of of clay liner a escalation of construction in 2. Preparation of	g wells on plot plan preliminary drawings for g plan, sections and deta o permit drawings to reformation. DER preliminary cost estimation and cover material for a construction costs for well and 1985 and 1986. preliminary cost estimations	or ash silo area drainage ils ilect new work for Total te for installation sh filter ponds and ork in these ponds for	25 60 20 20 185
3. Preparation of ponds including 4. Modification to submittal to Pa 5. Administration Cost Engineering Preparation of of clay liner a escalation of construction in 2. Preparation of	g wells on plot plan preliminary drawings for g plan, sections and deta o permit drawings to ref a. DER preliminary cost estima and cover material for a construction costs for w n 1985 and 1986.	or ash silo area drainage fils flect new work for Total te for installation sh filter ponds and ork in these ponds for te for construction of ponds	25 60 20 20 185 40
3. Preparation of ponds including 4. Modification to submittal to Pa 5. Administration Cost Engineering 1. Preparation of of clay liner a escalation of construction in 2. Preparation of	g wells on plot plan preliminary drawings for g plan, sections and deta o permit drawings to reformation. DER preliminary cost estimation and cover material for a construction costs for well and 1985 and 1986. preliminary cost estimations	or ash silo area drainage ils ilect new work for Total te for installation sh filter ponds and ork in these ponds for	25 60 20 20 185
2. Plot monitoring 3. Preparation of ponds including 4. Modification to submittal to Pa 5. Administration Cost Engineering 1. Preparation of of clay liner a escalation of construction in 2. Preparation of	g wells on plot plan preliminary drawings for g plan, sections and deta o permit drawings to reformation. DER preliminary cost estimation and cover material for a construction costs for well and 1985 and 1986. preliminary cost estimations	or ash silo area drainage fils flect new work for Total te for installation sh filter ponds and ork in these ponds for te for construction of ponds	25 60 20 20 185 40
2. Plot monitoring 3. Preparation of ponds including 4. Modification to submittal to Pa 5. Administration Cost Engineering 1. Preparation of of clay liner a escalation of construction in 2. Preparation of	g wells on plot plan preliminary drawings for g plan, sections and deta o permit drawings to refea. DER preliminary cost estima and cover material for a construction costs for w n 1985 and 1986. preliminary cost estima ash silo area drainage	or ash silo area drainage fils flect new work for Total te for installation sh filter ponds and ork in these ponds for te for construction of ponds	25 60 20 20 185 40
3. Preparation of ponds including 4. Modification to submittal to Pa 5. Administration Cost Engineering 1. Preparation of of clay liner a escalation of construction in 2. Preparation of two clay lined	g wells on plot plan preliminary drawings for g plan, sections and deta o permit drawings to refea. DER preliminary cost estima and cover material for a construction costs for w n 1985 and 1986. preliminary cost estima ash silo area drainage	or ash silo area drainage fils flect new work for Total te for installation sh filter ponds and ork in these ponds for te for construction of ponds Total	25 60 20 20 185 40
3. Preparation of ponds including 4. Modification to submittal to Pa 5. Administration Cost Engineering Preparation of of clay liner a escalation of construction in 2. Preparation of	g wells on plot plan preliminary drawings for g plan, sections and deta o permit drawings to reformation. DER preliminary cost estimation and cover material for a construction costs for well and 1985 and 1986. preliminary cost estimations	or ash silo area drainage lils lect new work for Total te for installation sh filter ponds and ork in these ponds for te for construction of ponds Total APPROVED:	25 60 20 20 185 40
3. Preparation of ponds including 4. Modification to submittal to Pa 5. Administration Cost Engineering 1. Preparation of of clay liner a escalation of construction in 2. Preparation of two clay lined	g wells on plot plan preliminary drawings for g plan, sections and deta o permit drawings to refea. DER preliminary cost estima and cover material for a construction costs for w n 1985 and 1986. preliminary cost estima ash silo area drainage	or ash silo area drainage fils flect new work for Total te for installation sh filter ponds and ork in these ponds for te for construction of ponds Total APPROVED: Penelec Technical	25 60 20 20 185 40
3. Preparation of ponds including 4. Modification to submittal to Pa 5. Administration Cost Engineering 1. Preparation of of clay liner a escalation of construction in 2. Preparation of two clay lined	g wells on plot plan preliminary drawings for g plan, sections and deta o permit drawings to refea. DER preliminary cost estima and cover material for a construction costs for w n 1985 and 1986. preliminary cost estima ash silo area drainage	or ash silo area drainage fils flect new work for Total te for installation sh filter ponds and ork in these ponds for te for construction of ponds Total APPROVED: Penelec Technical Date	25 60 20 20 185 40
3. Preparation of ponds including 4. Modification to submittal to Pa 5. Administration Cost Engineering 1. Preparation of of clay liner a escalation of construction in 2. Preparation of two clay lined	g wells on plot plan preliminary drawings for g plan, sections and deta o permit drawings to refea. DER preliminary cost estima and cover material for a construction costs for w n 1985 and 1986. preliminary cost estima ash silo area drainage	or ash silo area drainage dils lect new work for Total te for installation sh filter ponds and ork in these ponds for te for construction of ponds Total APPROVED: Penelec Technical Date Penelec Project	25 60 20 20 185 40
3. Preparation of ponds including 4. Modification to submittal to Pa 5. Administration Cost Engineering 1. Preparation of of clay liner a escalation of construction in 2. Preparation of two clay lined	g wells on plot plan preliminary drawings for g plan, sections and deta o permit drawings to refea. DER preliminary cost estima and cover material for a construction costs for w n 1985 and 1986. preliminary cost estima ash silo area drainage	or ash silo area drainage dils lect new work for Total te for installation sh filter ponds and ork in these ponds for te for construction of ponds Total APPROVED: Penelec Technical Date Penelec Project Date	25 60 20 20 185 40
3. Preparation of ponds including 4. Modification to submittal to Pa 5. Administration Cost Engineering 1. Preparation of of clay liner a escalation of construction in 2. Preparation of two clay lined	g wells on plot plan preliminary drawings for g plan, sections and deta o permit drawings to refea. DER preliminary cost estima and cover material for a construction costs for w n 1985 and 1986. preliminary cost estima ash silo area drainage	or ash silo area drainage dils lect new work for Total te for installation sh filter ponds and ork in these ponds for te for construction of ponds Total APPROVED: Penelec Technical Date Penelec Project	25 60 20 20 185 40

PENELEC CONTINUING DESIGN SERVICES PROJECT

TASK SCOPE

Date of	Original Authori		8/1/83	Station	Conemaugh		
Mature	of Job Fourt	h Ash Filte	er Pond		W.O. C344		
-				GAI W.O.		58	
				Date Pre	pared 2/7/84		
GA:	I FUNCTION	DATE AU	THORIZED	GAI IS T	O PREPARE:		
	Study	1/16	5/84	Specific	ations		
	Estimate	1/18	0/84		Material		E
	Schedule	8/1/	/83		Purchase Reqs.		2
	Design	8/1/	/83	Material			
	Expedite	8/1/		Drawing 1			
Ι	Drafting	8/1/					
							L
1.							
I ne		-		MATERIAL	TO BE PURCHASE	D BY:	
				PENELEC	☐ CONTRACTOR	□ OTHER	
AI LEAD	ENGINEER J. F.	Wagner		IGN ENGINEER			
Manhour	Summary			JECT ENGINEE		imunich	
			Present Auth	norization	Additional	Total	
0214	Project Support		30		10	40	
0218	Planning & Sched		40		20	60	
0219	Cost Engineering	5			100	100	
0241 0242	Expediting		20			20	
0409	Specs/Bills of M	laterial	80		-	80	
0409	Soils Engineerin	ıg	140		255	395	
0424	Civil Engineerin	.g	240		195	435	
0426	Project Manager Electrical Engin	0.070	20		-	20	
0445	Civil Drafting	eering	20			20	
0455	Vendor Print Ser	vices	230		185	415	
0719	Process Engineer		30		4-	30	
	1100000 Dugineer	IIIg	$\frac{150}{1,000}$		<u>150</u>	300	
			1,000		915	1,915	
	Out-of-Pocket Ex						
	Present Authoriza	ation -	\$3,000				
			5,000				
	(driller, travel testing)	, material					
	ccscing)		\$8,000				
	1.00		\$0,000				
	101.	Ω_{I}	1 1				
APPROVED	: GAI GYNAM	Date Date	218184	APPROVED:			
		11	777	Penelec Tec	hnical		
	V V	V	1 1	Date			_
				Penelec Pro	ject		_
				Date			
				Date Penelec Mat Date	erials Mgt.		

Mr. Andrew Wheeler, Administrator, US EPA December 2020

ATTACHMENT 6H

Purchase Requisition for Lab and Field Testing, April 1985

Note: This document presents record of the testing services that were performed during construction of the Ash Filter Ponds.

PREV. P O NO PREV REQ	NO	Penelec 2	178	BLD
REQ NOT BUTTER DE LA TEMBRIATE RECUERTED REQUISITE GSPS VENDOR NO CC P TXN ED F O B ORDER ISSUED TO	TERMS	FOR INTERNAL USE O	C. C. STUTZ TO BE SHIPPED LVANIA ELECTR T. J. Simuni Conemaugh St	CMAN 0921 TO: IC COMPANY Ich (GSP5108)
LOCATION STOCK TEM QUANTITY U	SECURE THE FOLLO	WING MATERIALS OR S	ERVICES	TO BE USED FOR
1-0420-2C344-0 1 Funtes tes (4) Con Tes ac #1	sting services for sts as requested th) Waste Filter nemaugh Station. rm: 4/12/85 to 1 timated Cost: \$2 te to Contracts: quired during the tivities as outl: 40-4479-158 dates	Work will be as e course of const ined in GAI Speci	the Fourth ations at signed as ruction fication	Conemaugh Station Fourth (4th) Waste Filter Pond Addition and Modifications to Existing Ponds
REQUISITIONER SIGNATURE T. J. SIMUNICH	4/15/85 \$24	TAL EST COST		
APPROVED BY APPROVAL AUTHORITY NO DATE 6080-3	4 565			

Mr. Andrew Wheeler, Administrator, US EPA December 2020

ATTACHMENT 61

Ash Filter Ponds Liner Certification Report, August 2016

Note: This document presents the evaluations and testing completed to demonstrate that the engineered clay liners for the Ash Filter Ponds were in compliance with the 2015 CCR Rule.

CCR RULE COMPLIANCE

ASH FILTER PONDS LINER CERTIFICATION REPORT

GenOn Northeast Management Company Conemaugh Generating Station New Florence, Pennsylvania

Prepared by:

CB&I Environmental & Infrastructure, Inc. Pittsburgh, Pennsylvania 15235

Table of Contents_____

1.0	Introduction										
2.0	Field Investigation										
3.0	Geote 3.1 3.2 3.3 3.4	chnical Laboratory Testing Results Natural Moisture Content Soil Classification Unit Weight Hydraulic Conductivity	. 6 . 6 . 7								
4.0	Concl	usions	. 8								
5.0	Profes	ssional Engineer Certification	. 9								
6.0	Refere	ences	10								
Table 1	– Sur	mmary of Geotechnical Testing Results									
Figure	1 – Po	nd "B" Boring Locations									
Figure	2 – Po	nd "B" Liner System Cross-Sections									
Attachr	nent A	– "As-Built" Reference Drawing No. D-782-008									
Attachr	nent B	– Boring Logs									
Attachr	nent C	– Photographs									
Attachr	nent D	- Geotechnical Laboratory Report									

1.0 Introduction

On December 19, 2014, the administrator of the United States Environmental Protection Agency signed the Disposal of Coal Combustion Residuals (CCR) from Electric Utilities final rule (the Rule). The Rule was published in the Federal Register on April 17, 2015, became effective on October 19, 2015, and is contained within amended portions of Title 40, Part 257 of the Code of Federal Regulations (CFR). The Rule establishes a comprehensive set of requirements for the disposal/management of CCR in landfills and surface impoundments at coal-fired power plants under Subtitle D of the Resource Conservation and Recovery Act. These requirements include compliance with location restrictions, design criteria, operating criteria, groundwater monitoring and corrective action criteria, and closure and post-closure care aspects. The design criteria include requirements for documenting the presence of an appropriate liner system in new/expanded CCR landfills and in new/existing CCR surface impoundments. Specific to existing surface impoundments, §257.71(a)(1)(i-iii) of the Rule obligates the owner/operator of such CCR units to document (no later than October 17, 2016) whether or not the unit was constructed with a liner system that satisfies one of the following:

- A liner consisting of a minimum of two feet of compacted soil with a hydraulic conductivity of no more than 1×10^{-7} centimeters per second (cm/sec);
- A composite liner that meets the requirements of §257.70(b); or
- An alternative composite liner that meets the requirements of §257.70(c).

Per §257.71(b) of the Rule, documentation generated in this regard must be certified by a registered professional engineer. In addition to being placed in the facility's operating record, this documentation must be noticed to the State Director per §257.106(f)(3) and posted on the publicly accessible website per §257.107(f)(3).

The Conemaugh Generating Station, which is operated by GenOn Northeast Management Company (a subsidiary of NRG Energy, Inc. [NRG]), is a coal-fired power plant located in New Florence, Pennsylvania. At the Station, four Ash Filter Ponds (Ponds "A", "B", "C", and "D" [see Figure 1]) are utilized as part of bottom ash management operations, receiving ash transport water via gravity flow from the adjacent hydrobins. The Ponds facilitate settling of ash particles from the transport water, and are periodically cleaned out to remove the accumulated bottom ash, which is then taken to the Station's on-site CCR landfill for disposal. Having been deemed as existing CCR surface impoundments, the Ponds are thus subject to the requirements of §257.71 of the Rule pertaining to liner system design criteria.

Accordingly, NRG engaged the services of CB&I Environmental & Infrastructure, Inc. (CB&I) to conduct a review of available design/construction information for the Ponds, and for the development and implementation of a field investigation program to visually examine the liner system and gather samples for geotechnical testing. These efforts were undertaken during August through September 2015, with the field investigation component focused on Pond "B", which had been taken out of service for maintenance and afforded the ability to bring the necessary personnel, resources, and equipment into the "empty" footprint of the pond.

This Report has been prepared to summarize the activities performed as part of the Pond "B" liner system investigation, and to provide documentation required by the Rule, including certification of the findings by a professional engineer. Beyond this introductory section, Section 2.0 provides a description of the field investigation, Section 3.0 details the results of the geotechnical laboratory testing program, and Section 4.0 presents overall conclusions. Section 5.0 contains the professional engineer certification, and Section 6.0 lists the references that were consulted during performance of the work.

2.0 Field Investigation

2.1 Historical Information/Basis for Field Investigation

From review of available historical information, design modifications to the ponds were approved by the Pennsylvania Department of Environmental Resources (PADER) with issuance of Water Quality Management Permit No. 3283201 on November 5, 1984. These modifications included installation of an upgraded liner system in each of Ponds #1, #2, and #3 (presently designated as Ponds "A", "B", and "C"), along with the new construction of Pond #4 (presently designated as Pond "D") also to include this same upgraded liner system. Design and subsequent as-built drawings (see "As-Built" Reference Drawing D-782-008 in Attachment A) further elaborated on this upgraded liner system, which was shown to consist (from top to bottom) of a 2.5-feet thick protective bottom ash layer; a 1.5-feet thick layer of American Association of State Highway and Transportation Officials (AASHTO) No. 8 coarse aggregate for pond dewatering; 1.5 feet of impervious fill in which the pond dewatering pipes are located and imbedded with AASHTO No. 8 coarse aggregate; and 2 feet of soil liner comprised of a 0.67-foot (8-inch) bentonite-amended compacted soil layer underlain by an additional 1.33 feet (16 inches) of compacted soil. The total liner system thickness was designed to be 7.5 feet, of which the thickness of the compacted soil component was to be 2 feet. The upgraded liner system on the interior slopes of the Ponds was represented by 2 feet of bentonite-amended soil overlain by a 1.5-feet thick layer of AASHTO R-3 riprap as a protective rock lining. The construction of Pond #4 (Pond "D") and the liner system retro-fit for Pond #3 (Pond "C") were completed during the latter half of 1985, followed by completion of the liner system retro-fits in Ponds #1 and #2 (Ponds "A" and "B") in 1986.

Taking the above into consideration, CB&I developed a field investigation/testing program intended to confirm that the liner system in Pond "B" had been constructed as designed, specifically evaluating the compacted soil layer in terms of satisfying the CCR Rule's criteria for thickness (2 feet) and hydraulic conductivity (no greater than 1x 10⁻⁷ cm/sec). Moreover, the findings from the Pond "B" investigation were intended for extrapolation over the remaining ponds to provide a collective demonstration of compliance for the remaining Ponds "A", "C", and "D".

2.2 August 2015 Field Investigation

As part of an August 27, 2015 walk-over, preliminary boring/sampling locations were marked within the Pond "B" footprint, and identified as borings GT-1 through GT-5 (see Figure 1). Borings GT-1, GT-2, and GT-3 were located across the base of the pond, with borings GT-4 and GT-5 located on the southern and northern interior slopes, respectively. Following clearance of

the locations, CB&I's field geologist and a drilling crew (with a geotechnical drilling rig) from Terra Testing, Inc. of Washington, Pennsylvania mobilized to the Station on August 31, 2015.

Before drilling at any of the identified boring locations, a pilot test boring (TB-1, also shown on Figure 1) was advanced through the base of the pond, and continuous split-barrel samples were collected in order to confirm the components of the liner system as discussed above. Split-barrel samples were collected over the entire depth of TB-1 using the standard penetration test (SPT) in accordance with American Society for Testing and Materials (ASTM) Method D 1586. The SPT consists of raising and dropping a 140-pound hammer 30 inches and counting the number of blows required to advance the split-barrel sampler three successive 6-inch intervals. The number of blows required to drive the split-barrel sampler through the second and third 6-inch intervals is designated as the Penetration Resistance. The Penetration Resistance is a qualitative measure of the in-place consistency of cohesive soils or the in-place relative density of granular soils. Soils collected from each split-barrel sample were logged by CB&I's geologist to note color, grain size and density/consistency. The samples did serve to confirm the various layers of the liner system (aligning with those from the design drawings and spanning over an approximate 7.5-feet depth), with the consistency of the bottom-most soil layer (identified as a two-foot thick clay layer) being classified as medium-stiff to stiff, suggesting that the material was compacted when it was originally placed. A copy of the boring log for TB-1 is included in Attachment B. Upon completion, TB-1 was backfilled by R&L Development Company with materials to match the component layers encountered within the boring. Hydrated bentonite (CETCO® 30-50 mesh granular) was utilized to replace the impervious fill and clay liner layers.

