

CCR COMPLIANCE GROUNDWATER MONITORING AND CORRECTIVE ACTION ANNUAL REPORT ASH FILTER PONDS AND ASH/REFUSE DISPOSAL SITE

Prepared for:

GenOn Northeast Management Company Conemaugh Generating Station New Florence, Pennsylvania

Prepared by:

Aptim Environmental & Infrastructure, Inc. Pittsburgh, Pennsylvania

January 2019

Table of Contents_

List of	List of Tablesiii						
List of	Figuresi	ii					
List of .	Appendicesi	ii					
1.0	Introduction	1					
2.0	Ash Filter Ponds.2.12.1Groundwater Monitoring Network2.2Summary of Previously-Reported Monitoring Activities2.32018 Data Collection2.4Alternate Source Demonstration2.52018 Monitoring Program Transitions2.62018 Corrective Actions2.72019 Projected Activities	3 3 3 4 4					
3.0	Ash Disposal Site.93.1Groundwater Monitoring Network3.22018 Data Collection3.32018 Monitoring Program Transitions3.42018 Corrective Actions3.52019 Projected Activities	556					

Tables

Figures

Appendices

Table 1	Ash Filter Ponds Groundwater Analytical Data Summary—Appendix III Constituents
Table 2	Ash Filter Ponds Groundwater Analytical Data Summary—Appendix IV Constituents
Table 3	Ash Disposal Site Groundwater Analytical Data Summary—Appendix III Constituents
Table 4	Ash Disposal Site Groundwater Analytical Data Summary—Appendix IV Constituents

List of Figures _____

Figure 1	Ash Filter Ponds—Location and Groundwater Monitoring System Map

Figure 2 Ash Disposal Site—Location and Groundwater Monitoring System Map

List of Appendices_____

Appendix A Ash Filter Po	nds—Alternate Source Demonstration
--------------------------	------------------------------------

Appendix B Ash Disposal Site—Assessment of Corrective Measures Report

1.0 Introduction

Title 40 Code of Federal Regulations (CFR) §257.90 mandates that existing Coal Combustion Residuals (CCR) landfills and surface impoundments, also known as CCR units, be subject to groundwater monitoring and corrective action requirements as further detailed in §257.91 through §257.98. These requirements are part of the overall CCR Rule (or Rule) which was published in the Federal Register on April 17, 2015 and which became effective on October 19, 2015. Specific obligations for Owners and Operators of existing CCR units regarding the preparation of "Annual Groundwater Monitoring and Corrective Action Reports (Annual Report)" are outlined in §257.90(e)(1-5). The first of these Annual Reports was completed no later than January 31, 2018, and provided information to address the following aspects for the preceding calendar year:

- Document the status of the groundwater monitoring and corrective action program for the respective CCR units;
- Summarize key actions completed;
- Describe any problems encountered and actions taken to resolve the problems; and
- Offer a projection of key activities for the upcoming year.

At a minimum, the Annual Report must contain the following information to the extent applicable and available:

- A map, aerial image, or diagram showing the CCR unit and all background/upgradient and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program;
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
- In addition to all the monitoring data obtained under §257.90 through §257.98, a summary including the number of groundwater samples that were collected for analysis for each background/upgradient and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;
- A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and
- Any other information required to be included as specified in §257.90 through §257.98.

The Conemaugh Generating Station (Station), operated by GenOn Northeast Management Company (GenOn), is an electric generating station located in New Florence, Pennsylvania. The Station operates two coal-fired boilers each with a steam turbine-driven electric generator that provides electricity to the regional electric grid. The Rule applies to this facility due to the management/disposal of CCR materials that are generated from the combustion of coal. CCR units associated with Station operations include the Conemaugh Ash/Refuse Disposal Site and four Ash Filter Ponds (Ponds "A," "B," "C," and "D") used for the management of bottom ash. Each of these CCR units has a dedicated groundwater monitoring system that was originally installed to comply with Commonwealth of Pennsylvania Residual Waste Regulations, and was subsequently evaluated and modified (as needed) for use under the CCR program. Additionally, in accordance with the provisions of §257.91(d) of the Rule, the groundwater monitoring system for the Ash Filter Ponds has been designated to provide coverage in the context of a multiunit system encompassing all four ponds collectively.

In summary, this second Annual Report has been prepared to comply with the requirements of §257.90(e), addressing each of the Conemaugh Station's CCR Units with respect to the groundwater monitoring and corrective actions undertaken during Calendar Year 2018. This Annual Report and all subsequent reports thereto will be placed in the Station's operating record per §257.105(h)(1), noticed to the State Director per §257.106(h)(1), and posted to the publicly accessible internet site per §257.107(h)(1).

2.0 Ash Filter Ponds

2.1 Groundwater Monitoring Network

The CCR groundwater monitoring system for the Ash Filter Ponds is comprised of five wells, including Wells MW-1B and MW-2 (upgradient), and Wells MW-3, MW-4, and MW-23 (downgradient). All five wells communicate with the alluvium, which is the uppermost aquifer. The locations of the groundwater monitoring wells are shown on Figure 1, along with depiction of the generalized groundwater flow direction in the area of the ponds. Each of these wells was already existing, and no new wells were added nor were any existing wells abandoned/replaced during the 2018 reporting period.

2.2 Summary of Previously-Reported Monitoring Activities

In accordance with the requirements under §257.94(b) for existing CCR surface impoundments, a minimum of eight independent samples from each background and downgradient well were collected and analyzed for the constituents listed in Appendices III and IV of the Rule prior to October 17, 2017. The results from these samples, which were collected during the period from December 2015 through July 2017, are presented in Table 1 (Appendix III constituents) and Table 2 (Appendix IV constituents). In addition, a ninth round of samples was collected (October 1-4, 2017) and analyzed for Appendix III constituents only. The results from these samples (also shown in Table 1) served as the first point of comparison to determine if concentrations in any of the downgradient wells are at levels representing a statistically significant increase (SSI) over the background concentrations established in the upgradient well(s).

2.3 2018 Data Collection

During January 2018, the results from the October 2017 Detection Monitoring event were reviewed, and subsequent determination made that one downgradient well (MW-4) showed an Appendix III constituent (sulfate) at levels representing an SSI above corresponding background concentrations (see Table 1). Accordingly, and per the provisions of §257.94(e)(2), efforts were undertaken to conduct an Alternate Source Demonstration in an attempt to identify a potential source other than the Ash Filter Ponds which was responsible for the observed SSI. This Alternate Source Demonstration, further discussed below in Section 2.3 and included in Appendix A, was ultimately successful and determined that incidental gypsum deposition in the area of Well MW-4 was causing the elevated sulfate readings in the localized groundwater. As a result, the Ash Filter Ponds were deemed to remain in the CCR Detection Monitoring Program, and were additionally sampled in May 2018 and October 2018 with continuing observations of SSIs only for sulfate in Well MW-4 (see Table 1).

2.4 Alternate Source Demonstration

As noted above, an Alternate Source Demonstration was conducted in early-2018 which resolved the observed SSI for sulfate in downgradient Well MW-4, relative to the levels measured during the October 2017 Detection Monitoring event. This Demonstration, which was completed in April 2018 and certified by APTIM's qualified professional engineer, provided the necessary documentation to confirm that the Ash Filter Ponds are not creating unacceptable impacts to groundwater. Considering the May 2018 and October 2018 Detection Monitoring events again showed elevated sulfate only as the lone SSI in MW-4, the findings from the April 2018 Demonstration remain relevant and applicable.

2.5 2018 Monitoring Program Transitions

During 2018, there were no transitions between monitoring programs. As a result of the successful Alternate Source Demonstration, only activities in support of the Detection Monitoring program were conducted.

2.6 2018 Corrective Actions

During 2018, there were no problems identified or corrective actions undertaken.

2.7 2019 Projected Activities

It is anticipated that Detection Monitoring activities will continue for the Ash Filter Ponds during 2019, with continued review of Appendix III constituent concentrations and comparison with the calculated background values.