Using the information derived from TB-1, efforts were then directed to drilling of borings GT-1, GT-2, and GT-3 located along the base of the pond in an east-west transect. At each boring location, a hollow-stem auger was advanced to a depth of 5.5 feet below ground surface (corresponding to the top of the clay layer), at which point a Shelby tube was pushed through the entire two-foot thickness of the clay layer from a depth of 5.5 feet to 7.5 feet below ground Shelby tube samples were collected in accordance with ASTM Method D 1587. Drilling of borings GT-4 and GT-5 (located on the interior slopes) utilized similar protocols, with clearing/augering through the rip-rap protective cover down to a depth of 1.5 feet below ground surface (corresponding to the top of the clay layer on the side slopes), followed by Shelby tube sampling down to 3.5 feet below ground surface to encompass the two-foot thick clay layer. A copy of the boring logs for GT-1 thru GT-5 are included in Attachment B. Upon completion, each boring was backfilled with materials to match the component layers encountered. As intended, the Shelby tube sampling provided for the collection of relatively undisturbed samples of the clay liner that were then subjected to laboratory testing for determination of physical properties, including in-situ hydraulic conductivity, unit weight, natural moisture content, and grain-size distribution.

From the boring logs, two cross-sections were developed to depict the liner system components encountered, and are shown on Figure 2. Cross-section A-A' is an east-west profile of Pond "B" through borings GT-1, GT-2, and GT-3, while Cross-section B-B' is a north-south profile through borings GT-2, GT-4, and GT-5. Both of these cross-sections again provide confirmation that the layers encountered during the drilling match those depicted on the original design drawings. Photographs taken during performance of the field investigation program are contained in Attachment C.

3.0 Geotechnical Laboratory Testing Results

The Shelby tube samples collected during the Pond "B" investigation were hand-delivered to Geotechnics, Inc. of East Pittsburgh, Pennsylvania for laboratory analyses. The laboratory testing program was performed using standard ASTM methods and consisted of the following analyses:

- Natural moisture content (ASTM Method D 2216)
- Classification tests to determine the routine index properties of the soils, including grainsize distribution (sieve and hydrometer analysis, ASTM Method D 422), and Atterberg Limits (ASTM Method D 4318)
- Unit weight (ASTM Method D 7263)
- Hydraulic conductivity (ASTM Method D 5084)

Analytical results from the laboratory testing program are summarized on Table 1, with the complete laboratory report (prepared by Geotechnics) contained in Attachment D. As shown on Table 1, analyses were performed on Shelby tube samples collected from each of the borings, but the intervals tested were varied in order to determine the geotechnical properties throughout the entire thickness of the two-foot clay layer, and to identify any potentially significant differences in characteristics. The results of the above-listed analyses are discussed in the following sections.

3.1 Natural Moisture Content

The natural moisture content of the soil comprising the liner for Pond "B" varied from 14.1 to 19.3 percent, and offers information relative to soil plasticity and compaction. Since the natural moisture contents were all below the values reported for the liquid limit tests (Table 1), this provides indication that the soil materials behave as a plastic solid. The natural moisture content values are also reasonable (neither excessively wet nor dry) with respect to the recognized moisture content of clayey soil that is purposely placed and compacted as fill.

3.2 Soil Classification

The soil samples were assigned designations in accordance with the Unified Soil Classification System (USCS). As shown in Table 1, five of the six samples are designated as clay of low plasticity (USCS symbol CL), with the remaining sample being designated as a clayey sand (USCS symbol SC) due to a slightly increased percentage of coarse-grained materials.

3.3 Unit Weight

As-received unit weights ranged from 129.9 to 140.2 pounds per cubic foot (pcf), as bracketed by the samples collected from the upper and lower eight inches of the clay liner in boring GT-1.

3.4 Hydraulic Conductivity

The hydraulic conductivities of the soil samples ranged from 1.6×10^{-8} to 4.1×10^{-8} cm/sec, with all values meeting the Rule criteria of being no greater than 1×10^{-7} cm/sec.

4.0 Conclusions

The geotechnical investigation/testing program performed on the Pond "B" liner was conducted using field protocols and ASTM methods which are recognized and generally accepted engineering practice. The program included drilling a pilot boring (TB-1) to confirm the asdesigned/as-built liner system, and subsequent drilling of five additional borings (GT-1 through GT-5) from which undisturbed Shelby tube samples of the soil liner (clay layer) were collected. Laboratory evaluation of each sample provided the results necessary for comparing the in-situ hydraulic conductivity of the soil liner with the requirements of the Rule.

Based on the field observations and the results of the laboratory testing, the soil comprising the Pond "B" liner is represented by two feet of compacted sandy clay/clayey sand. The in-situ hydraulic conductivity of these materials was measured and found to range from 1.6×10^{-8} to 4.1×10^{-8} cm/sec. Collectively, these findings demonstrate that the Pond "B" compacted soil liner (clay layer) fully meets the requirements of §257.71(a)(1)(i) of the Rule with regard to thickness (two feet) and hydraulic conductivity (no greater than 1×10^{-7} cm/sec).

5.0 Professional Engineer Certification

I attest to being familiar with the design standards per §257.71 of the Rule, and have personally visited and examined the Conemaugh Station Ash Filter Ponds, and further provided guidance to appropriately qualified personnel who conducted the Pond "B" Liner Investigation Program. Based on the findings/data presented herein and the performance of the program in accordance with sound/acceptable engineering practices, I hereby certify per §257.71(b) of the Rule that Pond "B" maintains a liner system compliant with the design criteria outlined in §257.71(a)(1)(i). Additionally, and based on my review/understanding of the consistent nature of construction of the remaining Ash Filter Ponds (Ponds "A", "C", and "D"), the results of the Pond "B" investigation provide ample justification to render this same certification on the liner systems of Ponds "A", "C", and "D".

Name of Professional Engineer:	<u>Laurel C. Lopez</u>
Company:	CB&I Environmental & Infrastructure, Inc
Signature:	Laurel C. Lopy
Date:	8/12/16
PE Registration State:	<u>Pennsylvania</u>
PE Registration Number:	PE-055673-E
Professional Engineer Seal:	

6.0 References

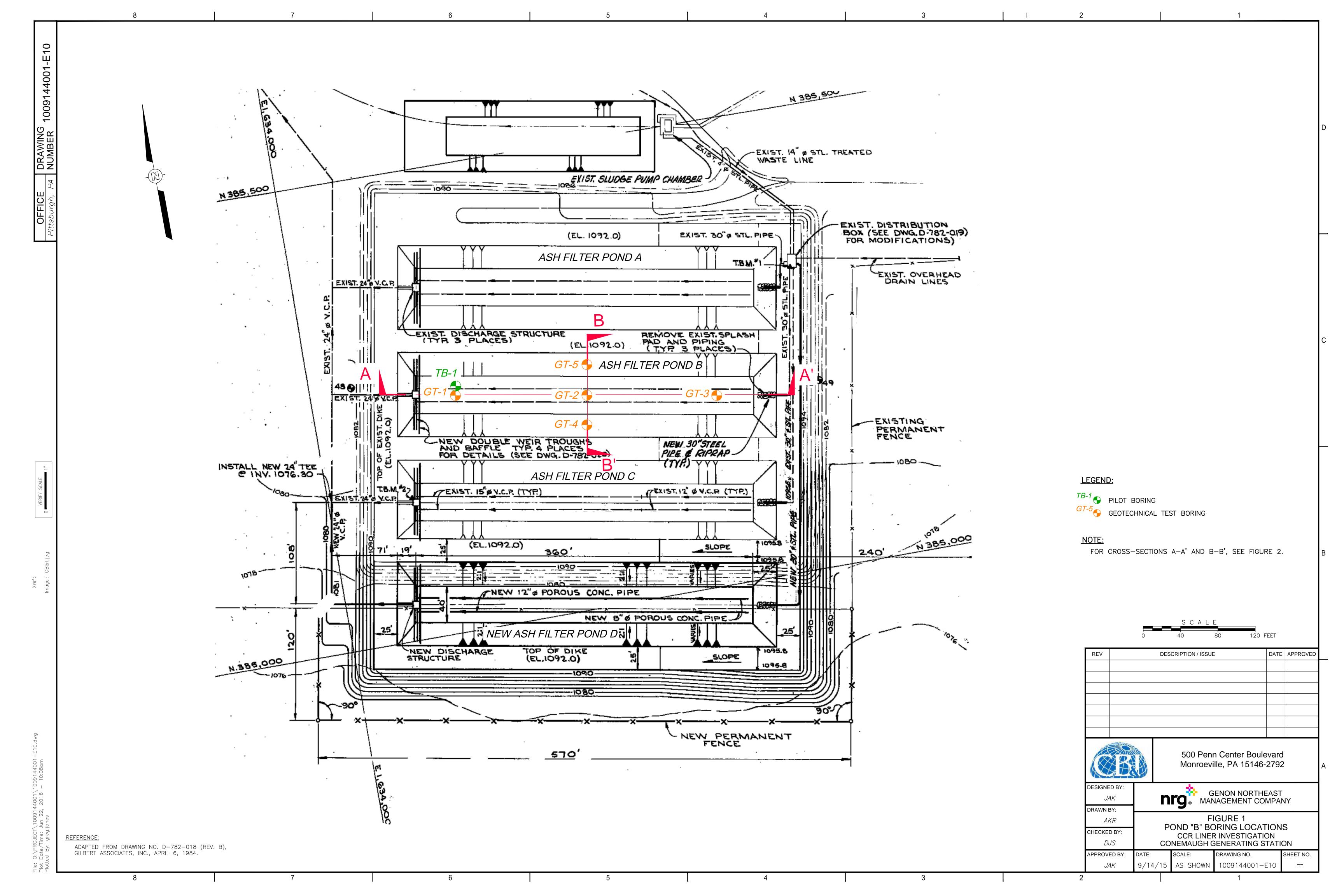
"Addition of Ash Filter Pond No. 4 Plan and Sections – Drawing No. D-782-018 (Rev. B)," Gilbert Associates, Inc., April 6, 1984.

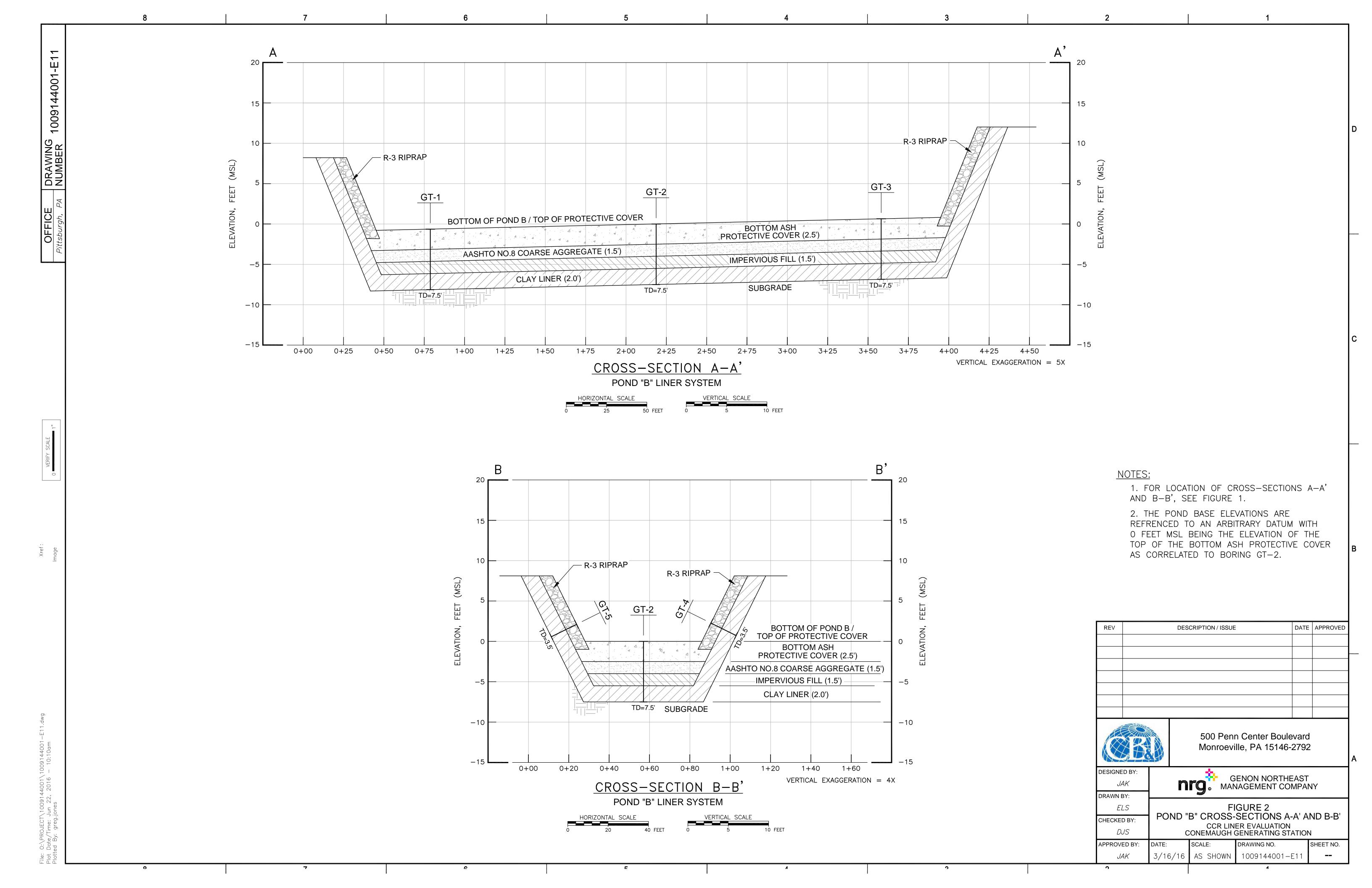
"Industrial Waste Application 3823201, Wastewater Treatment System Improvements, Conemaugh Generating Station," Pennsylvania Electric Company, April 12, 1984.

"Wastewater Filter Pond Additions and Modifications, Conemaugh Station," letter correspondence from F.L. Straw (Pennsylvania Electric Company) to J.F. Wagner (Gilbert Associates, Inc.), August 21, 1984.

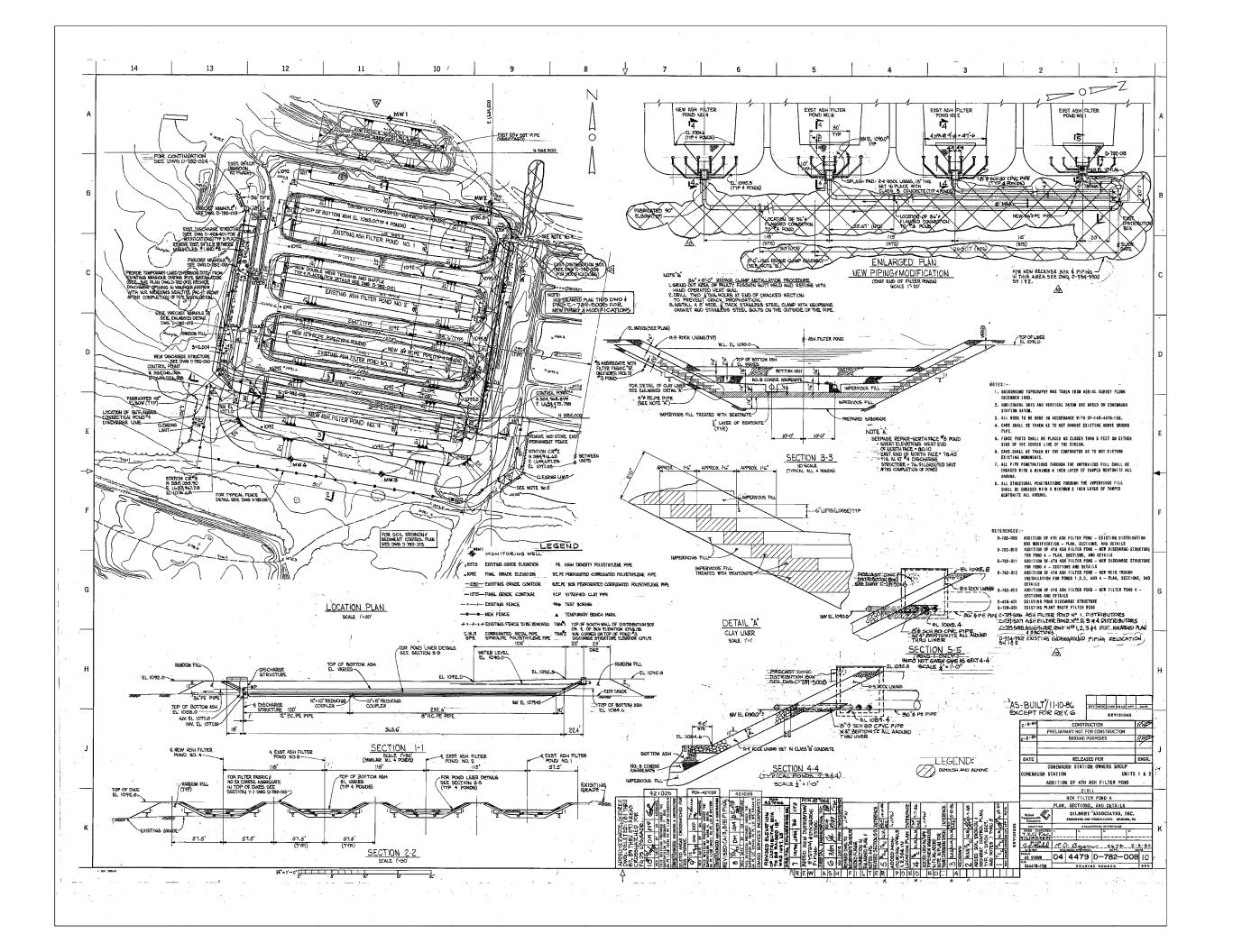
"Addition of 4th Ash Filter Pond Plan, Sections, and Details – Drawing No. D-782-008 (Rev. 10)," Gilbert Associates, Inc., October 10, 1995.

Table 1
Conemaugh Generating Station
Pond "B" Liner Investigation
Summary of Geotechnical Testing Results


Boring No.	Location	Sample Depth (ft)	Interval Analyzed	Natural Moisture Content (%)	% Gravel	% Sand	% Silt and Clay	Liquid Limit	Plastic Limit	Plastic Index	USCS ⁽¹⁾ Description	USCS Symbol	Hydraulic Conductivity (cm/sec)	Unit Wet Weight (pcf)
GT-1	Base	5.5-7.5	Upper 8"	18.4	7.69	20.54	71.76	41	17	24	Lean clay w/ sand	CL	2.6 x 10 ⁻⁸	129.9
GT-1	Base	5.5-7.5	Lower 8"	14.9	11.68	26.77	61.55	37	18	19	Sandy lean clay	CL	2.5 x 10 ⁻⁸	140.2
GT-2	Base	5.5-7.5	Lower 8"	15.7	15.61	24.17	60.22	46	16	30	Sandy lean clay w/ gravel	CL	1.8 x 10 ⁻⁸	135.6
GT-3	Base	5.5-7.5	Middle 16"	14.1	6.80	25.73	67.47	39	19	20	Sandy lean clay	CL	1.6 x 10 ⁻⁸	133.1
GT-4	Slope	1.5-3.5	Upper 8"	19.3	21.72	38.85	39.43	38	20	18	Clayey sand w/ gravel	SC	4.1 x 10 ⁻⁸	132.2
GT-5	Slope	1.5-3.5	Lower 8"	18.2	19.48	24.62	55.90	39	20	19	Sandy lean clay w/ gravel	CL	3.9 x 10 ⁻⁸	133.6


⁽¹⁾ USCS = Unified Soil Classification System.

cm/sec = centimeters per second


pcf = pounds per cubic foot

Attachment B
Boring Logs

Soil Boring

TB-1Page: 1 of 1

						Owner NRG	COMMENTS Auger from 0' to 5.5'
Location .						Proj. No. <u>1009144001</u>	
Surface El	ev		_ Tota	al Hole D	epth	7.5 ft. North East	
Top of Cas	sing _ <i>N</i>	4	_ Wa	ter Level	Initia	Static Diameter	
Screen: Di	a <i>NA</i>		_ Len	gth NA	4		
Casing: Di	a <i>_NA</i> _		_ Len	gth _NA	4	Type <i>_NA</i>	
						Rig/Core Track Mounted	
						Date <u>8/31/15</u> Permit # <u>NA</u>	
						cense No.	I
	, <u> </u>						
		Sample ID % Recovery	Blow Count Recovery	<u>ي</u>	ass.	Description	
Depth (ft.)	PID (mdd)	eco	v Co	Graphic Log	SCI	(Color Toytura Structura)	
	- 🗷	Sar % R	Blov	์ อิ	USCS Class.	(Color, Texture, Structure) Geologic Descriptions are Based on the	11909
		0				Geologic Descriptions are based on the	
├ 0 ⊣				XXXX			
			3	XXX			
			6				
				>>>>		(0.0 F foot) Dorly grow fine could to 4/4 inch DOTTO	M ACH
			8			(0-2.5 feet) Dark gray fine sand to 1/4-inch BOTTO (Protective Cover Layer)	IVI ASH
						(i releasing devel _aye.)	
- 2 -			10				
4			10				
		9					
			,, [□]	1111	GM	(2.5.4 foot) AACHTO #0. silty rounded DEDDI EC./	Lodovalnoja Lovov
			13		GIVI	(2.5-4 feet) AASHTO #8- silty rounded PEBBLES (Underdrain Layer)
			14	Y			
├ 4 -							
			6	////			
			4	////	CL	(4-5.5 feet) Orange-brown, firm, plastic CLAY, mois	et (Impervious Fill)
			.	////		(+ 0.0 leet) Grange brown, mm, plastic GE/TT, mot	it (Impervious i iii)
			3	////			
2/16				////			
6 -			3	////			
GDT			5				
ORP.				////	CL	(5.5-7.5 feet) CLAY, moist (Liner)	
5			6	////			
			8	////			
B.G			0				
: 8 -							
VAUC							
NE NE							
8							
20/13							
8/.							
CB8 Rev: 8/20/13 CONEMAUGH_POND B.GPJ IT_CORP.GDT 6/22/16							

Soil Boring GT-1

GT-1Page: 1 of 1

Pro	ject _	Conema	ugh Pond	d B			Owner NRG	COMMENTS
Loc	ation .	Auger from 0' to 5.5'						
Sur	face E	lev		_ Tot	al Hole D	Depth		_
Тор	of Ca	sing _ <i>N</i>	A	_ Wa	ter Level	_		
							Type/Size <i>_NA</i>	
					-		Type _ <i>NA</i>	
							Rig/Core Track Mounted Excavator	
								_
						_		
							Date <u>8/31/15</u> Permit # <u>NA</u> cense No	
		, 						
	≘ _	م ج	Sample ID % Recovery	Blow Count Recovery	pic g	USCS Class.	Description	
	Depth (ft.)	PID (ppm)	wplk Seco	× C	Graphic Log	080	(Color, Texture, Structure)	
			SSI %	용장)SN	Geologic Descriptions are Based on the	
\vdash								
	^							
	0 —							
<u> </u>	-						(0-2.5 feet) Dark gray fine sand to 1/4-inch BOTTO	DM ASH
							(Protective Cover Layer)	
-	2 -							
					ПДП			
F	_							
					ЩЩП	GM	(2.5-4 feet) AASHTO #8- silty rounded PEBBLES	(Underdrain Layer)
					 			
	4 —							
	7				$V//\lambda$			
					////			
						CL	(4-5.5 feet) Orange-brown, firm, plastic CLAY, mo	st (Impervious Fill)
F	_							
9					444			
6/22/16					$V//\lambda$			
<u>_</u>	6 —				$V//\lambda$			
P.G				Ш	$V//\lambda$		(FF7Ffact) OLAY majet (Lines)	
SOR			100%	Ш		CL	(5.5-7.5 feet) CLAY, moist (Liner)	
= -	_			Ш				
.GPJ								
				4	<u> </u>			
	8 —							
티	5							
EMA								
8								
113								
8/20								
Rev:								
CB&I Rev: 8/20/13 CONEMAUGH_POND B.GPJ IT_CORP.GDT	10 —							

GT-2Page: 1 of 1 Soil Boring

Project Conemaugh Pond B Owner NRG COMMENTS Auger from 0' to	5.5'
Location Conemaugh, PA Proj. No. 1009144001 Auger from 0 to	5.0
Surface Elev Total Hole Depth	
Top of Casing NA Water Level Initial NA Static NA Diameter	
Screen: Dia NA Length NA Type/Size NA	
Casing: DiaNA LengthNA TypeNA	
Fill Material Backfilled Rig/Core Track Mounted Excavator	
Drill Co. Terra Testing Method	
Driller	
Checked By License No	
Checked by License No	
Description	
협∵ 요ㅌ 웹& ㅇὄ 협망 ㅇ	
(Color, Texture, Structure)	
Geologic Descriptions are Based on the USCS.	
(0-2.5 feet) Dark gray fine sand to 1/4-inch BOTTOM ASH (Protective Cover Layer)	
	\
GM (2.5-4 feet) AASHTO #8- silty rounded PEBBLES (Underdrain Laye	er)
├ 4 -	
CL (4-5.5 feet) Orange-brown, firm, plastic CLAY, moist (Impervious F	III\
(4-5.5 feet) Orange-brown, firm, plastic CLAT, moist (impervious F	II <i>)</i>
9	
6/25/19	
CL (5.5-7.5 feet) CLAY, moist (Liner)	
<u>5</u> }	
²	
CL (5.5-7.5 feet) CLAY, moist (Liner)	

Soil Boring GT-3

GT-3Page: 1 of 1

Project Conemaugh Pond B Owner NRG COMMENTS Auger from 0' to	5.5'
Location Conemaugh, PA Proj. No. 1009144001 Auger from 0 to	5.0
Surface Elev Total Hole Depth	
Top of Casing NA Water Level Initial NA Static NA Diameter	
Screen: Dia NA Length NA Type/Size NA	
Casing: DiaNA LengthNA TypeNA	
Fill Material Backfilled Rig/Core Track Mounted Excavator	
Drill Co. Terra Testing Method	
Driller	
Checked By License No	
Checked by License No	
Description	
협∵ 요ㅌ 웹& ㅇὄ 협망 ㅇ	
(Color, Texture, Structure)	
Geologic Descriptions are Based on the USCS.	
(0-2.5 feet) Dark gray fine sand to 1/4-inch BOTTOM ASH (Protective Cover Layer)	
	\
GM (2.5-4 feet) AASHTO #8- silty rounded PEBBLES (Underdrain Laye	er)
├ 4 -	
CL (4-5.5 feet) Orange-brown, firm, plastic CLAY, moist (Impervious F	III\
(4-5.5 feet) Orange-brown, firm, plastic CLAT, moist (impervious F	II <i>)</i>
9	
6/25/19	
CL (5.5-7.5 feet) CLAY, moist (Liner)	
<u>5</u> }	
²	
CL (5.5-7.5 feet) CLAY, moist (Liner)	

Soil Boring GT-4

GT-4Page: 1 of 1

	Proiect	Conema	ugh Pon	d B			Owner	NRG		COMMENTS
		Conem							Proj. No. <u>1009144001</u>	Auger from 0' to 1.5'
					al Hole C)enth	3.5 ft.	North .	East	
									Diameter	
		-							Diameter	
										-
,	casing: L	ла <u>түл</u>	latillad	_ Ler	igtn <u>'''</u>	1		Trock Mounted	Evenuetor	-
							_		Excavator	-
								0/04/45		-
									Permit # _ <i>NA</i>	I
	Checked	Ву				L	icense No			-
	Depth (ft.)	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.		(C	Description Color, Texture, Structure)	
			wi%			🖺		Geologic D	Descriptions are Based on the	USCS.
	- 0 -									
		_					(0-1.5 feet)	R-3 Rock Lining	(Protective Cover)	
	- 2 -	_	100%			CL	(1.5-3.5 fee	t) CLAY, moist (I	_iner)	
	- 4 -									
S.GPJ IT_CORP.GDT 6/22/16	- 6 -	_								
CB&I Rev: 8/20/13 CONEMAUGH_POND B.GPJ IT_CORP.GDT 6/22/16	- 8 -									
CB&I Rev	- 10 -									

Soil Boring GT-5

Page: 1 of 1

Project <u>Conemaugh Pone</u> Location <u>Conemaugh, PA</u>		Owner <u>NRG</u>	COMMENTS Auger from 0' to 1.5'
Surface Elev. Top of Casing NA Screen: Dia NA Casing: Dia NA Fill Material Backfilled Drill Co. Terra Testing Driller	Total Hole Depth Water Level Initia Length NA Length NA Metho Log By R. Male	Proj. No	
Depth (ft.) PID (ppm) Sample ID % Recovery	Blow Count Recovery Graphic Log USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the	uscs.
- 0 - 		(0-1.5 feet) R-3 Rock Lining (Protective Cover)	
- 2 - l	CL	(1.5-3.5 feet) CLAY, moist (Liner)	
- 4 -			
9PJ IT_CORP.GDT 6/22/16			
CB8, Rev. 8/20/13 CONEMAUGH_POND B.GPJ IT_CORP.GDT 6/22/16			
CB8 Rev. 8/20			

Attachment C
Photographs

Project: Conemaugh Pond "B" Liner Investigation Photographers: David J. Shott/Ronald T. Malec

Project No. 100914401

Photograph No. 1

Date:

August 27, 2015

Location of Photograph:

At western end, looking east across Pond "B"

Description:

Initial walk-around of Pond "B" footprint for preliminary selection of boring locations

Photograph No. 2

Date:

August 27, 2015

Location of Photograph:

Northern interior slope of Pond "B"

Description:

Close-up view of protective rip-rap layer on side slope

Project: Conemaugh Pond "B" Liner Investigation Photographers: David J. Shott/Ronald T. Malec

Project No. 100914401

Photograph No. 3

Date:


August 27, 2015

Location of Photograph:

Toe of southern interior slope of Pond "B"

Description of Photograph:

Preliminary markings for proposed location of Boring GT-4

Photograph No. 4

Date:

August 31, 2015

Location of Photograph:

Western perimeter road adjacent to Pond "B"

Description of Photograph:

Drilling in progress at initial pilot test Boring TB-1

Project: Conemaugh Pond "B" Liner Investigation
Photographers: David J. Shott/Ronald T. Malec

Project No. 100914401

Photograph No. 5

Date:

August 31, 2015

Location of Photograph:

At southwestern corner of Pond "B" and looking northeast

Description of Photograph:

Drilling in progress at Boring GT-5 on northern interior slope

Attachment D
Geotechnical Laboratory Report

September 14, 2015

Project No. 2015-471-001

James Kilburg CB&I 2790 Mosside Blvd. Monroeville, PA 15146

Transmittal Laboratory Test Results NRG Conemaugh

Please find attached the laboratory test results for the above referenced project. The tests were outlined on the Project Verification Form that was transmitted to your firm prior to the testing. The testing was performed in general accordance with the methods listed on the enclosed data sheets. The test results are believed to be representative of the samples that were submitted for testing and are indicative only of the specimens that were evaluated. We have no direct knowledge of the origin of the samples and imply no position with regard to the nature of the test results, i.e. pass/fail and no claims as to the suitability of the material for its intended use.

The test data and all associated project information provided shall be held in strict confidence and disclosed to other parties only with authorization by our Client. The test data submitted herein is considered integral with this report and is not to be reproduced except in whole and only with the authorization of the Client and Geotechnics. The remaining sample materials for this project will be retained for a minimum of 90 days as directed by the Geotechnics' Quality Program.

We are pleased to provide these testing services. Should you have any questions or if we may be of further assistance, please contact our office.

Respectively submitted, *Geotechnics, Inc.*

David R. Backstrom Laboratory Director

We understand that you have a choice in your laboratory services and we thank you for choosing Geotechnics.

SIEVE AND HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

0.001

0.01

0.1

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Upper 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-1

 Lab ID:
 2015-471-001-001
 Soil Color:
 Brown

			SIEVE ANALYSIS				HYDROMETER	₹		
USCS		obbles		gravel			sand		silt and clay frac	
USDA	СО	bbles		gravel				sand	silt	clay
	_ 12"	6"	3"	3/4" 3/8"	#4 #10	#20	#40	#140 #200		
100		$\uparrow \uparrow \uparrow$								
90										
80							~~			
70										
Veight										
Percent Finer By Weight										
int Fine										
Perce										
30										
20										
10										
0										

	USCS Summary		
Sieve Sizes (mm)		Percentage	
Greater Than #4	Gravel	7.69	
#4 To #200	Sand	20.54	
Finer Than #200	Silt & Clay	71.76	

1 Particle Diameter (mm)

USCS Symbol:

1000

100

CL, TESTED

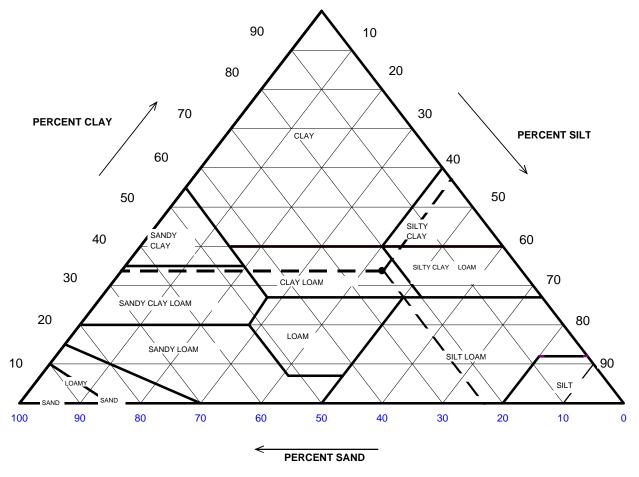
USCS Classification:

LEAN CLAY WITH SAND

page 1 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

10


USDA CLASSIFICATION CHART

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Upper 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-1

 Lab ID:
 2015-471-001-001
 Soil Color:
 Brown

Particle Size	Percent Finer	USDA SUMMARY	' Actual Percentage	Corrected % of Minus 2.0 mm material for USDA Classificat.
(mm)	(%)		(%)	(%)
		Gravel	12.94	0.00
2	87.06	Sand	20.09	23.08
0.05	66.96	Silt	37.54	43.12
0.002	29.42	Clay	29.42	33.80
		USDA Classification:	CLAY LOAM	

page 2 of 4 DCN: CT-S3A DATE: 3/18/13 REVISION: 11

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Upper 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-1

 Lab ID:
 2015-471-001-001
 Soil Color:
 Brown

Weight of Tare (g) Weight of Water (g) Weight of Dry Sample (g)	NA NA NA
Weight of Tare (g) Weight of Water (g)	
	N <i>A</i>
) Weight of Tare & Dry Sample (g)	NA
Weight of Tare & Wet Sample (g)	NA
Tare No.	N/
)	Weight of Tare & Wet Sample (g)

Wet Weight of -3/4" Sample (g)	NA	Weight of the Dry Sample (g)	590.18
Dry Weight of -3/4" Sample (g)	166.64	Weight of - #200 Material (g)	423.54
Wet Weight of +3/4" Sample (g)	NA	Weight of + #200 Material (g)	166.64
Dry Weight of +3/4" Sample (g)	0.00		
Total Dry Weight of Sample (g)	NA		

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.5	12.26	2.08	2.08	97.92	97.92
3/8"	9.50	16.96	2.87	4.95	95.05	95.05
#4	4.75	16.19	2.74	7.69	92.31	92.31
#10	2.00	30.98	5.25	12.94	87.06	87.06
#20	0.85	25.11	4.25	17.20	82.80	82.80
#40	0.425	15.47	2.62	19.82	80.18	80.18
#60	0.250	12.67	2.15	21.97	78.03	78.03
#140	0.106	22.58	3.83	25.79	74.21	74.21
#200	0.075	14.42	2.44	28.24	71.76	71.76
Pan	-	423.54	71.76	100.00	-	-

Tested By RAL Date 9/10/15 0	Checked By	KC	Date	9/14/15
------------------------------	------------	----	------	---------

HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client: CB&I

Client Reference: NRG Conemaugh Depth (ft): Upper 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-1

 Lab ID:
 2015-471-001-001
 Soil Color:
 Brown

Elapsed Time	R Measured	Temp.	Composite Correction	R Corrected	N	K Factor	Diameter	N'
(min)		(°C)			(%)		(mm)	(%)
0	NA	NA	NA	NA	NA	NA	NA	NA
2	52.0	24.1	5.61	46.4	82.0	0.01281	0.0252	58.9
5	48.5	24.1	5.61	42.9	75.8	0.01281	0.0165	54.4
15	44.5	24.1	5.61	38.9	68.8	0.01281	0.0099	49.4
30	41.0	24.1	5.61	35.4	62.6	0.01281	0.0072	44.9
60	38.0	23.9	5.68	32.3	57.1	0.01284	0.0053	41.0
250	31.0	23.6	5.79	25.2	44.6	0.01288	0.0027	32.0
1440	25.5	23.7	5.75	19.7	34.9	0.01287	0.0012	25.1

Boring No.:

Pond B

Soil Specimen Data		Other Corrections		
Tare No.	659			
Weight of Tare & Dry Material (g)	156.59	a - Factor	0.99	
Weight of Tare (g)	95.60			
Weight of Deflocculant (g)	5.0	Percent Finer than # 200	71.76	
Weight of Dry Material (g)	56.0			
		Specific Gravity	2.7	Assumed

Note: Hydrometer test is performed on - # 200 sieve material.