3.0 Ash Disposal Site

3.1 Groundwater Monitoring Network

The CCR groundwater monitoring system for the Ash Disposal Site is comprised of four wells, including Well MW-31 (upgradient) and Wells MW-9, MW-10, and MW-11 (downgradient). Monitoring Wells MW-9 and MW-11 communicate with the shallow unconfined groundwater in bedrock and Monitoring Wells MW-10 and MW-31 communicate with shallow groundwater across the soil/bedrock interface. Hence, all four wells monitor the uppermost aquifer in the area of the Ash Disposal Site. The locations of the groundwater flow direction in the area of the disposal site. Each of these wells was already existing, and no new wells were added nor were any existing wells abandoned/replaced during the 2018 reporting period.

3.2 Summary of Previously-Reported Monitoring Activities

In accordance with the requirements under §257.94(b) for existing CCR landfills, a minimum of eight independent samples from each background and downgradient well were collected and analyzed for the constituents listed in Appendices III and IV of the Rule prior to October 17, 2017. The results from these samples, which were collected during the period from December 2015 through July 2017, are presented in Table 3 (Appendix III constituents) and Table 4 (Appendix IV constituents). In addition, a ninth round of samples was collected (October 2-3, 2017) and analyzed for Appendix III constituents only. The results from these samples (also shown in Table 3) served as the first point of comparison to determine if concentrations in any of the downgradient wells are at levels representing an SSI over the background concentrations established in the upgradient well(s).

3.3 2018 Data Collection

During January 2018, the results from the October 2017 Detection Monitoring event were reviewed, and subsequent determination made that all three downgradient wells showed several Appendix III constituents at levels representing an SSI above corresponding background concentrations (see Table 3). Accordingly, the Ash Disposal Site was transitioned into the CCR Assessment Monitoring, and an initial round of samples covering all Appendix IV constituents was collected in March 2018 (see Table 4) per §257.95(b). From these results, the detected Appendix IV constituents were carried forward and analyzed during continued Assessment Monitoring events conducted in May 2018 and October 2018. As shown in Table 4, none of the Appendix IV constituents from the May and October 2018 events were measured at concentrations representing a statistically significant level (SSL) above the corresponding site-specific groundwater protection standards. Detected concentrations of at least one Appendix IV constituents

(total barium); however, do remain above calculated background, and thus providing the basis for continued Assessment Monitoring into 2019.

It is additionally noted that the May 2018 Assessment Monitoring event yielded an erroneous result for Radium-226/228 in downgradient Well MW-9. The initially reported value (103.6 pCi/L) was generated via an incorrect laboratory analytical method. Following this determination, a new sample (for Radium analysis only) was collected from MW-9 in July 2018 and reanalyzed using the correct analytical method. The revised result from the July 2018 sampling is highlighted in Table 4.

3.4 2018 Monitoring Program Transitions

In 2018, the Ash Disposal Site transitioned into the Assessment Monitoring Program based on review of the October 2017 Detection Monitoring results, and subsequent confirmation that several Appendix III constituents in downgradient wells were at levels representing SSIs above background. The transition to the Assessment Monitoring Program was implemented during late-March 2018, including placement of an appropriate notification into the facility's operating record per §257.105(h).

3.5 2018 Corrective Actions

On August 8, 2018, a surficial (non-groundwater) release of CCR materials from the Ash Disposal Site (associated with the Stage II active area) was discovered during the performance of a routine weekly inspection (as required by the Rule). Upon discovery, Conemaugh Station informed the Pennsylvania Department of Environmental Protection (PADEP), who conducted an inspection of the area on August 9, 2018. Following an initial investigation, the release most likely occurred during an extremely intense precipitation event on July 30, 2018.

Pursuant to the requirements of §257.96(a) and (f), GenOn initiated an assessment of corrective measures on August 8, 2018 (the date of discovery), including corresponding notification to PADEP [§257.106(h)(7)], placement of such into the Station's operating records [§257.105(h)(9)], and posting to the publicly accessible website [§257.107(h)(7)]. To minimize potential impacts to human health and/or the environment, Conemaugh Station conducted interim/corrective measures to stabilize/improve the areas which were affected by the release and to reclaim (via vacuum truck) the surficially-deposited CCR materials from along the reaches of the East Valley mitigation stream.

Soil and surface water sampling was conducted to confirm and document the adequacy of the overall cleanup efforts and corrective measures implementation. As required, an Assessment of Corrective Measures Report was prepared to further discuss the CCR release incident, the measures implemented and final resolution. Per the Rule, the Assessment of Corrective Measures Report must be included as part of the Annual Groundwater Monitoring and Corrective Action

Report, and as such, this report is presented in Appendix B. A standalone copy of the Assessment of Corrective Measures Report was placed in the Conemaugh Station's operating record per §257.105(h)(10), noticed to PADEP per §257.106(h)(8), and posted to the publicly accessible website per §257.107(h)(8).

3.6 2019 Projected Activities

It is anticipated that Assessment Monitoring activities will continue for the Ash Disposal Site during 2019, with continued review of Appendix III/Appendix IV constituent concentrations and comparison against calculated background and established groundwater protection standards.

Tables

				Т	able 1				
				Conemaugh (Generating Stat	tion			
			Ash Fil	-	oundwater Ana				
				CCR Append	ix III Constitue	nts			
Monitoring Well	Date	Groundwater Elevation	Total Boron (mg/L)	Total Calcium (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Dissolved Solids (mg/L)	Sulfate (mg/L)	рН (S.U.)
wontoning wen	Sampled	(ft. MSL)			Cal	culated Background	(8/ -/		
		(,	0.58	376	1560	0.20	6975	788	4.59-7.42
	17-Dec-15	1070.99	0.29	333	1540	< 0.1	3620	544	5.49
	27-Jan-16	1071.19	0.31	288	1280	< 0.1	3180	583	5.87
	20-Apr-16	1071.69	0.28	170	652	< 0.5	2410	729	6.09
	19-Jul-16	1071.69	0.36	208	1310	0.1	2760	575	5.79
MW-1B	11-Oct-16	1072.99	0.46	192	1010	0.2	2640	438	6.56
(Upgradient)	17-Jan-17	1072.54	0.43	198	1030	< 0.1	2650	427	5.87
(opgradient)	24-Apr-17	1072.69	0.37	166	988	< 0.1	2470	548	5.27
	20-Jul-17	1072.04	0.39	345	1560	< 0.1	3740	388	5.00
	1-Oct-17	1070.84	0.36	430	2040	< 0.1	4930	427	5.68
	22-May-18	1074.94	0.39	120	640	< 0.1	1680	364	5.91
	18-Oct-18	1074.69	0.89	53	288	3.1	1340	543	7.56
	11-Oct-16 16-Nov-16	1072.72 1072.42	0.30	191 176	251 94	< 0.1	1200 868	348 416	6.28 6.95
	21-Dec-16	1072.42	0.31	176	101	0.1	1050	519	7.03
	21-Dec-16 25-Jan-17	1073.02	0.41	176	68	0.2	726	319	6.93
	21-Mar-17	1073.82	0.33	158	75	0.2	828	310	6.40
MW-2	25-Apr-17	1072.92	0.29	136	69	< 0.1	792	373	6.28
(Upgradient)	13-Jun-17	1073.02	0.30	150	60	< 0.1	768	369	6.15
	27-Jul-17	1072.57	0.28	133	67	< 0.1	684	310	6.45
	4-Oct-17	1071.17	0.32	138	58	< 0.1	768	330	6.80
	29-May-18	1075.57	0.10	98	22	0.4	606	185	7.10
	23-Oct-18	1075.37	0.18	105	21	0.4	550	192	6.97
	16-Dec-15	1065.24	< 0.05	123	363	< 0.1	882	227	5.74
	26-Jan-16	1065.89	< 0.05	132	392	< 0.1	970	250	5.94
	25-Apr-16	1066.14	< 0.05	203	505	< 0.1	1460	288	6.52
	25-Jul-16	1064.99	< 0.05	115	343	< 0.1	972	225	5.72
MW-3	24-Oct-16 17-Jan-17	1066.19 1066.94	< 0.05 < 0.05	123 113	304 370	< 0.1 < 0.1	902 976	211 245	6.01 5.95
(Downgradient)	25-Apr-17	1066.94	< 0.05	113	552	< 0.1	1740	314	5.95
	25-Api-17 25-Jul-17	1065.99	< 0.05	151	389	< 0.1	1740	256	5.47
	1-Oct-17	1064.89	< 0.05	131	387	< 0.1	1140	255	6.30
	23-May-18	1067.79	< 0.05	175	455	< 0.1	1330	276	6.07
	23-Oct-18	1068.29	< 0.05	152	440	< 0.1	1150	293	5.75
	21-Dec-15	1069.53	0.15	301	643	< 0.1	2470	874	5.77
	4-Feb-16	1069.73	0.13	316	654	< 0.1	2580	870	5.83
	26-Apr-16	1070.08	0.13	426	932	< 0.1	3390	965	6.19
	25-Jul-16	1068.98	0.12	346	874	< 0.1	3120	1090	5.82
MW-4	26-Oct-16	1070.08	0.17	310	670	< 0.1	2530	865	6.27
(Downgradient)	30-Jan-17	1070.88	0.15	301	736	< 0.1	2740	895	6.12
(26-Apr-17	1070.93	0.14	392	863	< 0.1	3310	996	6.68
	27-Jul-17	1070.23	0.19	403	977	< 0.1	3350	1170	5.63
	4-Oct-17	1068.83	0.14	335	814	< 0.2	3200	1050	6.02
	29-May-18	1070.53	0.13	345	842	< 0.1	3280	1010	5.96
	24-Oct-18	1071.93	0.14	290	589	< 0.1	2550	927	5.99
	20-Dec-15 2-Feb-16	1068.03 1069.08	< 0.05 < 0.05	182 176	388 344	< 0.1 < 0.1	1580 1520	653 576	5.59 5.98
	25-Apr-16	1069.08	< 0.05	176	329	< 0.1	1540	557	5.98
	23-Api-10 21-Jul-16	1067.93	0.34	173	323	< 0.1	1600	591	5.63
	24-Oct-16	1068.83	< 0.05	173	327	< 0.1	1540	509	6.14
MW-23	18-Jan-17	1070.13	0.11	165	368	< 0.1	1550	543	5.79
(Downgradient)	24-Apr-17	1069.68	< 0.05	164	383	< 0.1	1520	558	5.21
	24-Jul-17	1069.18	< 0.05	183	378	< 0.1	1530	532	5.15
	1-Oct-17	1067.98	< 0.05	172	313	< 0.1	1520	575	6.25
	22-May-18	1071.18	< 0.05	181	347	< 0.1	1460	507	5.63
	22-Oct-18	1071.13	< 0.05	165	355	< 0.1	1450	538	5.70