Tested By TO Date 9/10/15 Checked By KC Date 9/14/15

page 4 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

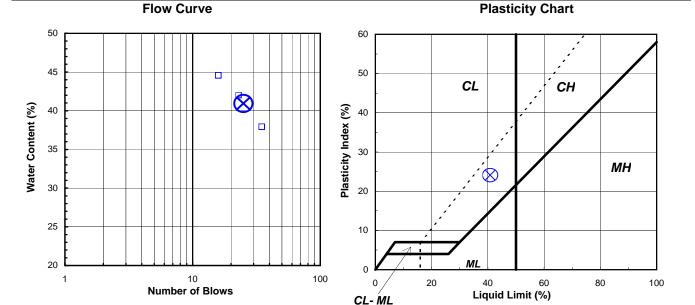
S:Excel\Excel QA\Spreadsheets\SieveHyd.xls

ATTERBERG LIMITS

ASTM D 4318-10

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Upper 8" of tube


Project No.: 2015-471-001 Sample No.: GT-1

Lab ID: 2015-471-001-001 Soil Description: BROWN LEAN CLAY

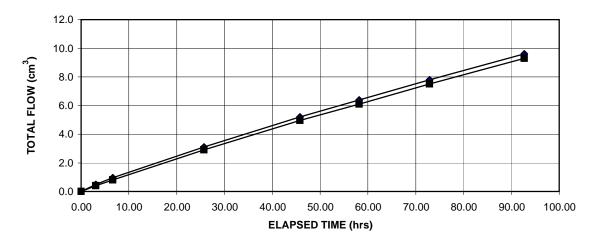
Note: The USCS symbol used with this test refers only to the minus No. 40 (Minus No. 40 sieve material, Airdried) sieve material. See the "Sieve and Hydrometer Analysis" graph page for the complete material description.

Sieve material. See the Sieve and	nyurometer	Allalysis g	grapii paye ior ine	e complete material description .
Liquid Limit Test	1	2	3	
-				M
Tare Number:	197	212	246	U
Wt. of Tare & Wet Sample (g):	37.73	39.65	37.59	L
Wt. of Tare & Dry Sample (g):	31.48	33.63	32.07	Т
Weight of Tare (g):	17.44	19.29	17.50	1
Weight of Water (g):	6.3	6.0	5.5	Р
Weight of Dry Sample (g):	14.0	14.3	14.6	0
				I
Moisture Content (%):	44.5	42.0	37.9	N
Number of Blows:	16	23	35	Т

Plastic Limit Test	1	2	Range	Test Results	
Tare Number:	238	449		Liquid Limit (%):	41
Wt. of Tare & Wet Sample (g):	26.33	29.42			
Wt. of Tare & Dry Sample (g):	25.43	28.53		Plastic Limit (%):	17
Weight of Tare (g):	20.18	23.29			
Weight of Water (g):	0.9	0.9		Plasticity Index (%):	24
Weight of Dry Sample (g):	5.3	5.2			
, , ,				USCS Symbol:	CL
Moisture Content (%):	17.1	17.0	0.2		
Note: The acceptable range of th	e two Moistu	ıre content	s is ± 2.6		

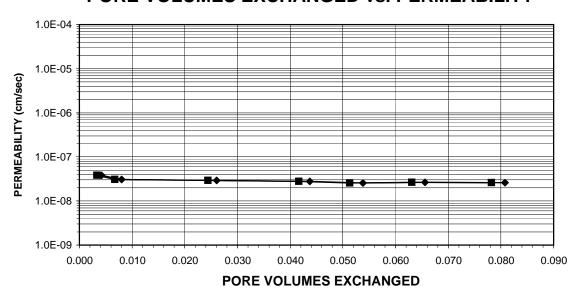
Tested By RAL Date 9/8/15 Checked By KC Date 9/9/15

Client: CB&I Boring No.: Pond B


Client Project: NRG Conemaugh Depth (ft): Upper 8" of Tube

Project No.: 2015-471-001 Sample No.: GT-1

Lab ID No.: 2015-471-001-001


AVERAGE PERMEABILITY = 2.6E-08 cm/sec @ 20°C AVERAGE PERMEABILITY = 2.6E-10 m/sec @ 20°C

TOTAL FLOW vs. ELAPSED TIME

→ INFLOW — OUTFLOW

PORE VOLUMES EXCHANGED vs. PERMEABILITY

Tested By: TRE Date: 9/3/15 Checked By: KC Date: 9/9/15

ASTM D 5084-10

Client: CB&I

Client Project: NRG Conemaugh Project No.: 2015-471-001 Lab ID No.: 2015-471-001-001 Boring No.: Pond B

Depth (ft): Upper 8" of Tube

Sample No.: GT-1

Specific Gravity: 2.70 Assumed

Sample Condition: Undisturbed

Visual Description: Brown Clay trace to some sand

MOISTURE CONTENT:	BEFORE TEST	AFTER TEST
Tare Number	913	1723
Weight of Tare & Wet Sample (g)	306.91	789.60
Weight of Tare & Dry Sample (g)	276.44	673.30
Weight of Tare (g)	110.49	83.12
Weight of Water (g)	30.47	116.30
Weight of Dry Sample (g)	165.95	590.18
Moisture Content (%)	18.4	19.7

SPECIMEN:	BEFORE TEST	AFTER TEST
Weight of Tube & Wet Sample (g)	931.19	NA
Weight of Tube (g)	225.39	NA
Weight of Wet Sample (g)	705.80	713.82
Length 1 (in)	3.188	3.234
Length 2 (in)	3.193	3.204
Length 3 (in)	3.180	3.201
Top Diameter (in)	2.867	2.862
Middle Diameter (in)	2.882	2.856
Bottom Diameter (in)	2.877	2.881
Average Length (in)	3.19	3.21
Average Area (in ²)	6.49	6.45
Sample Volume (cm ³)	339.12	339.75
Unit Wet Weight (g/cm ³)	2.08	2.10
Unit Wet Weight (pcf)	129.9	131.2
Unit Dry Weight (pcf)	109.8	109.6
Unit Dry Weight (g/cm ³)	1.76	1.76
Void Ratio, e	0.54	0.54
Porosity, n	0.35	0.35
Pore Volume (cm ³)	118.3	118.9
Total Weight of Sample After Test (g)		706.7

Tested By: TRE 9/3/15 Checked By: KC 9/9/15 Date: Date: Page 2 of 3 DCN: CT-22 DATE: 4/10/13 REVISION: 10 permflow.xls

ASTM D 5084-10

Client: CB&I

Client Project: NRG Conemaugh

Project No.: 2015-471-001 Lab ID No.: 2015-471-001-001 Boring No.: Pond B

Depth (ft): Upper 8" of Tube

Sample No.: GT-1

Pressure Heads (Co	onstant)	<u>Final</u> <u>Sample Dimer</u>	<u>isions</u>
Top Cap (psi)	67.5	Sample Length (cm), L	8.16
Bottom Cap (psi)	70.0	Sample Diameter (cm)	7.28
Cell (psi)	75.0	Sample Area (cm ²), A	41.63
Total Pressure Head (cm)	175.8	Inflow Burette Area (cm ²), a-in	0.861
Hydraulic Gradient	21.54	Outflow Burette Area (cm ²), a-out	0.851
•		B Parameter (%)	96

AVERAGE PERMEABILITY = 2.6E-08 cm/sec @ 20°C AVERAGE PERMEABILITY = 2.6E-10 m/sec @ 20°C

DATE	TIN	ЛE	ELAPSED	TOTAL	TOTAL	TOTAL	FLOW	TEMP.	INCREMENTAL
			TIME	INFLOW	OUTFLOW	HEAD			PERMEABILITY
			t			h	(0 flow)		@ 20°C
(mm/dd/yy)	(hr)	(min)	(hr)	(cm ³)	(cm ³)	(cm)	(1 stop)	(°C)	(cm/sec)
9/4/15	10	46	0.000	0.0	0.0	201.3	0	22.1	NA
9/4/15	13	49	3.050	0.5	0.4	200.3	0	22.0	3.8E-08
9/4/15	17	25	6.650	1.0	8.0	199.3	0	22.0	3.1E-08
9/5/15	12	30	25.733	3.1	2.9	194.4	0	22.0	2.9E-08
9/6/15	8	33	45.783	5.2	5.0	189.5	0	22.0	2.8E-08
9/6/15	20	54	58.133	6.4	6.1	186.8	0	22.8	2.6E-08
9/7/15	11	40	72.900	7.8	7.5	183.5	0	22.0	2.6E-08
9/8/15	7	30	92.733	9.6	9.3	179.3	1	22.0	2.6E-08

Tested By: TRE Date: 9/3/15 Checked By: KC Date: 9/9/15

SIEVE AND HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Lower 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-1

 Lab ID:
 2015-471-001-002
 Soil Color:
 Brown

				SI	EVE	ANAL'	YSIS			HYD	ROMETE	R
								sand		silt and		
CO	bbles		gra	vel					sand		silt	clay
12"	6"	3"	3/4"	3/8"	#4	#10	#20	#40	#140 #200			
$\qquad \qquad \longleftarrow$			\mathcal{T}									
							-					
										Na la		
											*	
	СО	cobbles 12" 6"		cobbles gra 12" 6" 3" 3/4"	cobbles gravel 12" 6" 3" 3/4" 3/8"	cobbles gravel 12" 6" 3" 3/4" 3/8" #4	cobbles gravel 12" 6" 3" 3/4" 3/8" #4 #10	cobbles gravel 12" 6" 3" 3/4" 3/8" #4 #10 #20	cobbles gravel sand 12" 6" 3" 3/4" 3/8" #4 #10 #20 #40	cobbles gravel sand 12" 6" 3" 3/4" 3/8" #4 #10 #20 #40 #140 #200	cobbles gravel sand silt and 12" 6" 3" 3/4" 3/8" #4 #10 #20 #40 #140 #200 #140 #200	cobbles gravel sand silt and clay frac cobbles gravel sand silt 12" 6" 3" 3/4" 3/8" #4 #10 #20 #40 #140 #20

	USCS Summary				
Sieve Sizes (mm)	Percentage				
Greater Than #4	Gravel	11.68			
#4 To #200	Sand	26.77			
Finer Than #200	Silt & Clay	61.55			

Particle Diameter (mm)

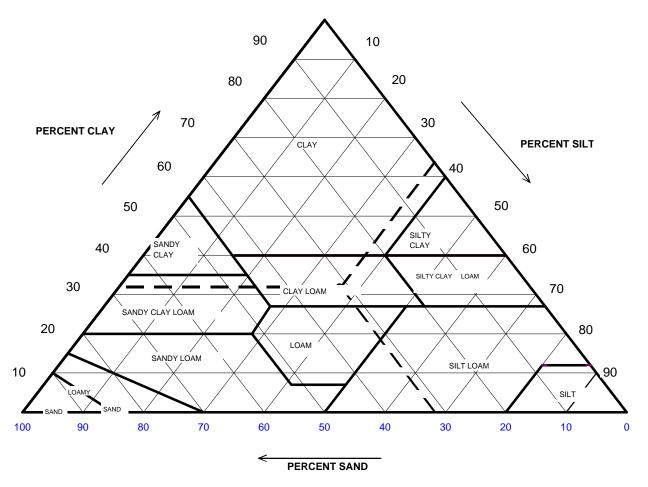
USCS Symbol:

CL, TESTED

USCS Classification: SANDY LEAN CLAY

page 1 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11


USDA CLASSIFICATION CHART

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Lower 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-1

 Lab ID:
 2015-471-001-002
 Soil Color:
 Brown

Particle Size	Percent Finer	USDA SUMMAR	Y Actual Percentage	Corrected % of Minus 2.0 mm material for USDA Classificat.
(mm)	(%)		(%)	(%)
		Gravel	15.67	0.00
2	84.33	Sand	26.62	31.56
0.05	57.72	Silt	30.83	36.56
0.002	26.89	Clay	26.89	31.88
		USDA Classification:	CLAYLOAM	

page 2 of 4 DCN: CT-S3A DATE: 3/18/13 REVISION: 11

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Lower 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-1

 Lab ID:
 2015-471-001-002
 Soil Color:
 Brown

Moisture Content (%)	14.2	Moisture Content (%)	N.A
Weight of Dry Sample (g)	652.27	Weight of Dry Sample (g)	N/
Weight of Water (g)	92.37	Weight of Water (g)	N/
Weight of Tare (g)	83.03	Weight of Tare (g)	NA
Weight of Tare & Dry Sample (g)	735.30	Weight of Tare & Dry Sample (g)	NA
Weight of Tare & Wet Sample (g)	827.67	Weight of Tare & Wet Sample (g)	NA
Tare No.	1741	Tare No.	NA

Wet Weight of -3/4" Sample (g)	NA	Weight of the Dry Sample (g)	652.27
Dry Weight of -3/4" Sample (g)	208.98	Weight of - #200 Material (g)	401.45
Wet Weight of +3/4" Sample (g)	NA	Weight of + #200 Material (g)	250.82
Dry Weight of +3/4" Sample (g)	41.84		
Total Dry Weight of Sample (g)	NA		

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	41.84	6.41	6.41	93.59	93.59
1/2"	12.5	5.55	0.85	7.27	92.73	92.73
3/8"	9.50	9.45	1.45	8.71	91.29	91.29
#4	4.75	19.34	2.97	11.68	88.32	88.32
#10	2.00	26.02	3.99	15.67	84.33	84.33
#20	0.85	23.78	3.65	19.31	80.69	80.69
#40	0.425	21.99	3.37	22.69	77.31	77.31
#60	0.250	25.21	3.86	26.55	73.45	73.45
#140	0.106	49.62	7.61	34.16	65.84	65.84
#200	0.075	28.02	4.30	38.45	61.55	61.55
Pan	-	401.45	61.55	100.00	-	-

Tested By	/ RAL	Date	9/10/15	Checked By	KC	Date	9/14/15

HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client: CB&I

Client Reference: NRG Conemaugh Depth (ft): Lower 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-1

 Lab ID:
 2015-471-001-002
 Soil Color:
 Brown

Elapsed Time	R Measured	Temp.	Composite Correction	R Corrected	N	K Factor	Diameter	N'
(min)		(°C)			(%)		(mm)	(%)
0	NA	NA	NA	NA	NA	NA	NA	NA
2	48.0	24.1	5.61	42.4	83.9	0.01281	0.0263	51.6
5	45.0	24.1	5.61	39.4	78.0	0.01281	0.0171	48.0
15	42.0	24.1	5.61	36.4	72.0	0.01281	0.0101	44.3
30	38.0	24.1	5.61	32.4	64.1	0.01281	0.0074	39.5
60	35.0	23.9	5.68	29.3	58.0	0.01284	0.0054	35.7
250	30.5	23.6	5.79	24.7	48.9	0.01288	0.0027	30.1
1440	23.5	23.7	5.75	17.7	35.1	0.01287	0.0012	21.6

Boring No.:

Pond B

Soil Specimen Data		Other Corrections		
Tare No.	520			
Weight of Tare & Dry Material (g)	146.30	a - Factor	0.99	
Weight of Tare (g)	91.28			
Weight of Deflocculant (g)	5.0	Percent Finer than # 200	61.55	
Weight of Dry Material (g)	50.0			
		Specific Gravity	2.7	Assumed

Note: Hydrometer test is performed on - # 200 sieve material.

Tested By TO Date 9/10/15 Checked By KC Date 9/14/15

page 4 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

S:Excel\Excel QA\Spreadsheets\SieveHyd.xls

ATTERBERG LIMITS

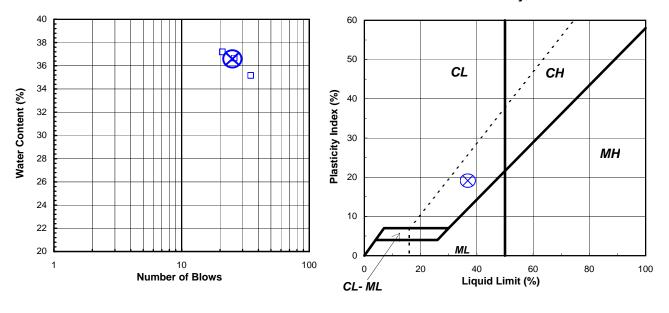
ASTM D 4318-10

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Lower 8" of tube

Project No.: 2015-471-001 Sample No.: GT-1

Lab ID: 2015-471-001-002 Soil Description: BROWN LEAN CLAY


Note: The USCS symbol used with this test refers only to the minus No. 40 (Minus No. 40 sieve material, Airdried)

sieve material. See the "Sieve and Hydrometer Analysis" graph page for the complete material description

Sieve material. See the Sieve and	rryaronicici	Alluly 313 g	rapir page for the t	complete material accomption .
Liquid Limit Test	1	2	3	
-				М
Tare Number:	166	196	209	U
Wt. of Tare & Wet Sample (g):	38.82	38.66	40.24	L
Wt. of Tare & Dry Sample (g):	33.50	33.04	34.57	Т
Weight of Tare (g):	18.36	17.70	19.31	I
Weight of Water (g):	5.3	5.6	5.7	P
Weight of Dry Sample (g):	15.1	15.3	15.3	Ο
				I
Moisture Content (%):	35.1	36.6	37.2	N
Number of Blows:	35	26	21	Т

Plastic Limit Test	1	2	Range	Test Results	
Tare Number:	154	185		Liquid Limit (%):	37
Wt. of Tare & Wet Sample (g):	26.05	25.48			
Wt. of Tare & Dry Sample (g):	25.07	24.54		Plastic Limit (%):	18
Weight of Tare (g):	19.78	19.41			
Weight of Water (g):	1.0	0.9		Plasticity Index (%):	19
Weight of Dry Sample (g):	5.3	5.1			
, , , ,				USCS Symbol:	CL
Moisture Content (%):	18.5	18.3	0.2		
Note: The acceptable range of the	e two Moistu	ıre content	s is ± 2.6		

Flow Curve Plasticity Chart

page 1 of 1 DCN: CTS4B, REV. 4, 3/18/13

JΡ

Date

9/8/15

Tested By

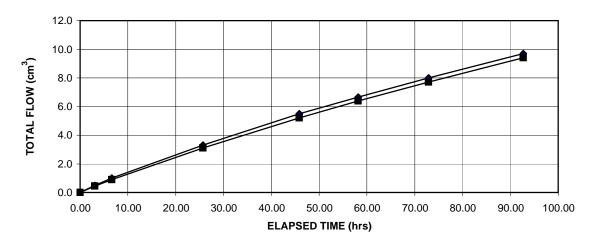
9/10/15

Date

Checked By

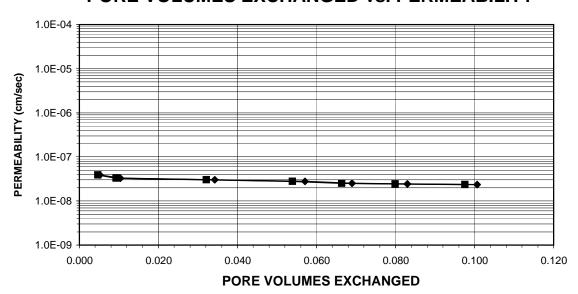
KC

Client: CB&I Boring No.: Pond B


Client Project: NRG Conemaugh Depth (ft): Lower 8" of Tube

Project No.: 2015-471-001 Sample No.: GT-1

Lab ID No.: 2015-471-001-002


AVERAGE PERMEABILITY = 2.5E-08 cm/sec @ 20°C AVERAGE PERMEABILITY = 2.5E-10 m/sec @ 20°C

TOTAL FLOW vs. ELAPSED TIME

→ INFLOW — OUTFLOW

PORE VOLUMES EXCHANGED vs. PERMEABILITY

Tested By: TRE Date: 9/3/15 Checked By: KC Date: 9/9/15

ASTM D 5084-10

Client: CB&I

Client Project: NRG Conemaugh Project No.: 2015-471-001 Lab ID No.: 2015-471-001-002 Boring No.: Pond B

Depth (ft): Lower 8" of Tube

Sample No.: GT-1

Specific Gravity: 2.70 Assumed Sample Condition: Undisturbed

Visual Description: Brown and Gray Sandy Clay

MOISTURE CONTENT:	BEFORE TEST	AFTER TEST
Tare Number	554	1741
Weight of Tare & Wet Sample (g)	378.02	827.67
Weight of Tare & Dry Sample (g)	339.54	735.30
Weight of Tare (g)	80.94	83.03
Weight of Water (g)	38.48	92.37
Weight of Dry Sample (g)	258.60	652.27
Moisture Content (%)	14.9	14.2

SPECIMEN:	BEFORE TEST	AFTER TEST
Weight of Tube & Wet Sample (g)	736.23	NA
Weight of Tube (g)	0.00	NA
Weight of Wet Sample (g)	736.23	731.62
Length 1 (in)	3.084	3.106
Length 2 (in)	3.150	3.131
Length 3 (in)	3.127	3.170
Top Diameter (in)	2.855	2.874
Middle Diameter (in)	2.857	2.876
Bottom Diameter (in)	2.860	2.877
Average Length (in)	3.12	3.14
Average Area (in ²)	6.41	6.49
Sample Volume (cm ³)	327.88	333.73
Unit Wet Weight (g/cm ³)	2.25	2.19
Unit Wet Weight (pcf)	140.2	136.8
Unit Dry Weight (pcf)	122.0	119.9
Unit Dry Weight (g/cm³)	1.95	1.92
Void Ratio, e	0.38	0.41
Porosity, n	0.28	0.29
Pore Volume (cm ³)	90.5	96.4
Total Weight of Sample After Test (g)		745.1

Page 2 of 3

Tested By:

TRE

DCN: CT-22 DATE: 4/10/13 REVISION: 10

Date:

Date:

9/9/15

Checked By:

KC

9/3/15

ASTM D 5084-10

Client: CB&I

Client Project: NRG Conemaugh

Project No.: 2015-471-001 Lab ID No.: 2015-471-001-002 Boring No.: Pond B

Depth (ft): Lower 8" of Tube

Sample No.: GT-1

Pressure Heads (Co	onstant)	<u>Final</u> <u>Sample Dimensions</u>		
Top Cap (psi)	67.5	Sample Length (cm), L	7.96	
Bottom Cap (psi)	70.0	Sample Diameter (cm)	7.30	
Cell (psi)	75.0	Sample Area (cm ²), A	41.90	
Total Pressure Head (cm)	175.8	Inflow Burette Area (cm ²), a-in	0.866	
Hydraulic Gradient	22.07	Outflow Burette Area (cm ²), a-out	0.855	
		B Parameter (%)	96	

AVERAGE PERMEABILITY = 2.5E-08 cm/sec @ 20°C AVERAGE PERMEABILITY = 2.5E-10 m/sec @ 20°C

DATE	TIN	ИE	ELAPSED	TOTAL	TOTAL	TOTAL	FLOW	TEMP.	INCREMENTAL	
			TIME	INFLOW	OUTFLOW	HEAD			PERMEABILITY	
			t			h	(0 flow)		@ 20°C	
(mm/dd/yy)	(hr)	(min)	(hr)	(cm ³)	(cm ³)	(cm)	(1 stop)	(°C)	(cm/sec)	
9/4/15	10	46	0.000	0.0	0.0	201.1	0	22.1	NA	
9/4/15	13	49	3.050	0.5	0.4	200.0	0	22.0	3.9E-08	
9/4/15	17	25	6.650	1.0	0.9	198.9	0	22.0	3.3E-08	
9/5/15	12	30	25.733	3.3	3.1	193.7	0	22.0	3.0E-08	
9/6/15	8	35	45.817	5.5	5.2	188.8	0	22.0	2.8E-08	
9/6/15	20	54	58.133	6.7	6.4	186.1	0	22.8	2.5E-08	
9/7/15	11	40	72.900	8.0	7.7	183.0	0	22.0	2.4E-08	
9/8/15	7	30	92.733	9.7	9.4	179.1	1	22.0	2.4E-08	

Tested By: TRE Date: 9/3/15 Checked By: KC Date: 9/9/15

SIEVE AND HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Lower 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-2

 Lab ID:
 2015-471-001-003
 Soil Color:
 Brown

		SI	EVE ANALY	SIS		HYDROMETE	R
USCS USDA	cobbles			sand		silt and clay frac	
USDA	cobbles	gravel		S	and	silt	clay
	12" 6"	3" 3/4" 3/8"	#4 #10	#20 #40	#140 #200		
100	$ \longrightarrow $						
90							
80							
70							
Weight							
iner By							
Percent Finer By Weight							
30							
20							*
10							
0 1000	10	0 10	Davida D	1	0.1	0.01	0.001

	USCS Summary		
Sieve Sizes (mm)		Percentage	
Greater Than #4	Gravel	15.61	
#4 To #200	Sand	24.17	
Finer Than #200	Silt & Clay	60.22	

Particle Diameter (mm)

USCS Symbol:

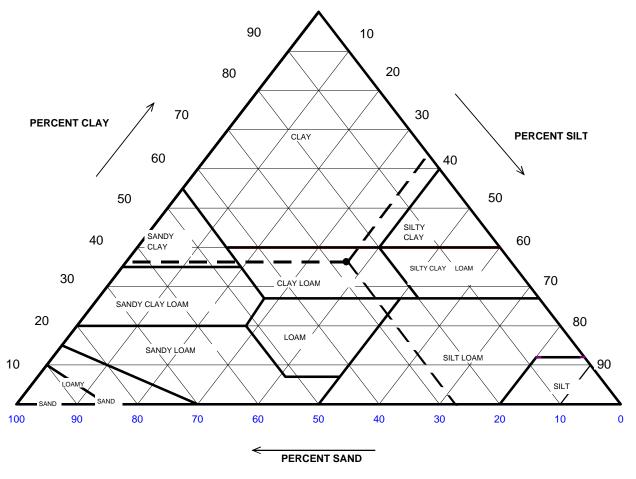
CL, TESTED

USCS Classification:

SANDY LEAN CLAY WITH GRAVEL

page 1 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11


USDA CLASSIFICATION CHART

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Lower 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-2

 Lab ID:
 2015-471-001-003
 Soil Color:
 Brown

Particle Size	Percent Finer	USDA SUMMAR	Y Actual Percentage	Corrected % of Minus 2.0 mm material for USDA Classificat.
(mm)	(%)		(%)	(%)
		Gravel	20.47	0.00
2	79.53	Sand	21.67	27.24
0.05	57.87	Silt	29.01	36.48
0.002	28.86	Clay	28.86	36.28
		USDA Classification:	CLAYLOAM	

page 2 of 4 DCN: CT-S3A DATE: 3/18/13 REVISION: 11

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Lower 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-2

 Lab ID:
 2015-471-001-003
 Soil Color:
 Brown

Moisture Content (%)	14.2	Moisture Content (%)	N/
Weight of Dry Sample (g)	639.74	Weight of Dry Sample (g)	N/
Weight of Water (g)	91.04	Weight of Water (g)	NA
Weight of Tare (g)	90.06	Weight of Tare (g)	NA
Weight of Tare & Dry Sample (g)	729.80	Weight of Tare & Dry Sample (g)	NA
Weight of Tare & Wet Sample (g)	820.84	Weight of Tare & Wet Sample (g)	NA
Tare No.	516	Tare No.	NA

Wet Weight of -3/4" Sample (g)	NA	Weight of the Dry Sample (g)	639.74
Dry Weight of -3/4" Sample (g)	211.24	Weight of - #200 Material (g)	385.28
Wet Weight of +3/4" Sample (g)	NA	Weight of + #200 Material (g)	254.46
Dry Weight of +3/4" Sample (g)	43.22		
Total Dry Weight of Sample (g)	NA		
, , , , , , , , , , , , , , , , , , , ,			

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	, ,			Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	 100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	31.14	4.87	4.87	95.13	95.13
3/4"	19.0	12.08	1.89	6.76	93.24	93.24
1/2"	12.5	20.60	3.22	9.98	90.02	90.02
3/8"	9.50	8.87	1.39	11.36	88.64	88.64
#4	4.75	27.16	4.25	15.61	84.39	84.39
#10	2.00	31.08	4.86	20.47	79.53	79.53
#20	0.85	28.43	4.44	24.91	75.09	75.09
#40	0.425	18.49	2.89	27.80	72.20	72.20
#60	0.250	18.41	2.88	30.68	69.32	69.32
#140	0.106	37.15	5.81	36.49	63.51	63.51
#200	0.075	21.05	3.29	39.78	60.22	60.22
Pan	-	385.28	60.22	100.00	 -	-

Tested By	RAL	Date	9/8/15	Checked By	KC	Date	9/11/15
-----------	-----	------	--------	------------	----	------	---------

page 3 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client: CB&I

Client Reference: NRG Conemaugh Depth (ft): Lower 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-2

 Lab ID:
 2015-471-001-003
 Soil Color:
 Brown

Elapsed Time	R Measured	Temp.	Composite Correction	R Corrected	N	K Factor	Diameter	N'
(min)		(°C)			(%)		(mm)	(%)
0	NA	NA	NA	NA	NA	NA	NA	NA
2	43.5	23.7	5.75	37.7	90.3	0.01287	0.0275	54.4
5	41.0	23.7	5.75	35.2	84.4	0.01287	0.0178	50.8
15	39.0	23.7	5.75	33.2	79.6	0.01287	0.0105	47.9
30	36.0	23.7	5.75	30.2	72.4	0.01287	0.0076	43.6
61	33.0	24	5.64	27.4	65.5	0.01282	0.0054	39.4
250	28.0	24	5.64	22.4	53.5	0.01282	0.0028	32.2
1440	22.0	24.1	5.61	16.4	39.2	0.01281	0.0012	23.6

Boring No.:

Pond B

Soil Specimen Data		Other Corrections						
Tare No.	2324							
Weight of Tare & Dry Material (g)	144.12	a - Factor	0.99					
Weight of Tare (g)	97.75							
Weight of Deflocculant (g)	5.0	Percent Finer than # 200	60.22					
Weight of Dry Material (g)	41.4							
		Specific Gravity	2.7	Assumed				

Note: Hydrometer test is performed on - # 200 sieve material.

Tested By TO Date 9/9/15 Checked By KC Date 9/11/15

page 4 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

S:Excel\Excel QA\Spreadsheets\SieveHyd.xls

ATTERBERG LIMITS

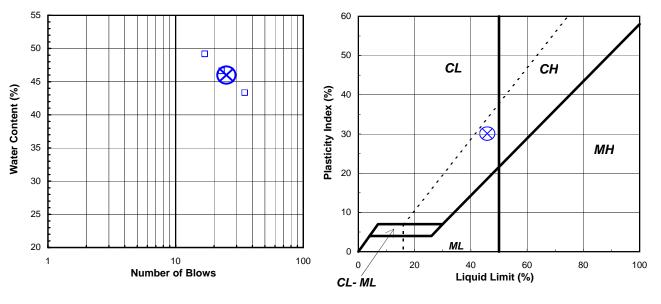
ASTM D 4318-10

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Upper 8" of tube

Project No.: 2015-471-001 Sample No.: GT-2

Lab ID: 2015-471-001-003 Soil Description: BROWN LEAN CLAY


Note: The USCS symbol used with this test refers only to the minus No. 40 (Minus No. 40 sieve material, Airdried)

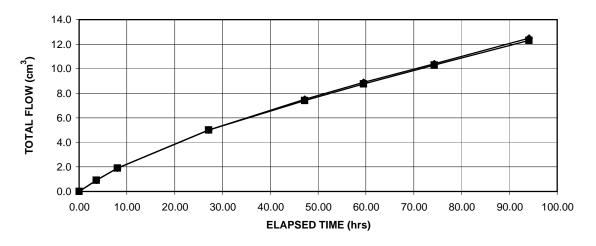
sieve material. See the "Sieve and Hydrometer Analysis" graph page for the complete material description .

Liquid Limit Test	1	2	3		
-				M	
Tare Number:	206	199	243	U	
Wt. of Tare & Wet Sample (g):	39.17	39.19	38.90	L	
Wt. of Tare & Dry Sample (g):	32.33	32.58	32.85	Т	
Weight of Tare (g):	18.41	18.39	18.88	I	
Weight of Water (g):	6.8	6.6	6.1	P	
Weight of Dry Sample (g):	13.9	14.2	14.0	0	
				I	
Moisture Content (%):	49.1	46.6	43.3	N	
Number of Blows:	17	23	35	Т	

Plastic Limit Test	1	2	Range	Test Results	
Tare Number:	135	1276		Liquid Limit (%):	46
Wt. of Tare & Wet Sample (g):	25.52	20.11			
Wt. of Tare & Dry Sample (g):	24.68	19.26		Plastic Limit (%):	16
Weight of Tare (g):	19.41	13.85			
Weight of Water (g):	8.0	8.0		Plasticity Index (%):	30
Weight of Dry Sample (g):	5.3	5.4			
				USCS Symbol:	CL
Moisture Content (%):	15.9	15.7	0.2		
Note: The acceptable range of the	e two Moistu	ıre content	s is ± 2.6		

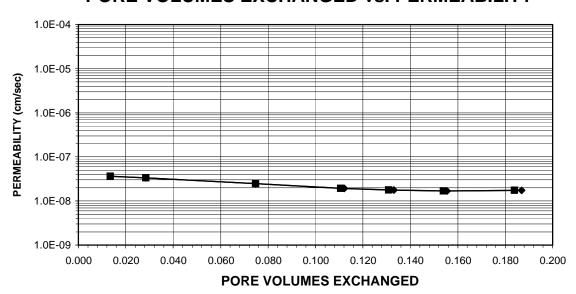
Tested By RAL Date 9/8/15 Checked By KC Date 9/9/15

Client: CB&I Boring No.: Pond B


Client Project: NRG Conemaugh Depth (ft): Botom 8" of tube

Project No.: 2015-471-001 Sample No.: GT-2

Lab ID No.: 2015-471-001-003


AVERAGE PERMEABILITY = 1.8E-08 cm/sec @ 20°C AVERAGE PERMEABILITY = 1.8E-10 m/sec @ 20°C

TOTAL FLOW vs. ELAPSED TIME

→ INFLOW — OUTFLOW

PORE VOLUMES EXCHANGED vs. PERMEABILITY

Tested By: TRE Date: 9/3/15 Checked By: KC Date: 9/9/15

ASTM D 5084-10

Client: CB&I

Client Project: NRG Conemaugh Project No.: 2015-471-001 Lab ID No.: 2015-471-001-003 Boring No.: Pond B

Depth (ft): Botom 8" of tube

Sample No.: GT-2

Specific Gravity: 2.70 Assumed

Sample Condition: Undisturbed

Visual Description: **Brown Sandy Clay**

MOISTURE CONTENT:	BEFORE TEST	AFTER TEST
Tare Number	905	1692
Weight of Tare & Wet Sample (g)	388.44	481.74
Weight of Tare & Dry Sample (g)	350.59	426.90
Weight of Tare (g)	110.00	82.48
Weight of Water (g)	37.85	54.84
Weight of Dry Sample (g)	240.59	344.42
Moisture Content (%)	15.7	15.9