Notes: 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.

2. Background values based on statistical evaluation of initial eight rounds (Dec. 2015 thru July 2017) of groundwater sampling data for Wells MW-1B and MW-2.

							Conemau	Table 2 gh Generating	Station							
						Α	sh Filter Ponds		-	a						
	1			1	1	1	CCR App	endix IV Const	ituents	1	- I		1	-		1
		Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Cadmium (mg/L)	Total Chromium (mg/L)	Total Cobalt (mg/L)	Total Fluoride (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Selenium (mg/L)	Total Thallium (mg/L)	Total Radium-226 and 228 (pCi/L)
Monitoring Well	Date Sampled							Ca	Iculated Backgrour	nd						
wontoning wen	Date Sampled	0.001	0.001	0.04	0.001	0.005	0.01	0.013	0.2	0.001	0.03	0.0002	0.02	0.001	0.0002	4.24
									water Protection St							
		MCL	MCL	MCL	MCL	MCL	MCL	RSL	MCL	RSL	RSL	MCL	RSL	MCL	MCL	MCL
		0.006	0.01	2	0.004	0.005	0.1	0.006	4.0	0.015	0.04	0.002	0.10	0.05	0.002	5
	17-Dec-15	< 0.001	< 0.001	0.04	< 0.001	0.005	< 0.01	0.012	< 0.1	< 0.001	0.03	< 0.0002	< 0.02	< 0.001	< 0.0002	4.24
	27-Jan-16	< 0.001	< 0.001	0.03	< 0.001	0.005	< 0.01	< 0.005	< 0.1	< 0.001	0.02	< 0.0002	< 0.02	< 0.001	< 0.0002	0.29
MW-1B	20-Apr-16 19-Jul-16	< 0.001 < 0.001	< 0.001 < 0.001	0.01	< 0.001 < 0.001	< 0.002 < 0.002	< 0.01 < 0.01	< 0.005 0.006	< 0.5 0.1	< 0.001 < 0.001	0.01	< 0.0002 < 0.0002	< 0.02 < 0.02	< 0.001 < 0.001	< 0.0002 < 0.0002	0.72
(Upgradient)	11-Oct-16	< 0.001	< 0.001	0.02	< 0.001	0.002	< 0.01	< 0.005	0.1	< 0.001	0.02	< 0.0002	< 0.02	< 0.001	< 0.0002	0.78
(opgradient)	17-Jan-17	< 0.001	< 0.001	0.02	< 0.001	0.002	< 0.01	0.005	< 0.1	< 0.001	0.02	< 0.0002	< 0.02	< 0.001	< 0.0002	0.24
	24-Apr-17	< 0.001	< 0.001	0.02	< 0.001	0.002	< 0.01	0.005	< 0.1	< 0.001	0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.77
	20-Jul-17	< 0.001	< 0.001	0.03	< 0.001	0.005	< 0.01	0.013	< 0.1	< 0.001	0.02	< 0.0002	< 0.02	< 0.001	< 0.0002	1.03
	11-Oct-16	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.69
	16-Nov-16	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.44
	21-Dec-16	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	0.2	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.43
MW-2	25-Jan-17	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	0.2	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.88
(Upgradient)	21-Mar-17	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.09
	25-Apr-17	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.35
	13-Jun-17	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	0.001	< 0.0002	0.80
	27-Jul-17 16-Dec-15	< 0.001 < 0.001	< 0.001 < 0.001	0.01	< 0.001 < 0.001	< 0.002 < 0.002	< 0.01 < 0.01	< 0.005 0.009	< 0.1 < 0.1	< 0.001 < 0.001	< 0.01	< 0.0002 < 0.0002	< 0.02 < 0.02	< 0.001 < 0.001	< 0.0002 < 0.0002	0.14
	26-Jan-16	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	0.009	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.44
	25-Apr-16	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	0.011	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.60
MW-3	25-Jul-16	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	0.009	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.46
(Downgradient)	24-Oct-16	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	0.012	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	1.34
,	17-Jan-17	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	0.008	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.28
	25-Apr-17	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	0.013	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.45
	25-Jul-17	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	0.010	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	1.33
	21-Dec-15	< 0.001	< 0.001	0.01	< 0.001	0.002	< 0.01	0.039	< 0.1	< 0.001	0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	1.20
	4-Feb-16	< 0.001	< 0.001	0.01	< 0.001	0.003	< 0.01	0.038	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.47
	26-Apr-16	< 0.001	< 0.001	0.02	< 0.001	0.003	< 0.01	0.039	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	1.15
MW-4	25-Jul-16	< 0.001	< 0.001	0.01	< 0.001	0.003	< 0.01	0.035	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.43
(Downgradient)	26-Oct-16	< 0.001	< 0.001	0.01	< 0.001	0.003	< 0.01	0.037	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.72
	30-Jan-17	< 0.001 < 0.001	< 0.001 < 0.001	0.01 0.01	< 0.001 < 0.001	0.003	< 0.01 < 0.01	0.034	< 0.1 < 0.1	< 0.001 < 0.001	< 0.01 < 0.01	< 0.0002 < 0.0002	< 0.02 < 0.02	< 0.001 < 0.001	< 0.0002 < 0.0002	0.09 0.73
	26-Apr-17 27-Jul-17	< 0.001	< 0.001	0.01	< 0.001	0.004	< 0.01	0.041	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	1.24
	20-Dec-15	< 0.001	< 0.001	0.01	< 0.001	0.003	< 0.01	0.039	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	6.87
	2-Feb-16	< 0.001	< 0.001	0.01	< 0.001	0.002	< 0.01	0.106	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	1.03
	25-Apr-16	< 0.001	0.001	0.01	< 0.001	0.002	< 0.01	0.123	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.56
MW-23	21-Jul-16	< 0.001	< 0.001	0.01	< 0.001	0.003	< 0.01	0.114	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.65
(Downgradient)	24-Oct-16	< 0.001	0.001	0.02	< 0.001	< 0.002	< 0.01	0.099	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.12
	18-Jan-17	< 0.001	< 0.001	0.02	< 0.001	0.002	< 0.01	0.100	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.66
	24-Apr-17	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	0.097	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.40
	24-Jul-17	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	0.095	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.21

Notes:
1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.
2. Background values based on statistical evaluation of initial eight rounds (Dec. 2015 thru July 2017) of groundwater sampling data for Wells MW-1B and MW-2.
3. As indicated, Groundwater Protection Standards are either published MCLs or risk-based Regional Screening Levels (RSLs). For constituents where calculated background exceeds either the MCL or RSL, the background value is used.