SPECIMEN:	BEFORE TEST	AFTER TEST
Weight of Tube & Wet Sample (g)	392.20	NA
Weight of Tube (g)	0.00	NA
Weight of Wet Sample (g)	392.20	392.84
Length 1 (in)	1.723	1.817
Length 2 (in)	1.755	1.834
Length 3 (in)	1.711	1.802
Top Diameter (in)	2.848	2.863
Middle Diameter (in)	2.845	2.876
Bottom Diameter (in)	2.851	2.864
Average Length (in)	1.73	1.82
Average Area (in ²)	6.37	6.46
Sample Volume (cm ³)	180.56	192.38
Unit Wet Weight (g/cm ³)	2.17	2.04
Unit Wet Weight (pcf)	135.6	127.5
Unit Dry Weight (pcf)	117.2	110.0
Unit Dry Weight (g/cm ³)	1.88	1.76
Void Ratio, e	0.44	0.53
Porosity, n	0.30	0.35
Pore Volume (cm ³)	55.1	66.9
Total Weight of Sample After Test (g)		399.4

TRE Page 2 of 3 DCN: CT-22 DATE: 4/10/13 REVISION: 10

Tested By:

Date:

9/9/15

Checked By:

KC

9/3/15

Date:

ASTM D 5084-10

CB&I Client:

Page 3 of 3

Client Project: NRG Conemaugh

Project No.: 2015-471-001 Lab ID No.: 2015-471-001-003 Sample No.: GT-2

Depth (ft):

Boring No.: Pond B

Botom 8" of tube

Pressure Heads (Co	onstant)	Final Sample Dimensions				
Top Cap (psi)	67.5	Sample Length (cm), L	4.62			
Bottom Cap (psi)	70.0	Sample Diameter (cm)	7.28			
Cell (psi)	75.0	Sample Area (cm ²), A	41.67			
Total Pressure Head (cm)	175.8	Inflow Burette Area (cm ²), a-in	0.860			
Hydraulic Gradient	38.07	Outflow Burette Area (cm ²), a-out	0.857			
		B Parameter (%)	95			

AVERAGE PERMEABILITY = 1.8E-08 cm/sec @ 20°C 1.8E-10 m/sec @ 20°C **AVERAGE PERMEABILITY =**

DATE	TIN	ΛE	ELAPSED	TOTAL	TOTAL	TOTAL	FLOW	TEMP.	INCREMENTAL
			TIME	INFLOW	OUTFLOW	HEAD			PERMEABILITY
			t			h	(0 flow)		@ 20°C
(mm/dd/yy)	(hr)	(min)	(hr)	(cm ³)	(cm ³)	(cm)	(1 stop)	(°C)	(cm/sec)
9/4/15	9	22	0.000	0.0	0.0	201.4	0	22.1	NA
9/4/15	12	59	3.617	0.9	0.9	199.4	0	22.0	3.6E-08
9/4/15	17	25	8.050	1.9	1.9	197.0	0	22.0	3.3E-08
9/5/15	12	30	27.133	5.0	5.0	189.8	0	22.0	2.5E-08
9/6/15	8	35	47.217	7.5	7.4	184.1	0	22.0	1.9E-08
9/6/15	20	54	59.533	8.9	8.8	180.9	0	22.8	1.8E-08
9/7/15	11	40	74.300	10.4	10.3	177.4	0	22.0	1.7E-08
9/8/15	7	30	94.133	12.5	12.3	172.6	1	22.0	1.7E-08

Tested By: **TRE** Checked By: KC 9/9/15 Date: 9/3/15 Date:

SIEVE AND HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

0.001

0.01

0.1

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Middle 16" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-3

 Lab ID:
 2015-471-001-004
 Soil Color:
 Brown

		SIEVE ANALYSIS					LYS	SIS						HY	DRO	ЭME	TER							
USCS	L			obble				grav						sa	nd				S	ilt ar			racti	on
USDA		cobbles			gravel					sand								ilt		clay				
			12"	6"	3'	"		3/4"	3/8"	#4	#10)	#20	#4	0	#140	#200)						
100 -					\prod^{\bullet}	$\overrightarrow{\parallel}$	$\uparrow \uparrow$																	
90 -										*														
80 -														\	×									
70 -																								
Percent Finer By Weight																			N.	1 02				
ner By																				1				
iii - 1																						18		
]																							B	
30 -																								B
20 -																								
10 -																								
0 -	Ш				Ш				$\perp \!\!\!\!\perp \!\!\!\!\perp$				Щ				Ш				Ш			

	USCS Summary		
Sieve Sizes (mm)			
Greater Than #4	Gravel	6.80	
#4 To #200	Sand	25.73	
Finer Than #200	Silt & Clay	67.47	

Particle Diameter (mm)

10

USCS Symbol:

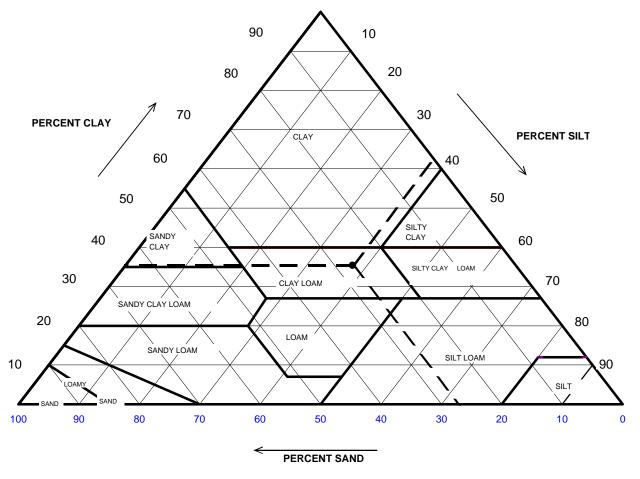
1000

CL, TESTED

USCS Classification: SANDY LEAN CLAY

page 1 of 4 DCN: CT-S3A DATE: 3/18/13 REVISION: 11

100


USDA CLASSIFICATION CHART

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Middle 16" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-3

 Lab ID:
 2015-471-001-004
 Soil Color:
 Brown

Particle Size	Percent Finer	USDA SUMMAR	Y Actual Percentage	Corrected % of Minus 2.0 mm material for USDA Classificat.
(mm)	(%)		(%)	(%)
		Gravel	11.52	0.00
2	88.48	Sand	23.89	27.00
0.05	64.59	Silt	33.26	37.59
0.002	31.33	Clay	31.33	35.40
		USDA Classification:	CLAYLOAM	

page 2 of 4 DCN: CT-S3A DATE: 3/18/13 REVISION: 11

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Middle 16" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-3

 Lab ID:
 2015-471-001-004
 Soil Color:
 Brown

Moisture Content of Passing 3/4" Mat	eria	Water Content of Retained 3/4" Material				
Tare No.	672	Tare No.	NA			
Weight of Tare & Wet Sample (g)	483.71	Weight of Tare & Wet Sample (g)	NA			
Weight of Tare & Dry Sample (g)	433.00	Weight of Tare & Dry Sample (g)	NA			
Weight of Tare (g)	96.31	Weight of Tare (g)	NA			
Weight of Water (g)	50.71	Weight of Water (g)	NA			
Weight of Dry Sample (g)	336.69	Weight of Dry Sample (g)	NA			
Moisture Content (%)	15.1	Moisture Content (%)	N.A			
Wet Weight of -3/4" Sample (g)	NA	Weight of the Dry Sample (g)	336.69			
Dry Weight of -3/4" Sample (g) 109.51		Weight of - #200 Material (g)	227.18			
Wet Weight of +3/4" Sample (a)	NA	Weight of + #200 Material (g)				

Wet Weight of -3/4" Sample (g) Dry Weight of -3/4" Sample (g)	NA 109.51	Weight of the Dry Sample (g) Weight of -#200 Material (g)	336.69 227.18
Wet Weight of +3/4" Sample (g)	NA	Weight of + #200 Material (g)	109.51
Dry Weight of +3/4" Sample (g)	0.00		
Total Dry Weight of Sample (g)	NA		
, , , , ,			

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
00	opog			Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.5	10.47	3.11	3.11	96.89	96.89
3/8"	9.50	3.20	0.95	4.06	95.94	95.94
#4	4.75	9.21	2.74	6.80	93.20	93.20
#10	2.00	15.89	4.72	11.52	88.48	88.48
#20	0.85	14.68	4.36	15.88	84.12	84.12
#40	0.425	11.03	3.28	19.15	80.85	80.85
#60	0.250	10.68	3.17	22.32	77.68	77.68
#140	0.106	21.76	6.46	28.79	71.21	71.21
#200	0.075	12.59	3.74	32.53	67.47	67.47
Pan	-	227.18	67.47	100.00	-	-

Tested By	RAL	Date	9/8/15	Checked By	KC	Date	9/11/15
-----------	-----	------	--------	------------	----	------	---------

page 3 of 4

HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client: CB&I

Client Reference: NRG Conemaugh Depth (ft): Middle 16" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-3

 Lab ID:
 2015-471-001-004
 Soil Color:
 Brown

Elapsed Time	R Measured	Temp.	Composite Correction	R Corrected	N	K Factor	Diameter	N'
(min)		(°C)			(%)		(mm)	(%)
0	NA	NA	NA	NA	NA	NA	NA	NA
2	46.0	23.7	5.75	40.2	89.2	0.01287	0.0269	60.2
5	44.0	23.7	5.75	38.2	84.8	0.01287	0.0173	57.2
15	40.0	23.7	5.75	34.2	75.9	0.01287	0.0104	51.2
30	38.0	23.7	5.75	32.2	71.5	0.01287	0.0075	48.2
64	34.5	24	5.64	28.9	64.0	0.01282	0.0052	43.2
250	28.5	24	5.64	22.9	50.7	0.01282	0.0028	34.2
1440	23.5	24.1	5.61	17.9	39.7	0.01281	0.0012	26.8

Boring No.:

Pond B

Soil Specimen Data		Other Corrections		
Tare No.	1681			
Weight of Tare & Dry Material (g)	147.78	a - Factor	0.99	
Weight of Tare (g)	98.11			
Weight of Deflocculant (g)	5.0	Percent Finer than # 200	67.47	
Weight of Dry Material (g)	44.7			
		Specific Gravity	2.7	Assumed

Note: Hydrometer test is performed on - # 200 sieve material.

Tested By TO Date 9/9/15 Checked By KC Date 9/11/15

page 4 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

S:Excel\Excel QA\Spreadsheets\SieveHyd.xls

Т

ATTERBERG LIMITS

ASTM D 4318-10

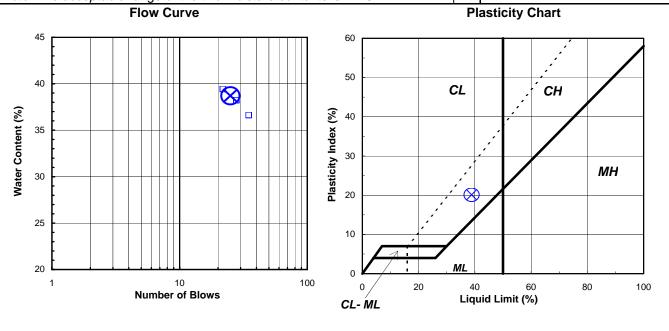
Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Middle 16" of tube

28

Project No.: 2015-471-001 Sample No.: GT-3

35


Lab ID: 2015-471-001-004 Soil Description: BROWN LEAN CLAY

Note: The USCS symbol used with this test refers only to the minus No. 40 (Minus No. 40 sieve material, Airdried) sieve material. See the "Sieve and Hydrometer Analysis" graph page for the complete material description

Liquid Limit Test	1	2	3	
-				M
Tare Number:	2	183	221	U
Wt. of Tare & Wet Sample (g):	40.99	40.64	40.30	L
Wt. of Tare & Dry Sample (g):	35.22	34.74	34.34	Т
Weight of Tare (g):	19.45	19.29	19.21	I
Weight of Water (g):	5.8	5.9	6.0	P
Weight of Dry Sample (g):	15.8	15.5	15.1	0
				1
Moisture Content (%):	36.6	38.2	39.4	N

22

Plastic Limit Test	1	2	Range	Test Results	
Tare Number:	228	230		Liquid Limit (%):	39
Wt. of Tare & Wet Sample (g):	24.90	24.14			
Wt. of Tare & Dry Sample (g):	23.94	23.18		Plastic Limit (%):	19
Weight of Tare (g):	18.70	18.08			
Weight of Water (g):	1.0	1.0		Plasticity Index (%):	20
Weight of Dry Sample (g):	5.2	5.1			
, , ,				USCS Symbol:	CL
Moisture Content (%):	18.3	18.8	-0.5		
Note: The acceptable range of the	e two Moistu	ıre content	s is ± 2.6		

JP

Date

9/9/15

Tested By

Number of Blows:

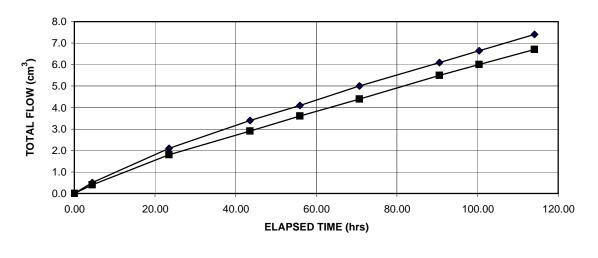
9/10/15

Date

Checked By

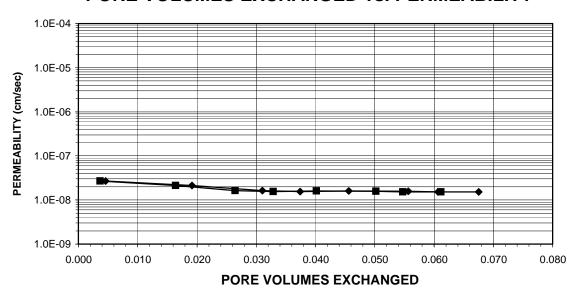
KC

Client: CB&I Boring No.: Pond B


Client Project: NRG Conemaugh Depth (ft): Middle 16" of tube

Project No.: 2015-471-001 Sample No.: GT-3

Lab ID No.: 2015-471-001-004


AVERAGE PERMEABILITY = 1.6E-08 cm/sec @ 20°C AVERAGE PERMEABILITY = 1.6E-10 m/sec @ 20°C

TOTAL FLOW vs. ELAPSED TIME

→ INFLOW — OUTFLOW

PORE VOLUMES EXCHANGED vs. PERMEABILITY

Tested By: TRE Date: 9/3/15 Checked By: KC Date: 9/10/15

ASTM D 5084-10

Client: CB&I Boring No.: Pond B

Client Project: NRG Conemaugh Depth (ft): Middle 16" of tube

Project No.: 2015-471-001 Sample No.: GT-3 Lab ID No.: 2015-471-001-004

Specific Gravity: 2.70 Assumed Sample Condition: Undisturbed

Visual Description: Brown Sandy Clay with Rock Fragments

MOISTURE CONTENT:	BEFORE TEST	AFTER TEST
Tare Number	1706	1743
Weight of Tare & Wet Sample (g)	194.21	852.25
Weight of Tare & Dry Sample (g)	180.40	741.10
Weight of Tare (g)	82.78	83.54
Weight of Water (g)	13.81	111.15
Weight of Dry Sample (g)	97.62	657.56
Moisture Content (%)	14.1	16.9

SPECIMEN:	BEFORE TEST	AFTER TEST
Weight of Tube & Wet Sample (g)	762.31	NA
Weight of Tube (g)	0.00	NA
Weight of Wet Sample (g)	762.31	780.72
Length 1 (in)	3.352	3.318
Length 2 (in)	3.366	3.361
Length 3 (in)	3.353	3.342
Top Diameter (in)	2.872	2.876
Middle Diameter (in)	2.876	2.883
Bottom Diameter (in)	2.883	2.885
Average Length (in)	3.36	3.34
Average Area (in ²)	6.50	6.52
Sample Volume (cm ³)	357.62	356.92
Unit Wet Weight (g/cm ³)	2.13	2.19
Unit Wet Weight (pcf)	133.1	136.5
Unit Dry Weight (pcf)	116.6	116.8
Unit Dry Weight (g/cm³)	1.87	1.87
Void Ratio, e	0.45	0.44
Porosity, n	0.31	0.31
Pore Volume (cm ³)	110.3	109.6
Total Weight of Sample After Test (g)		769.1

Page 2 of 3 DCN: CT-22 DATE: 4/10/13 REVISION: 10

Date:

TRE

Tested By:

Date:

9/10/15

Checked By:

KC

9/3/15

ASTM D 5084-10

CB&I Client:

Client Project: NRG Conemaugh

Project No.: 2015-471-001

Lab ID No.: 2015-471-001-004 Boring No.: Pond B

Depth (ft): Middle 16" of tube

Sample No.: GT-3

Pressure Heads (Co	onstant)	<u>Final</u> <u>Sample Dimensions</u>				
Top Cap (psi)	67.5	Sample Length (cm), L	8.48			
Bottom Cap (psi)	70.0	Sample Diameter (cm)	7.32			
Cell (psi)	75.0	Sample Area (cm ²), A	42.07			
Total Pressure Head (cm)	175.8	Inflow Burette Area (cm ²), a-in	0.861			
Hydraulic Gradient 20.72		Outflow Burette Area (cm ²), a-out	0.859			
•		B Parameter (%)	95			

AVERAGE PERMEABILITY = 1.6E-08 cm/sec @ 20°C 1.6E-10 m/sec @ 20°C AVERAGE PERMEABILITY =

DATE	TIN	ИE	ELAPSED	TOTAL	TOTAL	TOTAL	FLOW	TEMP.	INCREMENTAL
			TIME	INFLOW	OUTFLOW	HEAD			PERMEABILITY
			t			h	(0 flow)		@ 20°C
(mm/dd/yy)	(hr)	(min)	(hr)	(cm ³)	(cm ³)	(cm)	(1 stop)	(°C)	(cm/sec)
9/4/15	12	59	0.000	0.0	0.0	201.0	0	22.0	NA
9/4/15	17	25	4.433	0.5	0.4	199.9	0	22.0	2.7E-08
9/5/15	12	30	23.517	2.1	1.8	196.4	0	22.0	2.1E-08
9/6/15	8	35	43.600	3.4	2.9	193.7	0	22.0	1.6E-08
9/6/15	20	54	55.917	4.1	3.6	192.0	0	22.8	1.5E-08
9/7/15	11	40	70.683	5.0	4.4	190.1	0	22.0	1.6E-08
9/8/15	7	30	90.517	6.1	5.5	187.5	0	22.0	1.6E-08
9/8/15	17	25	100.433	6.7	6.0	186.3	0	22.0	1.5E-08
9/9/15	7	5	114.100	7.4	6.7	184.6	1	22.0	1.5E-08