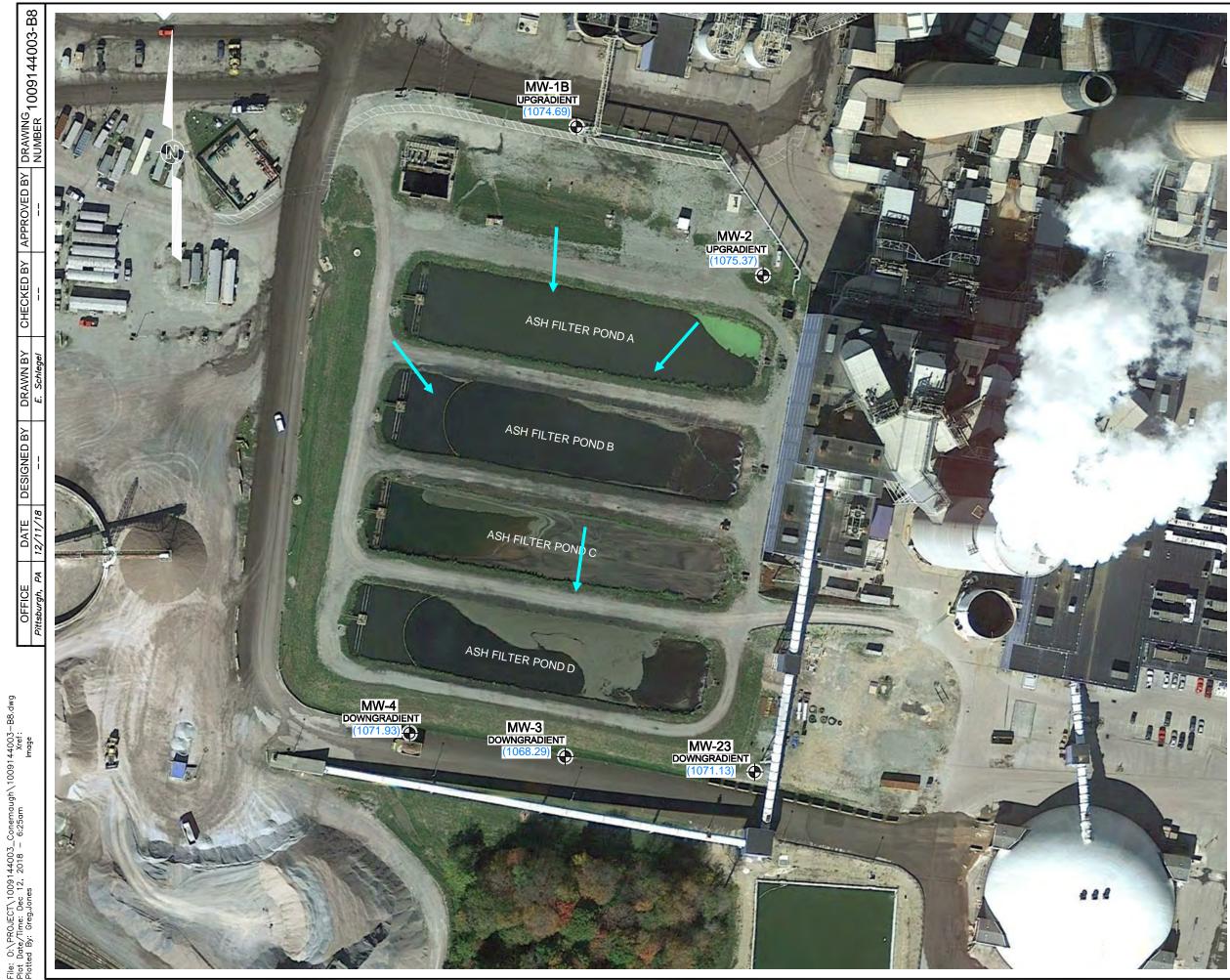
			Ash Dispos		rating Station water Analytica	al Data			
Monitoring Well	Date Sampled	Groundwater Elevation	CC Total Boron (mg/L)	CR Appendix III Total Calcium (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Dissolved Solids (mg/L)	Sulfate (mg/L)	рН (S.U.)
		(ft. MSL)	0.05	8.86	Calc 1	ulated Background 0.1	96.2	4	4.07-6.81
	20-Dec-15	1435.54	< 0.05	6.2	1	< 0.1	50	4	6.15
	1-Feb-16	1438.04	< 0.05	7.1	1	< 0.1	34	4	6.42
	20-Apr-16	1439.54	< 0.05	7.8	< 1	< 0.1	44	4	6.45
	20-Jul-16	1435.89	< 0.05	6.3	1	< 0.1	58	4	6.24
	25-Oct-16	1436.24	< 0.05	6.7	1	< 0.1	70	4	5.82
MW-31	19-Jan-17	1438.74	< 0.05	6.4	1	< 0.1	64	3	6.19
(Upgradient)	12-Apr-17	1439.74	< 0.05	6.2	1	< 0.1	52	4	5.75
	25-Jul-17	1437.24	< 0.05	7.4	1	< 0.1	72	4	5.62
	3-Oct-17	1434.49	< 0.05	6.6	1	< 0.1	32	4	6.36
	24-May-18	1441.64	< 0.05	6.2	1	< 0.1	58	4	6.29
	22-Oct-18	1439.94	< 0.05	84.9	1	< 0.1	40	4	6.17
	17-Dec-15	1100.47	< 0.05	102	83	0.1	426	72	7.08
	28-Jan-16	1100.57	0.09	102	97	0.1	424	63	7.20
	21-Apr-16	1099.77	< 0.05	96	81	0.1	398	65	7.38
	20-Jul-16	1098.97	0.05	99	93	< 0.1	466	62	7.57
	16-Nov-16	1099.82	< 0.05	104	94	< 0.1	466	55	7.05
MW-9	23-Jan-17	1100.77	< 0.05	96	92	< 0.1	406	65	7.27
(Downgradient)	12-Apr-17	1099.47	< 0.05	96	96	< 0.1	446	77	6.74
	24-Jul-17	1099.82	< 0.05	104	98	< 0.1	456	79	6.60
	2-Oct-17	1099.67	< 0.05	94	92	< 0.1	430	75	7.41
	23-May-18	1100.17	< 0.05	104	112	< 0.1	456	84	7.29
	17-Oct-18	1100.32	< 0.05	102	109	< 0.1	472	67	7.09
	16-Dec-15	1103.26	< 0.05	106	90	0.1	444	97	7.71
	1-Feb-16	1103.36	< 0.05	102	100	0.1	416	107	7.56
	19-Apr-16	1103.06	< 0.05	102	95	0.1	454	99	7.45
	25-Jul-16	1102.16	< 0.05	100	91	0.1	476	114	7.25
	25-Oct-16	1102.16	< 0.05	117	84	0.1	522	113	7.50
MW-10	25-Jan-17	1103.86	< 0.05	94	105	< 0.1	482	110	7.21
(Downgradient)	13-Apr-17	1102.86	< 0.05	97	99	< 0.1	460	97	6.77
	26-Jul-17	1102.66	0.05	108	94	< 0.1	508	127	6.75
	3-Oct-17	1102.61	< 0.05	111	91	0.1	490	130	7.38
	29-May-18	1104.76	< 0.05	99	99	0.1	492	106	7.14
	17-Oct-18	1103.66	< 0.05	98	89	0.1	456	106	7.10
	21-Dec-15	1102.68	0.08	180	55	0.1	814	223	6.77
	27-Jan-16	1103.38	0.09	169	48	< 0.1	776	191	7.02
	21-Apr-16	1102.63	0.07	161	46	< 0.1	754	170	7.31
	21-Jul-16	1101.68	0.14	156	52	< 0.1	754	208	7.37
NAVA/ 11	20-Oct-16	1101.93	0.09	166	48	0.1	754	199	6.97
MW-11 (Downgradient)	23-Jan-17	1103.63	< 0.05	164	51	0.1	770	207	6.98
(Downgradient)	13-Apr-17	1103.28	0.07	170	49	< 0.1	774	183	6.65
	26-Jul-17	1102.33	0.10	150	60	< 0.1	700	182	6.35
	2-Oct-17	1102.48	0.07	151	61	0.1	732	210	7.20
	24-May-18	1103.08	< 0.05	139	54	0.1	736	192	7.02
	18-Oct-18	1102.93	0.07	169	60	0.1	750	194	6.94

Notes: 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit. 2. Background values based on statistical evaluation of initial eight rounds (Dec. 2015 thru July 2017) of groundwater sampling data for Well MW-31.

	Table 4 Conemaugh Generating Station Ash Disposal SiteGroundwater Analytical Data CCR Appendix IV Constituents															
		Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Cadmium (mg/L)	Total Chromium (mg/L)	Total Cobalt (mg/L)	Total Fluoride (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Selenium (mg/L)	Total Thallium (mg/L)	Total Radium-226 and 228 (pCi/L)
	Date							Ca	culated Backgroun	nd						
Monitoring Well	Sampled	0.001	0.001	0.02	0.001	0.002	0.01	0.005	0.1	0.001	0.01	0.0002	0.02	0.001	0.0002	1.89
								Ground	vater Protection St	andard						•
		MCL	MCL	MCL	MCL	MCL	MCL	RSL	MCL	RSL	RSL	MCL	RSL	MCL	MCL	MCL
		0.006	0.01	2	0.004	0.005	0.1	0.006	4.0	0.15	0.04	0.002	0.10	0.05	0.002	5
	20-Dec-15	< 0.001	< 0.001	0.02	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	14.1
	1-Feb-16	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.08
	20-Apr-16	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.75
	20-Jul-16	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.77
MW-31	25-Oct-16	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.42
(Upgradient)	19-Jan-17	< 0.001	< 0.001	0.01	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.03
	12-Apr-17 25-Jul-17	< 0.001 < 0.001	< 0.001 < 0.001	< 0.01 < 0.01	< 0.001 < 0.001	< 0.002 < 0.002	< 0.01 < 0.01	< 0.005 < 0.005	< 0.1 < 0.1	< 0.001 < 0.001	< 0.01 < 0.01	< 0.0002 < 0.0002	< 0.02 < 0.02	< 0.001 < 0.001	< 0.0002 < 0.0002	0.51 -0.05
	25-Jul-17 28-Mar-18	< 0.001	< 0.001	< 0.01	< 0.001	< 0.002	< 0.01 < 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.63
	24-May-18	Not Analyzed	Not Analyzed	< 0.01	Not Analyzed	< 0.002 Not Analyzed	Not Analyzed	Not Analyzed	< 0.1	Not Analyzed	Not Analyzed	< 0.0002 Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.83
	22-Oct-18	Not Analyzed	Not Analyzed	0.01	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	< 0.1	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.40
	17-Dec-15	< 0.001	< 0.001	0.17	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	3.66
	28-Jan-16	< 0.001	< 0.001	0.05	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.18
	21-Apr-16	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	3.90
	20-Jul-16	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	-0.05
N4)4/ O	16-Nov-16	< 0.001	< 0.001	0.05	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.78
MW-9 (Downgradient)	23-Jan-17	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.70
(Downgradient)	12-Apr-17	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.03
	24-Jul-17	< 0.001	< 0.001	0.05	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.74
	28-Mar-18	< 0.001	< 0.001	0.05	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.37
	23-May-18	Not Analyzed	Not Analyzed	0.04	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	< 0.1	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.32
	17-Oct-18	Not Analyzed	Not Analyzed	0.05	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	< 0.1	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.67
	16-Dec-15	< 0.001	< 0.001	0.06	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	-0.04
	1-Feb-16	< 0.001	< 0.001	0.06	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002 < 0.0002	< 0.02	< 0.001	< 0.0002	0.25
	19-Apr-16 25-Jul-16	< 0.001 < 0.001	< 0.001 < 0.001	0.10	< 0.001 < 0.001	< 0.002 < 0.002	< 0.01 < 0.01	< 0.005 < 0.005	0.1	< 0.001 < 0.001	< 0.01 < 0.01	< 0.0002	< 0.02 < 0.02	< 0.001 < 0.001	< 0.0002 < 0.0002	0.68 0.55
	25-Jul-16 25-Oct-16	< 0.001	< 0.001	0.06	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.53
MW-10	25-Jan-17		< 0.001	0.05	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.29
(Downgradient)	13-Apr-17	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.34
	26-Jul-17	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	1.05
	29-Mar-18	< 0.001	< 0.001	0.04	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.29
	29-May-18	Not Analyzed	Not Analyzed	0.03	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.1	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.33
	17-Oct-18	Not Analyzed	Not Analyzed	0.04	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.1	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.48
	21-Dec-15	< 0.001	< 0.001	0.07	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	2.21
	27-Jan-16	< 0.001	< 0.001	0.06	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.33
	21-Apr-16	< 0.001	< 0.001	0.06	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	3.18
	21-Jul-16	< 0.001	< 0.001	0.08	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.70
MW-11	20-Oct-16	< 0.001	< 0.001	0.06	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.93
(Downgradient)	23-Jan-17	< 0.001	< 0.001	0.07	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.48
	13-Apr-17	< 0.001	< 0.001	0.07	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	1.46
	26-Jul-17	< 0.001	< 0.001	0.05	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.80
	29-Mar-18	< 0.001	< 0.001	0.08	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.78
	24-May-18 18-Oct-18	Not Analyzed Not Analyzed	Not Analyzed	0.07	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.1	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.83
L	10-011-19	NOT ANDIYZED	Not Analyzed	0.07	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.1	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	1.20

= Value determined as a statistical outlier and excluded from background calculations.

= Result from July 17, 2018 re-sampling; prior result from May 23, 2018 sampling (103.6 pCi/L) was associated with use of incorrect analytical Method (gamma spec Method 901.1).


Notes:

1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.

2. Background values based on statistical evaluation of initial eight rounds (Dec. 2015 thru July 2017) of groundwater sampling data for Well MW-31.

3. As indicated, Groundwater Protection Standards are either published MCLs or risk-based Regional Screening Levels (RSLs). For constituents where calculated background exceeds either the MCL or RSL, the background value is used.

Figures

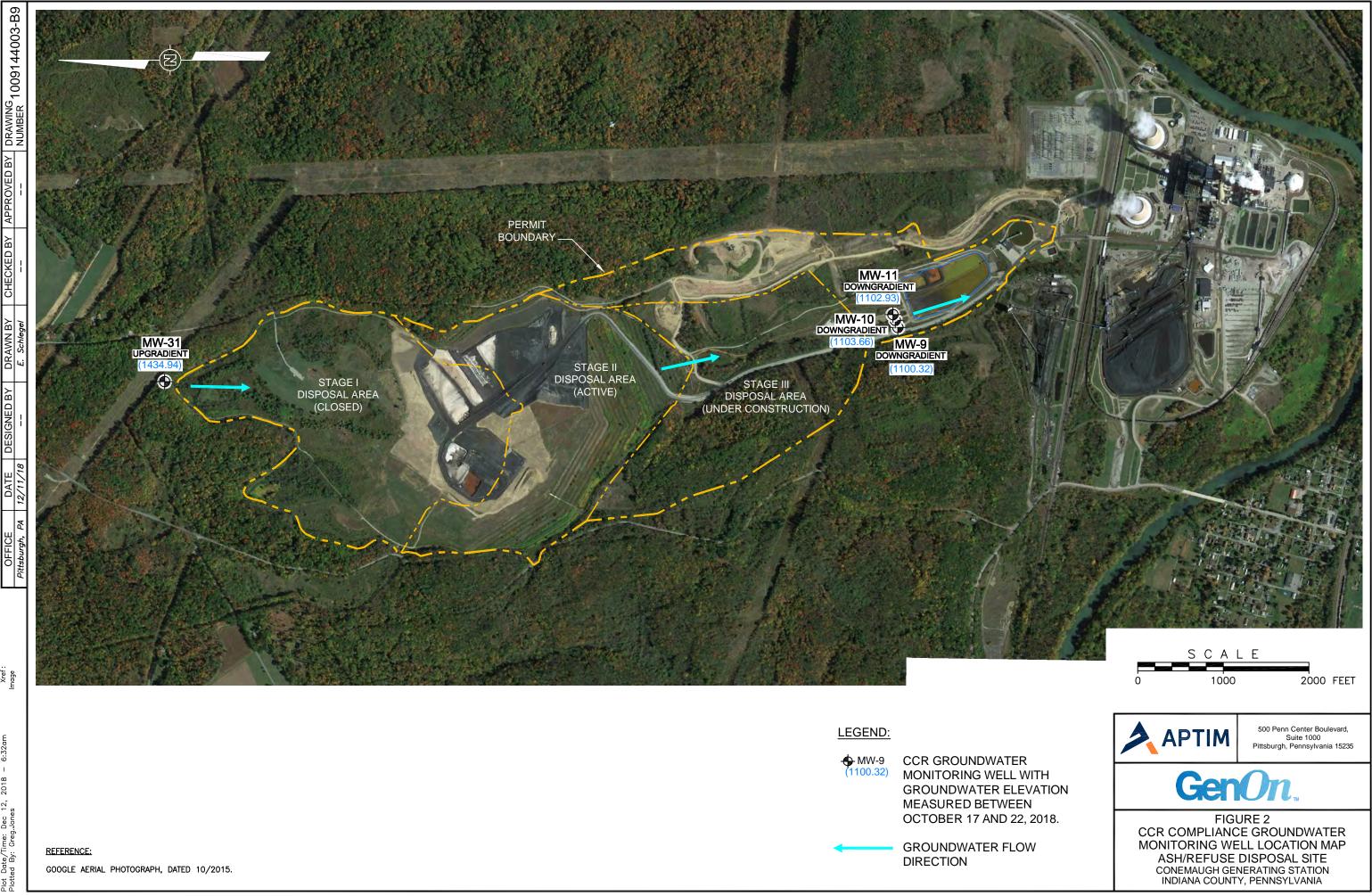
LEGEND:

-🕀 MW-3 (1068.29)

CCR GROUNDWATER MONITORING WELL WITH **GROUNDWATER ELEVATION** MEASURED BETWEEN OCTOBER 18 AND 24, 2018.

GROUNDWATER FLOW DIRECTION

REFERENCE: GOOGLE AERIAL PHOTOGRAPH, DATED 10/2015.



500 Penn Center Boulevard, Suite 1000 Pittsburgh, Pennsylvania 15235

FIGURE 1 CCR COMPLIANCE GROUNDWATER MONITORING WELL LOCATION MAP ASH FILTER PONDS CONEMAUGH GENERATING STATION INDIANA COUNTY, PENNSYLVANIA

Appendix A Ash Filter Ponds--Alternate Source Demonstration

CCR COMPLIANCE ALTERNATE SOURCE DEMONSTRATION APPENDIX III GROUNDWATER EVALUATION OF A STATISTICALLY SIGNIFICANT INCREASE AT THE CONEMAUGH ASH FILTER PONDS

Prepared for:

GenOn Northeast Management Company Conemaugh Generating Station New Florence, Pennsylvania

Prepared by:

Aptim Environmental & Infrastructure, Inc. St. Charles, Illinois

April 2018

Table of Contents_

List of	Tables	iii				
List of	_ist of Figuresi					
List of	Appendices	iii				
1.0	Introduction	1				
2.0	Background	3				
3.0	Geochemical Comparison	4				
4.0	Alternate Source Identification and Conclusions	6				
5.0	Professional Engineer's Certification	8				

Tables

Figures

Appendices

Table 1	Groundwater Analytical Results (Fourth Quarter 2017)
Table 2	Ash Pond and Monitoring Well Analytical Results (April 2017)

List of Figures _____

Figure 1	Site Location Map
Figure 2	Piper Diagram
Figure 3	Photo of Gypsum Haul Truck Next to Monitoring Wells
Figure 4	FGD and Gypsum Area Sump General Plan

List of Appendices_____

Appendix A	Quarterly Background Data for the Upgradient Monitoring Wells and the Resultant
	Calculated Background Concentrations
Appendix B	Historical Sulfate Data (Three Downgradient Monitoring Wells)

1.0 Introduction

Title 40 Code of Federal Regulations (CFR) §257.90 mandates that existing Coal Combustion Residuals (CCR) impoundments, also known as CCR units, be subject to groundwater monitoring and corrective action requirements as further detailed in §257.91 through §257.98. These requirements are part of the overall CCR Rule (or Rule) which was published in the Federal Register on April 17, 2015 and which became effective on October 19, 2015. Specific obligations for Owners and Operators of existing CCR units regarding the requirements for groundwater sampling as part of the CCR Detection Monitoring Program are outlined in §257.94.

The Conemaugh Generating Station (Conemaugh), operated by GenOn Northeast Management Company, is a coal-fired steam turbine-driven electric generation station located in New Florence, Pennsylvania. The Rule applies to this facility due to the management/disposal of CCR materials that are generated from the combustion of coal. CCR units associated with Conemaugh operations include four Ash Filter Ponds (Ponds "A," "B," "C," and "D") and the Ash/Refuse Disposal Site (not the subject of this current document). The Ash Filter Ponds have a dedicated groundwater monitoring system that was originally installed to comply with Commonwealth of Pennsylvania Residual Waste Regulations, and was subsequently evaluated and modified for use under the CCR program. Additionally, in accordance with the provisions of §257.91(d) of the Rule, the groundwater monitoring system for the Ash Filter Ponds has been designated to provide coverage in the context of a multiunit system encompassing all four ponds collectively.

In accordance with §257.94(b), groundwater sampling in support of the CCR Detection Monitoring Program was conducted during the 4th quarter of 2017 at the Conemaugh Ash Filter Ponds. Samples were collected on October 1-4, 2017, and subsequently analyzed for CCR Appendix III constituents only. The analytical data from this sampling event has served as the first point of comparison to determine if concentrations in any of the downgradient wells are at levels representing a statistically significant increase (SSI) over background concentrations established in the upgradient wells. Results from the October 2017 sampling event showed only one Appendix III constituent (sulfate) at levels above background in one of the downgradient monitoring wells (MW-4).

Following additional review of the data and preliminary consideration of the results as an SSI, a determination was made on January 15, 2018 to conduct an Alternate Source Demonstration per §257.94(e)(2), which includes provisions such that:

"The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality." Accordingly, this Alternate Source Demonstration (ASD) has been prepared to satisfy the requirements of §257.94(e)(2), and which further stipulates that the ASD must be completed within 90 days of detecting a SSI(s) above background and be certified by a qualified professional engineer. If a successful ASD is completed, then sampling under the CCR Detection Monitoring program may continue for the unit. The ASD must also be included in the Annual Groundwater Monitoring and Corrective Action Report [per §257.90(e)] that must be prepared by January 31 of each year. If at the end of the 90-day period the ASD is proven unsuccessful, the owner or operator of the affected CCR unit must then initiate an Assessment Monitoring Program per §257.95.

2.0 Background

These ash ponds are located within the station proper, are situated immediately adjacent to one another, and are designated from north to south as Bottom Ash Filter Recycle Pond "A" and Bottom Ash Filter Ponds "B," "C," and "D" (see Figure 1). Each pond is approximately 405 feet long by 90 feet wide as measured at the crest and has an average depth of approximately 11 feet as measured from the crest to the top of the protective bottom ash layer. In addition, each of the ponds is constructed with a liner system compliant with the requirements of 257.71, reflecting the certified/documented presence of a two-feet thick clay liner meeting the hydraulic conductivity criteria per 257.71(a)(1)(i).

The groundwater monitoring system for the Ash Filter Ponds is comprised of five wells, including two upgradient wells (MW-1B and MW-2), and three downgradient wells (MW-3, MW-4, and MW-23). All five wells communicate with the alluvium, which is the uppermost aquifer in this portion of the property. The locations of the monitoring wells are also shown on Figure 1, along with a depiction of the generalized groundwater flow direction in the area of the ponds.

Per the requirements of §257.94, background sampling over the course of eight quarterly events was performed (4th QTR 2015 through 3rd QTR 2017) at all five groundwater monitoring wells. Data from upgradient wells MW-1B and MW-2 was then utilized to calculate background levels for each of the Appendix III constituents. The procedures used to calculate the background concentrations are presented in the document entitled "Statistical Method for Groundwater Data Evaluation – Ash Filter Ponds and Ash/Refuse Disposal Site – Conemaugh Generating Station, October 2017." In summary, specialized software that utilizes a statistical predictive algorithm was used to calculate the background concentrations. The quarterly background data for the upgradient wells and the resultant calculated background concentrations derived from the specialized software are presented in Appendix A.