Tested By: TRE 9/3/15 Checked By: KC 9/10/15 Date: Date:

SIEVE AND HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Upper 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-4

 Lab ID:
 2015-471-001-005
 Soil Color:
 Brown

	SIEVE ANALYSIS							HYDROMETER					
USCS		bbles		gravel			sand			L	silt and clay fraction		
USDA	col	obles		gravel				5	sand			silt	clay
400	12"	6"	3"	3/4" 3/8"	#4	#10	#20	#40	#140 #20	0			
100													
90													
80					A								
70													
Percent Finer By Weight													
iner 20 50								000					
40 + 1													
30													
20													
10													
0													
1000		100)	10	Pa	article D	1 Diameter	r (mm)	0.1		0.0	1	0.00

	USCS Summary		
Sieve Sizes (mm)		Percentage	
Greater Than #4	Gravel	21.72	
#4 To #200	Sand	38.85	
Finer Than #200	Silt & Clay	39.43	

USCS Symbol:

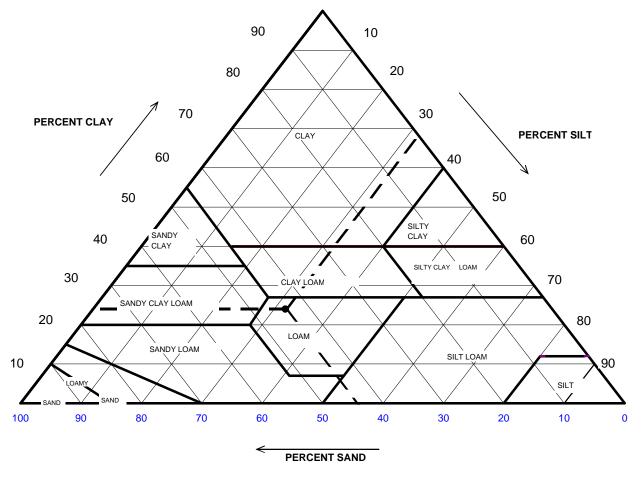
SC, TESTED

USCS Classification:

CLAYEY SAND WITH GRAVEL

page 1 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11


USDA CLASSIFICATION CHART

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Upper 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-4

 Lab ID:
 2015-471-001-005
 Soil Color:
 Brown

Particle Size	Percent Finer	USDA SUMMARY	Actual Percentage	Corrected % of Minus 2.0 mm material for USDA Classificat.
(mm)	(%)		(%)	(%)
		Gravel	33.95	0.00
2	66.05	Sand	29.15	44.13
0.05	36.90	Silt	21.04	31.86
0.002	15.86	Clay	15.86	24.01
		USDA Classification: LOA	М	

page 2 of 4 DCN: CT-S3A DATE: 3/18/13 REVISION: 11

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Upper 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-4

 Lab ID:
 2015-471-001-005
 Soil Color:
 Brown

Moisture Content of Passing 3/4" Mat	eria	Water Content of Retained 3/4" Material			
Tare No.	967	Tare No.	NA		
Weight of Tare & Wet Sample (g)	441.20	Weight of Tare & Wet Sample (g)	NA		
Weight of Tare & Dry Sample (g)	400.80	Weight of Tare & Dry Sample (g)	NA		
Weight of Tare (g)	100.44	Weight of Tare (g)	NA		
Weight of Water (g)	40.40	Weight of Water (g)	NA		
Weight of Dry Sample (g)	300.36	Weight of Dry Sample (g)	NA		
Moisture Content (%)	13.5	Moisture Content (%)	NA		

Wet Weight of -3/4" Sample (g)	NA	Weight of the Dry Sample (g)	300.36
Dry Weight of -3/4" Sample (g)	164.04	Weight of - #200 Material (g)	118.43
Wet Weight of +3/4" Sample (g)	NA	Weight of + #200 Material (g)	181.93
Dry Weight of +3/4" Sample (g)	17.89		
Total Dry Weight of Sample (g)	NA		
, , , , , , , , , , , , , , , , , , , ,			

Sieve	Sieve	Weight of Soil	Percent	Accumulated		Percent	Accumulated
Size	Opening	Retained	Retained	Percent		Finer	Percent
				Retained			Finer
	(mm)	(g)	(%)	(%)		(%)	(%)
12"	300	0.00	0.00	0.00	-	100.00	100.00
6"	150	0.00	0.00	0.00		100.00	100.00
3"	75	0.00	0.00	0.00		100.00	100.00
2"	50	0.00	0.00	0.00		100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00		100.00	100.00
1"	25.0	17.89	5.96	5.96		94.04	94.04
3/4"	19.0	0.00	0.00	5.96		94.04	94.04
1/2"	12.5	0.00	0.00	5.96		94.04	94.04
3/8"	9.50	10.23	3.41	9.36		90.64	90.64
#4	4.75	37.11	12.36	21.72		78.28	78.28
#10	2.00	36.74	12.23	33.95		66.05	66.05
#20	0.85	29.02	9.66	43.61		56.39	56.39
#40	0.425	15.69	5.22	48.83		51.17	51.17
#60	0.250	9.10	3.03	51.86		48.14	48.14
#140	0.106	14.91	4.96	56.83		43.17	43.17
#200	0.075	11.24	3.74	60.57		39.43	39.43
Pan	-	118.43	39.43	100.00		-	-

Tested By	RAL	Date	9/8/15	Checked By	KC	Date	9/14/15
-----------	-----	------	--------	------------	----	------	---------

page 3 of 4

HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client: CB&I

Client Reference: NRG Conemaugh Depth (ft): Upper 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-4

 Lab ID:
 2015-471-001-005
 Soil Color:
 Brown

Elapsed Time	R Measured	Temp.	Composite Correction	R Corrected	N	K Factor	Diameter	N'
(min)		(°C)			(%)		(mm)	(%)
0	NA	NA	NA	NA	NA	NA	NA	NA
2	31.0	23.7	5.75	25.2	85.8	0.01287	0.0305	33.8
5	29.5	23.7	5.75	23.7	80.7	0.01287	0.0195	31.8
15	27.0	23.7	5.75	21.2	72.2	0.01287	0.0114	28.5
30	25.5	23.7	5.75	19.7	67.1	0.01287	0.0082	26.4
60	23.0	24	5.64	17.4	58.9	0.01282	0.0059	23.2
250	19.5	24	5.64	13.9	47.1	0.01282	0.0029	18.6
1440	15.0	24.1	5.61	9.4	31.9	0.01281	0.0013	12.6

Boring No.:

Pond B

Soil Specimen Data		Other Corrections		
Tare No.	2337			
Weight of Tare & Dry Material (g)	129.72	a - Factor	0.99	
Weight of Tare (g)	95.57			
Weight of Deflocculant (g)	5.0	Percent Finer than # 200	39.43	
Weight of Dry Material (g)	29.2			
		Specific Gravity	2.7	Assumed

Note: Hydrometer test is performed on - # 200 sieve material.

Tested By TO Date 9/9/15 Checked By KC Date 9/14/15

page 4 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

S:Excel\Excel QA\Spreadsheets\SieveHyd.xls

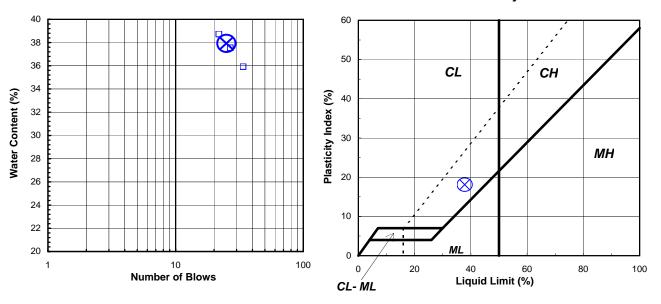
ATTERBERG LIMITS

ASTM D 4318-10

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Upper 8" of tube

Project No.: 2015-471-001 Sample No.: GT-4


Lab ID: 2015-471-001-005 Soil Description: BROWN LEAN CLAY

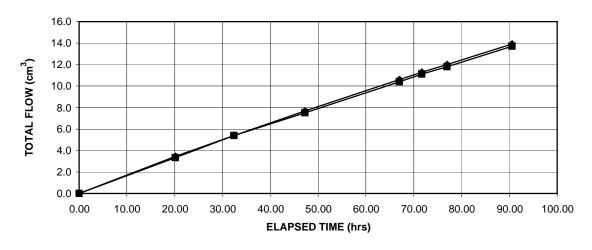
Note: The USCS symbol used with this test refers only to the minus No. 40 (Minus No. 40 sieve material, Airdried) sieve material. See the "Sieve and Hydrometer Analysis" graph page for the complete material description.

sieve material. See the Sieve and riyurometer Analysis graph page for the complete material description.							
Liquid Limit Test	1	2	3				
-				M			
Tare Number:	157	163	244	U			
Wt. of Tare & Wet Sample (g):	38.20	38.57	39.29	L			
Wt. of Tare & Dry Sample (g):	32.73	32.98	33.57	Т			
Weight of Tare (g):	17.49	18.08	18.79	I			
Weight of Water (g):	5.5	5.6	5.7	Р			
Weight of Dry Sample (g):	15.2	14.9	14.8	0			
				I			
Moisture Content (%):	35.9	37.5	38.7	N			
Number of Blows:	34	27	22	T			

Plastic Limit Test	1	2	Range	Test Results	
Tare Number:	180	184		Liquid Limit (%):	38
Wt. of Tare & Wet Sample (g):	25.76	25.91			
Wt. of Tare & Dry Sample (g):	24.76	24.84		Plastic Limit (%):	20
Weight of Tare (g):	19.64	19.64			
Weight of Water (g):	1.0	1.1		Plasticity Index (%):	18
Weight of Dry Sample (g):	5.1	5.2			
				USCS Symbol:	CL
Moisture Content (%):	19.5	20.6	-1.0		
Note: The acceptable range of the	e two Moistu	ıre content	s is ± 2.6		

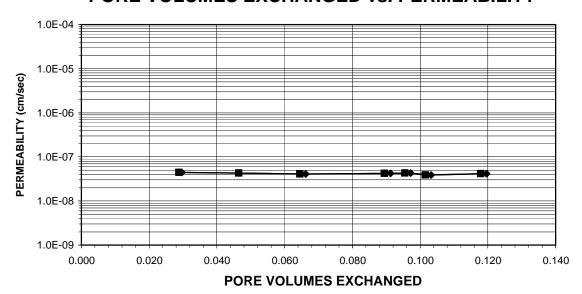
Tested By JP Date 9/11/15 Checked By KC Date 9/14/15

Client: CB&I Boring No.: Pond B


Client Project: NRG Conemaugh Depth (ft): Upper 8" of Tube

Project No.: 2015-471-001 Sample No.: GT-4

Lab ID No.: 2015-471-001-005


AVERAGE PERMEABILITY = 4.1E-08 cm/sec @ 20°C AVERAGE PERMEABILITY = 4.1E-10 m/sec @ 20°C

TOTAL FLOW vs. ELAPSED TIME

→ INFLOW — OUTFLOW

PORE VOLUMES EXCHANGED vs. PERMEABILITY

Tested By: TRE Date: 9/3/15 Checked By: KC Date: 9/10/15

ASTM D 5084-10

Boring No.: Pond B

Client: CB&I

Client Project: NRG Conemaugh Depth (ft): Upper 8" of Tube Project No.: 2015-471-001 Sample No.: GT-4

Project No.: 2015-471-001 Lab ID No.: 2015-471-001-005

Specific Gravity: 2.70 Assumed Sample Condition: Undisturbed

Visual Description: Brown Sandy Clay with Rock Fragments

MOISTURE CONTENT:	BEFORE TEST	AFTER TEST
Tare Number	785	605
Weight of Tare & Wet Sample (g)	202.10	459.52
Weight of Tare & Dry Sample (g)	183.22	405.60
Weight of Tare (g)	85.29	86.44
Weight of Water (g)	18.88	53.92
Weight of Dry Sample (g)	97.93	319.16
Moisture Content (%)	19.3	16.9

SPECIMEN:	BEFORE TEST	AFTER TEST
Weight of Tube & Wet Sample (g)	720.55	NA
Weight of Tube (g)	0.00	NA
Weight of Wet Sample (g)	720.55	706.14
Length 1 (in)	3.184	3.232
Length 2 (in)	3.193	3.190
Length 3 (in)	3.201	3.211
Top Diameter (in)	2.883	2.874
Middle Diameter (in)	2.877	2.857
Bottom Diameter (in)	2.872	2.873
Average Length (in)	3.19	3.21
Average Area (in ²)	6.50	6.46
Sample Volume (cm ³)	340.19	339.93
Unit Wet Weight (g/cm ³)	2.12	2.08
Unit Wet Weight (pcf)	132.2	129.7
Unit Dry Weight (pcf)	110.8	110.9
Unit Dry Weight (g/cm³)	1.78	1.78
Void Ratio, e	0.52	0.52
Porosity, n	0.34	0.34
Pore Volume (cm ³)	116.5	116.2
Total Weight of Sample After Test (g)		725.8

Page 2 of 3 DCN:

TRE

Tested By:

DCN: CT-22 DATE: 4/10/13 REVISION: 10

Date:

Date:

9/10/15

Checked By:

KC

9/3/15

PERMEABILITY TEST ASTM D 5084-10

CB&I Client:

Client Project: NRG Conemaugh

Project No.: 2015-471-001

Lab ID No.: 2015-471-001-005 Boring No.: Pond B

Upper 8" of Tube Depth (ft):

Sample No.: GT-4

Pressure Heads (Co	onstant)	Final Sample Dimensions		
Top Cap (psi)	67.5	Sample Length (cm), L	8.16	
Bottom Cap (psi)	70.0	Sample Diameter (cm)	7.28	
Cell (psi)	75.0	Sample Area (cm ²), A	41.68	
Total Pressure Head (cm)	175.8	Inflow Burette Area (cm ²), a-in	0.875	
Hydraulic Gradient	21.55	Outflow Burette Area (cm ²), a-out	0.961	
•		B Parameter (%)	96	

AVERAGE PERMEABILITY = 4.1E-08 cm/sec @ 20°C 4.1E-10 m/sec @ 20°C AVERAGE PERMEABILITY =

DATE	TIN	ЛE	ELAPSED	TOTAL	TOTAL	TOTAL	FLOW	TEMP.	INCREMENTAL
			TIME	INFLOW	OUTFLOW	HEAD			PERMEABILITY
			t			h	(0 flow)		@ 20°C
(mm/dd/yy)	(hr)	(min)	(hr)	(cm ³)	(cm ³)	(cm)	(1 stop)	(°C)	(cm/sec)
9/5/15	12	30	0.000	0.0	0.0	201.0	0	22.0	NA
9/6/15	8	38	20.133	3.5	3.4	193.6	0	22.0	4.4E-08
9/6/15	20	54	32.400	5.4	5.4	189.2	0	22.8	4.3E-08
9/7/15	11	45	47.250	7.7	7.5	184.4	0	22.0	4.1E-08
9/8/15	7	30	67.000	10.6	10.4	178.1	0	22.0	4.2E-08
9/8/15	12	13	71.717	11.3	11.1	176.6	0	22.0	4.3E-08
9/8/15	17	30	77.000	12.0	11.8	175.1	0	22.0	3.9E-08
9/9/15	7	5	90.583	13.9	13.7	170.9	1	22.0	4.2E-08

Tested By: TRE 9/3/15 Checked By: KC 9/10/15 Date: Date:

SIEVE AND HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Lower 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-5

 Lab ID:
 2015-471-001-006
 Soil Color:
 Brown

		SIEV	'E ANALYSIS		HYDROMETEI	₹
USCS USDA	cobbles		s	and	silt and clay frac	
USDA	cobbles	gravel		sand	silt	clay
	12" 6"	3" 3/4" 3/8" #4	4 #10 #20 #	40 #140 #200)	
100						
90						
80						
70				<u> </u>		
Weight						
Percent Finer By Weight						
iii 1						
1						
30						
20						
10						
0 1111 1000	10	0 10	1 Particle Diameter (r	0.1	0.01	0.001

	USCS Summary		
Sieve Sizes (mm)			
Greater Than #4	Gravel	19.48	
#4 To #200	Sand	24.62	
Finer Than #200	Silt & Clay	55.90	

Particle Diameter (mm)

USCS Symbol:

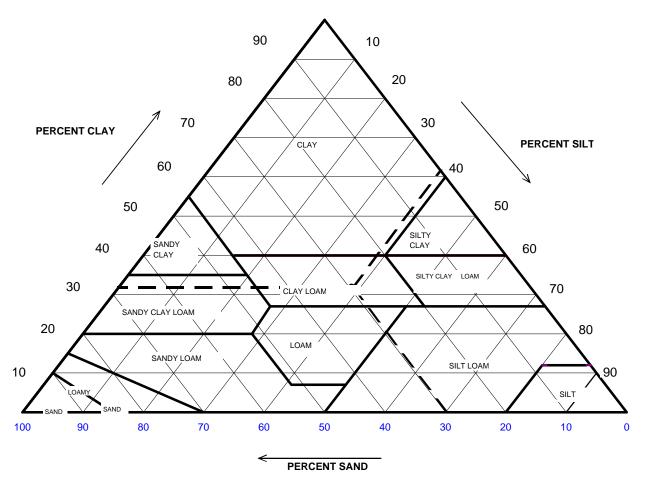
CL, TESTED

USCS Classification:

SANDY LEAN CLAY WITH GRAVEL

page 1 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11


USDA CLASSIFICATION CHART

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Lower 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-5

 Lab ID:
 2015-471-001-006
 Soil Color:
 Brown

Particle Size	Percent Finer	USDA SUMMAR	Y Actual Percentage	Corrected % of Minus 2.0 mm material for USDA Classificat.
(mm)	(%)		(%)	(%)
		Gravel	24.91	0.00
2	75.09	Sand	22.23	29.60
0.05	52.86	Silt	28.99	38.60
0.002	23.88	Clay	23.88	31.80
		USDA Classification:	CLAYLOAM	

page 2 of 4 DCN: CT-S3A DATE: 3/18/13 REVISION: 11

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Lower 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-5