An SSI is realized at a downgradient well if either the concentration at that well is greater than the background concentration, or the pH at that well is outside of the background pH range. As shown in Table 1, the results from the October 2017 Detection Monitoring event showed sulfate concentrations in well MW-4 (1,050 mg/L) to be above the calculated background value (788 mg/L). Based on this observation, a decision was made on January 15, 2018 to evaluate the possible existence of an alternate source for the observed sulfate concentration in well MW-4.

3.0 Geochemical Comparison

Utilizing the data from the October 2017 groundwater sampling event, a geochemical comparison was performed to assist in determining if the SSI for sulfate at well MW-4 originated from the Ash Filter Ponds or from an alternate source. In this regard, a Piper diagram was created to help compare analytical data from the monitoring wells to the liquid in the Ash Filter Ponds. A Piper diagram employs a methodology that is used to compare a known/suspected source to sampling locations, based on the classification and visualization of hydrochemical data. This methodology builds on the recognition that almost 90 percent of dissolved solids in groundwater are attributed to eight ions: Ca^{2+} , Cl^- , CO_3^{2-} , HCO_3^{-} , K^+ , Mg^{2+} , Na^+ , and SO_4^{2-} .

A Piper diagram normalizes the eight ions into cations and anions. The normalized data are then plotted in three areas, including a center diamond which shows the composition of the sample with respect to both cations and anions, and two triangles that represent either cations or anions in the data. A Piper diagram also combines the concentrations of the anions CO_3^{2-} and HCO_3^{-} and cations Na⁺ and K⁺, which allows all the major ions to be plotted on one diagram. The illustration below shows the hydrochemical classification system used to construct a Piper diagram. Samples that have been impacted by a source would shift away from upgradient background composition and toward the source composition.

Fetter, C.W., Applied Hydrogeology, 1994.

The Piper diagram created for the current evaluation is presented in Figure 2 and makes use of supplemental data collected during the April 2017 CCR background sampling event (see Table 2) from the following locations:

- Upgradient wells MW-1B and MW-2
- Downgradient wells MW-3, MW-4, and MW-23
- Ash Filter Ponds "A" and "B"

It should be noted that the April 2017 analytical data strongly correlate with the October 2017 analytical results, including a possible SSI for sulfate (996 mg/L) at well MW-4, had background values been established at that time.

The Piper diagram further indicates that the geochemical composition of well MW-4 has not been altered by the source composition (Ponds "A" or "B"), as an altered composition would have plotted closer to the source composition. Moreover, the composition of the groundwater within well MW-4 is the least similar of all of the downgradient monitoring wells to the source composition. These observations suggest that the elevated sulfate levels well MW-4 are from a source other than the Ash Filter Ponds.

A final point to note is the presence/absence of boron, which is a recognized component of coal ash and considered to be a very mobile indicator parameter as such. Groundwater impacted by coal ash generally contains appreciable levels of boron. From review of Tables 1 and 2, significant levels of boron are present in the liquid contained within the Ash Filter Pond "A" and "B." Conversely, boron levels are generally non-detect in downgradient wells MW-3 and MW-23, and nearly non-detect in well MW-4 at concentrations seen to be a full order of magnitude less than the concentrations measured in the ponds. If well MW-4 was impacted by the regulated unit, one would expect to see elevated boron levels. These results offer additional evidence to support the differing compositions of well MW-4 versus the ponds, and further bolster the existence of an alternate source for the SSI for sulfate.

Based on discussions with Station personnel and understanding of operations in the area of the Ash Filter Ponds, focus was given to possible impacts associated with the gypsum handling operations which originate in the nearby Gypsum Storage Dome. Gypsum is generated as a product of the wet flue gas desulfurization (wet FGD) emissions control system that is designed to remove sulfur dioxide and other pollutants from the coal-fired boiler's flue gas stream. Gypsum is essentially comprised of calcium and sulfate, two of the CCR Appendix III indicator parameters. As shown on Figure 1, the Dome lies east of the Ash Filter Ponds and serves as the starting point for loading and truck-based transportation of gypsum to the Station's Ash/Refuse Disposal Site. The route from the Dome to the Ash/Refuse Disposal Site begins on a paved roadway that runs just south of the Ash Filter Ponds, with downgradient wells MW-3 and MW-4 being located immediately adjacent to this roadway. This roadway is regularly wetted via water trucks as a dust control measure, and any runoff from this section of the roadway will sheetflow in the direction of MW-3 and MW-4. Figure 3 shows a truck loaded with gypsum traveling along the haul road past the monitoring wells and en route to the Ash/Refuse Disposal Site. The photograph used in this figure was captured during APTIM's visit to Conemaugh on March 23, 2018.

Historical sulfate data for the three downgradient monitoring wells, including graphical representations (provided in Appendix B), indicate elevated and rising sulfate levels in all three wells until approximately 2014, when sulfate levels at wells MW-3 and MW-23 began to decline. At the same time, sulfate levels at well MW-4 continued to rise. Inquiries to Conemaugh personnel revealed that a concrete Gypsum Area Sump was newly installed and put on-line in and around this similar 2014 timeframe. As shown on Figure 4, the Gypsum Area Sump included a surface water runoff collection channel and culvert system located just east of well MW-3 and just south of well MW-23. Once functional, the Gypsum Area Sump and associated piping/grading began capturing the surface water runoff (containing gypsum) from the paved roadway near wells MW-3 and MW-23, and sulfate levels in these two wells subsequently decreased.

Well MW-4, however, is not topographically connected to the Gypsum Area Sump and was therefore unaffected by its implementation (refer to Figure 4). Well MW-3 is higher in surface elevation than well MW-4, and therefore, surface water runoff west of well MW-3 flows toward well MW-4 and not into the collection features tied to the Gypsum Area Sump. During APTIM's March 23, 2018 site visit, gypsum residue was present in the immediate area around MW-4 on the ground surface and completely covering the concrete wellpad. These observations were not found at either of the other downgradient monitoring wells. The analytical results from the October 2017 and April 2017 sampling events do bear out the "fingerprint" of gypsum in the form of elevated calcium and sulfate levels in well MW-4. Comparatively lesser concentrations of these

constituents are seen in wells MW-3 and MW-23, most likely due to the noted improvements in surface water drainage in these areas associated with the Gypsum Area Sump installation.

Several notable pieces of evidence have emerged during the course of this demonstration study, each of which points to an alternate source for the SSI for sulfate reported at well MW-4 during the October 2017 Detection Monitoring event. This evidence includes recognized differences in the geochemical composition of the groundwater at well MW-4 versus the liquid contents of the Ash Filter Ponds (refer to Figure 2). Further, the absence of elevated boron levels in all downgradient wells, including well MW-4, indicates a groundwater regime that is not impacted by ash or ash-derived leachate. The competent clay liner system within the ponds also bolsters the confirmation of different characteristics for groundwater outside the ponds when compared to the contents of the ponds themselves. And most notably, the examination of the gypsum handling operations and first-hand observations of gypsum accumulation in the immediate area of well MW-4 due to surface water runoff from the adjacent haul road. Subsequent surface water infiltration through these gypsum residuals and into the underlying groundwater table near well MW-4 is the most plausible explanation for the localized sulfate impacts. Commensurate with this conclusion, the SSI from the October 2017 Detection Monitoring event is deemed not to be in association with the Conemaugh Ash Filter Ponds. Accordingly, and per §257.94(e)(2), Detection Monitoring for the regulated unit will continue on the minimum semiannual frequency as outlined in §257.94(b). In accordance with §257.94(e)(2) of the Rule, I hereby certify based on a review of the information contained herein, that the technical and investigatory methods utilized in this Alternate Source Demonstration Report are accurate and appropriate. These methods' application have provided the necessary evidence to conclude that the Conemaugh Ash Filter Ponds are not the source of the SSI observed during the October 2017 Detection Monitoring event.

Certified by:

TS

Richard Southorn, P.E., P.G., CPSWQ

Professional Engineer Registration No. PE 085411

Aptim Environmental & Infrastructure, Inc.