 Lab ID:
 2015-471-001-006
 Soil Color:
 Brown

Moisture Content of Passing 3/4" Mat	eria	Water Content of Retained 3/4" Material		
Tare No.	31	Tare No.	NA	
Weight of Tare & Wet Sample (g)	608.58	Weight of Tare & Wet Sample (g)	NA	
Weight of Tare & Dry Sample (g)	547.20	Weight of Tare & Dry Sample (g)	NA	
Weight of Tare (g)	203.32	Weight of Tare (g)	NA	
Weight of Water (g)	61.38	Weight of Water (g)	NA	
Weight of Dry Sample (g)	343.88	Weight of Dry Sample (g)	NA	
Moisture Content (%)	17.8	Moisture Content (%)	NA	
Wet Weight of -3/4" Sample (g)	NA	Weight of the Dry Sample (g)	343.88	
Dry Maight of 2/4" Sample (a)	121 70	Moight of #200 Material (g)	102.2/	

Wet Weight of -3/4" Sample (g)	NA	Weight of the Dry Sample (g)	343.88
Dry Weight of -3/4" Sample (g)	131.79	Weight of - #200 Material (g)	192.24
Wet Weight of +3/4" Sample (g)	NA	Weight of + #200 Material (g)	151.64
Dry Weight of +3/4" Sample (g)	19.85		
Total Dry Weight of Sample (g)	NA		
, , , , , ,			

Sieve	Sieve	Weight of Soil	Percent	Accumulated	1	Percent	Accumulated
		9				Finer	
Size	Opening	Retained	Retained	Percent		rinei	Percent
				Retained			Finer
	(mm)	(g)	(%)	(%)		(%)	(%)
12"	300	0.00	0.00	0.00		100.00	100.00
6"	150	0.00	0.00	0.00		100.00	100.00
3"	75	0.00	0.00	0.00		100.00	100.00
2"	50	0.00	0.00	0.00		100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00		100.00	100.00
1"	25.0	0.00	0.00	0.00		100.00	100.00
3/4"	19.0	19.85	5.77	5.77		94.23	94.23
1/2"	12.5	17.14	4.98	10.76		89.24	89.24
3/8"	9.50	17.19	5.00	15.76		84.24	84.24
#4	4.75	12.81	3.73	19.48		80.52	80.52
#10	2.00	18.67	5.43	24.91		75.09	75.09
#20	0.85	14.22	4.14	29.05		70.95	70.95
#40	0.425	9.12	2.65	31.70		68.30	68.30
#60	0.250	9.29	2.70	34.40		65.60	65.60
#140	0.106	20.37	5.92	40.32		59.68	59.68
#200	0.075	12.98	3.77	44.10		55.90	55.90
Pan	-	192.24	55.90	100.00		-	-

Tested By RAL Date 9/11/15 Checked By KC [Date	9/14/15
--	------	---------

page 3 of 4

HYDROMETER ANALYSIS

ASTM D 422-63 (2007)

Client: CB&I

Client Reference: NRG Conemaugh Depth (ft): Lower 8" of Tube

 Project No.:
 2015-471-001
 Sample No.:
 GT-5

 Lab ID:
 2015-471-001-006
 Soil Color:
 Brown

Elapsed Time	R Measured	Temp.	Composite Correction	R Corrected	N	K Factor	Diameter	N'
(min)		(°C)			(%)		(mm)	(%)
0	NA	NA	NA	NA	NA	NA	NA	NA
2	51.0	24.1	5.61	45.4	85.5	0.01281	0.0255	47.8
5	47.5	24.1	5.61	41.9	78.9	0.01281	0.0167	44.1
15	43.5	24.1	5.61	37.9	71.4	0.01281	0.0100	39.9
30	39.5	24.1	5.61	33.9	63.9	0.01281	0.0073	35.7
60	37.0	23.9	5.68	31.3	59.0	0.01284	0.0053	33.0
250	30.5	23.6	5.79	24.7	46.6	0.01288	0.0027	26.0
1440	25.0	23.7	5.75	19.2	36.3	0.01287	0.0012	20.3

Boring No.:

Pond B

Soil Specimen Data		Other Corrections					
Tare No.	704						
Weight of Tare & Dry Material (g)	150.38	a - Factor	0.99				
Weight of Tare (g)	92.84						
Weight of Deflocculant (g)	5.0	Percent Finer than # 200	55.90				
Weight of Dry Material (g)	52.5						
		Specific Gravity	2.7	Assumed			

Note: Hydrometer test is performed on - # 200 sieve material.

Tested By TO Date 9/10/15 Checked By KC Date 9/14/15

page 4 of 4

DCN: CT-S3A DATE: 3/18/13 REVISION: 11

S:Excel\Excel QA\Spreadsheets\SieveHyd.xls

ATTERBERG LIMITS

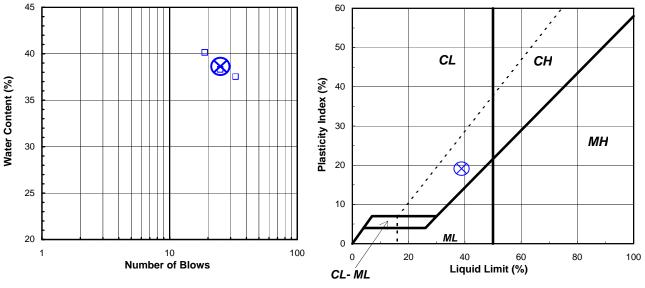
ASTM D 4318-10

Client: CB&I Boring No.: Pond B

Client Reference: NRG Conemaugh Depth (ft): Lower 8" of tube

Project No.: 2015-471-001 Sample No.: GT-5

Lab ID: 2015-471-001-006 Soil Description: BROWN LEAN CLAY


Note: The USCS symbol used with this test refers only to the minus No. 40 (Minus No. 40 sieve material, Airdried)

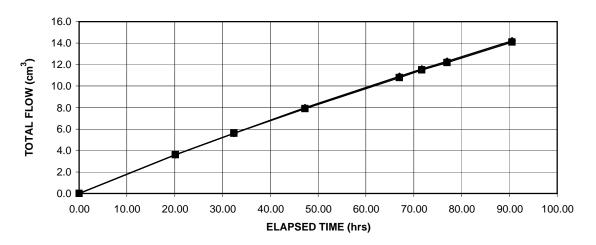
sieve material. See the "Sieve and Hydrometer Analysis" graph page for the complete material description

Liquid Limit Test	1	2	3	
-				М
Tare Number:	150	202	209	U
Wt. of Tare & Wet Sample (g):	39.90	37.32	40.75	L
Wt. of Tare & Dry Sample (g):	34.41	31.77	34.61	Т
Weight of Tare (g):	19.77	17.27	19.30	I
Weight of Water (g):	5.5	5.6	6.1	Р
Weight of Dry Sample (g):	14.6	14.5	15.3	0
				I
Moisture Content (%):	37.5	38.3	40.1	N
Number of Blows:	33	25	19	Т

Plastic Limit Test	1	2	Range	Test Results	
Tare Number:	215	216		Liquid Limit (%):	39
Wt. of Tare & Wet Sample (g):	24.66	25.28			
Wt. of Tare & Dry Sample (g):	23.62	24.24		Plastic Limit (%):	20
Weight of Tare (g):	18.36	19.21			
Weight of Water (g):	1.0	1.0		Plasticity Index (%):	19
Weight of Dry Sample (g):	5.3	5.0			
, , ,				USCS Symbol:	CL
Moisture Content (%):	19.8	20.7	-0.9		
Note: The acceptable range of the	e two Moistu	ıre content	s is ± 2.6		

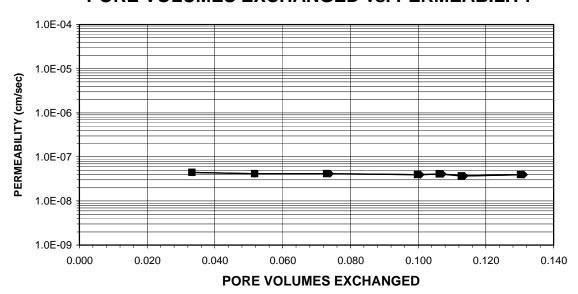
Tested By JP Date 9/11/15 Checked By KC Date 9/14/15

Client: CB&I Boring No.: Pond B


Client Project: NRG Conemaugh Depth (ft): Lower 8" of Tube

Project No.: 2015-471-001 Sample No.: GT-5

Lab ID No.: 2015-471-001-006


AVERAGE PERMEABILITY = 3.9E-08 cm/sec @ 20°C AVERAGE PERMEABILITY = 3.9E-10 m/sec @ 20°C

TOTAL FLOW vs. ELAPSED TIME

→ INFLOW — OUTFLOW

PORE VOLUMES EXCHANGED vs. PERMEABILITY

Tested By: JAB Date: 9/4/15 Checked By: KC Date: 9/10/15

Page 1 of 3 DCN: CT-22 DATE: 4/10/13 REVISION: 10

ASTM D 5084-10

Client: CB&I

Client Project: NRG Conemaugh Project No.: 2015-471-001

Lab ID No.: 2015-471-001

Boring No.: Pond B

Depth (ft): Lower 8" of Tube

Sample No.: GT-5

Specific Gravity: 2.70 Assumed

Sample Condition: Undisturbed

Visual Description: Brown Clay

MOISTURE CONTENT:	BEFORE TEST	AFTER TEST
Tare Number	555	599
Weight of Tare & Wet Sample (g)	340.94	125.88
Weight of Tare & Dry Sample (g)	301.10	118.92
Weight of Tare (g)	81.75	83.94
Weight of Water (g)	39.84	6.96
Weight of Dry Sample (g)	219.35	34.98
Moisture Content (%)	18.2	19.9

SPECIMEN:	BEFORE TEST	AFTER TEST
Weight of Tube & Wet Sample (g)	925.54	NA
Weight of Tube (g)	226.05	NA
Weight of Wet Sample (g)	699.49	709.76
Length 1 (in)	3.059	3.077
Length 2 (in)	3.047	3.082
Length 3 (in)	3.083	3.086
Top Diameter (in)	2.896	2.870
Middle Diameter (in)	2.857	2.873
Bottom Diameter (in)	2.886	2.877
Average Length (in)	3.06	3.08
Average Area (in ²)	6.51	6.48
Sample Volume (cm ³)	326.91	327.45
Unit Wet Weight (g/cm ³)	2.14	2.17
Unit Wet Weight (pcf)	133.6	135.3
Unit Dry Weight (pcf)	113.0	112.8
Unit Dry Weight (g/cm ³)	1.81	1.81
Void Ratio, e	0.49	0.49
Porosity, n	0.33	0.33
Pore Volume (cm ³)	107.7	108.2
Total Weight of Sample After Test (g)		701.0

Page 2 of 3

Tested By:

JAB

Date:

Date:

9/10/15

Checked By:

KC

9/4/15

ASTM D 5084-10

Client: CB&I

Client Project: NRG Conemaugh

Project No.: 2015-471-001 Lab ID No.: 2015-471-001-006 Boring No.: Pond B

Depth (ft): Lower 8" of Tube

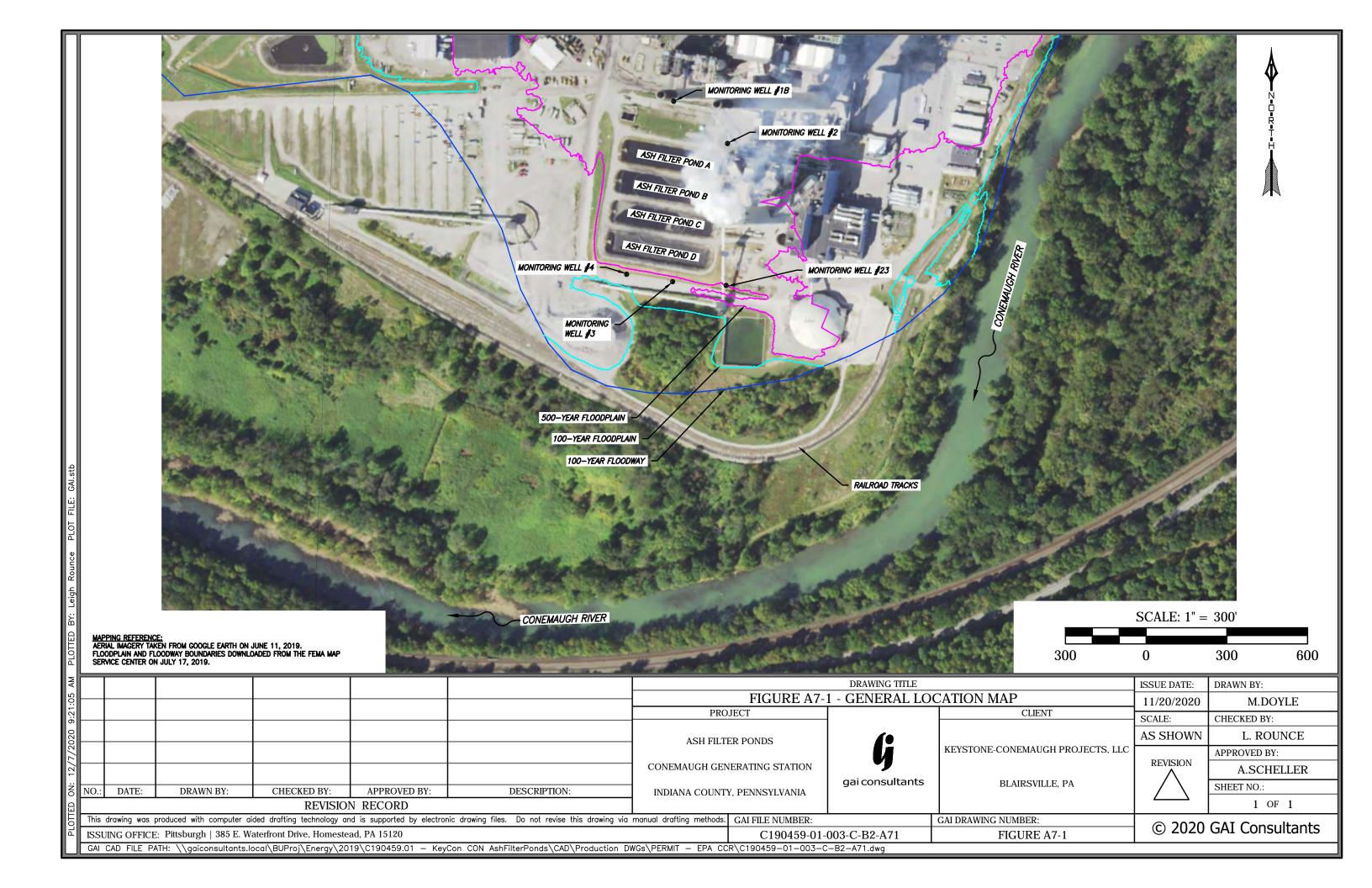
Sample No.: GT-5

Pressure Heads (Co	onstant)	<u>Final</u> <u>Sample Dimensions</u>				
Top Cap (psi)	67.5	Sample Length (cm), L	7.83			
Bottom Cap (psi)	70.0	Sample Diameter (cm)	7.30			
Cell (psi)	75.0	Sample Area (cm ²), A	41.83			
Total Pressure Head (cm)	175.8	Inflow Burette Area (cm ²), a-in	0.899			
Hydraulic Gradient	22.45	Outflow Burette Area (cm ²), a-out	0.876			
•		B Parameter (%)	97			

AVERAGE PERMEABILITY = 3.9E-08 cm/sec @ 20°C AVERAGE PERMEABILITY = 3.9E-10 m/sec @ 20°C

DATE	TIN	ΛE	ELAPSED	TOTAL	TOTAL	TOTAL	FLOW	TEMP.	INCREMENTAL
			TIME	INFLOW	OUTFLOW	HEAD			PERMEABILITY
			t			h	(0 flow)		@ 20°C
(mm/dd/yy)	(hr)	(min)	(hr)	(cm ³)	(cm ³)	(cm)	(1 stop)	(°C)	(cm/sec)
9/5/15	12	30	0.000	0.0	0.0	206.0	0	22.0	NA
9/6/15	8	38	20.133	3.6	3.6	197.8	0	22.0	4.4E-08
9/6/15	20	54	32.400	5.6	5.6	193.3	0	22.0	4.2E-08
9/7/15	11	45	47.250	8.0	7.9	188.0	0	22.0	4.1E-08
9/8/15	7	30	67.000	10.9	10.8	181.4	0	22.0	4.0E-08
9/8/15	12	13	71.717	11.6	11.5	179.8	0	22.0	4.1E-08
9/8/15	17	30	77.000	12.3	12.2	178.2	0	22.0	3.7E-08
9/9/15	7	5	90.583	14.2	14.1	173.9	1	22.0	4.0E-08

Tested By: JAB Date: 9/4/15 Checked By: KC Date: 9/10/15


Mr. Andrew Wheeler, Administrator, US EPA December 2020

ATTACHMENT 7

Demonstration of No Reasonable Probability of Complete and Direct Transport Pathway per §257.71(d)(1)(i)(D) C190459.01 December 2020

The Conemaugh Generating Station property is located adjacent to the Conemaugh River. The Ash Filter Ponds (AFPs) are set back from the river by approximately 0.2-0.3 miles. Based on the design and location of the AFPs, there is no reasonable probability that a complete and direct transport pathway (i.e., not mediated by groundwater) could exist between the AFPs and the nearby Conemaugh River. The following list of items provides evidence for this statement, in accordance with § 257.71(d)(1)(i)(4).

- The AFPs are located approximately 0.2 0.3 miles from the Conemaugh River.
- The AFPs are located outside of the 100-year and 500-year floodplain boundaries, as established by the Federal Emergency Management Agency (FEMA), as shown in Figure A7-1.
- Surface drainage downstream of the AFP embankments is topographically separated from
 the river by a railroad embankment, and the area between the AFPs and the river is well
 vegetated (Figure A-1). Additionally, the drainage features downgradient of the AFPs do not
 discharge to the river. As such, potential discharge to surface water would be impeded by
 site topography and existing drainage features and be required to re-enter the groundwater
 prior to discharge to the Conemaugh River.
- No seeps have been observed emanating from the embankments of the AFPs.
- Low conductivity soil is not present between the AFP liners and the uppermost aquifer (refer
 to boring logs included in Attachment 3B). As such, the soil conditions beneath the pond
 liners are not anticipated prevent AFP water from entering the monitored aquifer or direct
 AFP water laterally towards the Conemaugh River in a pathway not mediated by
 groundwater.