Date: April 13, 2018

Tables

			•	Table 1 nerating Station- Appendix III Const						
Monitoring Well	Date Sampled	Total Boron (mg/L)	Total Calcium (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Dissolved Solids (mg/L)	Sulfate (mg/L)	рН (S.U.)		
		Calculated Background								
		0.58	376	1560	0.2	6975	788	4.59-7.42		
MW-3 (Downgradient)	1-Oct-17	< 0.05	135	387	< 0.1	1140	255	6.30		
MW-4 (Downgradient)	4-Oct-17	0.14	335	814	< 0.2	3200	1050	6.02		
MW-23 (Downgradient)	1-Oct-17	< 0.05	172	313	< 0.1	1520	575	6.25		

= Statistically Significant Increase (SSI) over Background.

Notes:

1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.

2. Background values based on statistical evaluation of initial eight rounds of groundwater sampling data from upgradient monitoring wells (see Appendix A).

Table 2Ash Pond and Monitoring Well Analytical Results (April 2017)Conemaugh Generating Station

Parameter	Units	MW-1B (Upgradient)	MW-2 (Upgradient)	MW-3 (Downgradient)	MW-4 (Downgradient)	MW-23 (Downgradient)	Pond A	Settling Pond (Pond B)
		4/24/2017	4/25/2017	4/25/2017	4/26/2017	4/24/2017	4/26/2017	4/26/2017
Field Readings:						· · · · ·	· · · ·	
Groundwater Elevation	ft MSL	1072.69	1072.92	1067.09	1070.93	1069.68	N/A	N/A
Specific Conductance	µmhos/cm	3890	1106	2470	4750	2280	N/A	N/A
Oxidation-Reduction Potential	mV	331	302	295	325	190	176	197
Dissolved Oxygen	mg/L	2.79	4.03	2.01	3.00	2.74	N/A	N/A
Temperature	°C	16.0	15.5	14.0	14.5	15.5	21.2	27.1
Turbidity	NTU	0.03	3.34	0.35	1.06	5.21	N/A	N/A
pH	S.U.	5.27	6.28	5.57	6.68	5.21	8.37	7.22
CCR Appendix III:	•		•			•		
Total Boron	mg/L	0.37	0.29	ND @ 0.05	0.14	ND @ 0.05	2.70	2.75
Total Calcium	mg/L	166	136	181	392	164	444	443
Total Chloride	mg/L	988	69	552	863	383	91	85
Total Fluoride	mg/L	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	0.2	0.3
Total Dissolved Solids	mg/L	2470	792	1740	3310	1520	2020	2020
Sulfate	mg/L	548	373	314	996	558	1060	1020
pH	S.U.	5.27	6.28	5.57	6.68	5.21	8.37	7.22
Anions:								
Alkalinity to pH 4.5	mg/L CaCO ₃	13	112	62	44	30	34	32
Bromide	mg/L	0.5	0.2	1.0	0.3	0.5	1.4	1.4
Chloride	mg/L	995	68	545	892	377	91	85
Fluoride	mg/L	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	0.2	0.3
Sulfate	mg/L	546	368	312	1000	546	1060	1020
Cations:	-							
Aluminum	mg/L	ND @ 0.1	0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	0.5	0.9
Barium	mg/L	0.02	0.02	0.03	0.01	0.01	0.06	0.13
Boron	mg/L	0.39	0.29	ND @ 0.05	0.13	ND @ 0.05	2.70	2.75
Calcium	mg/L	170	142	182	379	172	444	443
Iron	mg/L	ND @ 0.05	0.09	0.23	0.05	18.7	1.74	0.71
Lithium	mg/L	0.01	ND @ 0.01	ND @ 0.01	ND @ 0.01	ND @ 0.01	0.75	0.73
Magnesium	mg/L	29.0	36.4	75.8	98.9	70.2	58.8	56.2
Manganese	mg/L	2.94	0.09	7.30	9.00	11.8	0.35	0.31
Potassium	mg/L	12.5	4.4	2.4	4.3	2.5	20.2	19.8
Sodium	mg/L	683	38.5	180	652	206	74.6	72.7
Strontium	mg/L	0.62	0.39	0.31	0.78	0.14	2.01	2.14
Silica	mg/L	19.3	9.64	15.7	14.5	15.8	4.7	6.1

N/A = Not Analyzed.

ND = Not detected at or above the indicated reporting limit.

Figures

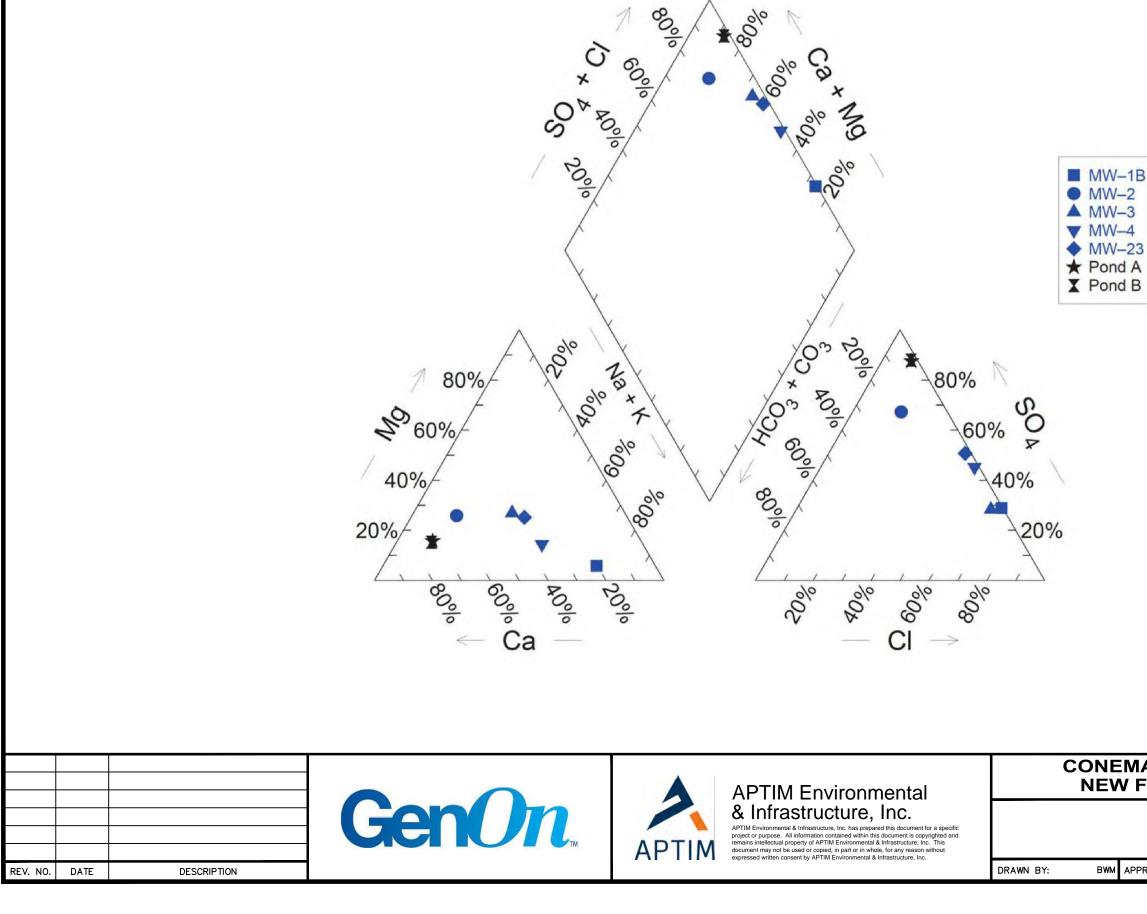
LEGEND:

 MW-3 CCR GROUNDWATER
 MONITORING WELL WITH GROUNDWATER ELEVATION MEASURED BETWEEN OCTOBER 1 AND 4, 2017

> GROUNDWATER FLOW DIRECTION

REFERENCE: GOOGLE AERIAL PHOTOGRAPH, DATED 10/2015.

CONEMAUGH GENERATION STATION NEW FLORENCE, PENNSYLVANIA


FIGURE 1 CCR COMPLIANCE GROUNDWATER MONITORING WELL LOCATION MAP ASH FILTER PONDS

ROVED	BY:

DAM PROJ. NO .:

1009194003 DATE:

APRIL 2018

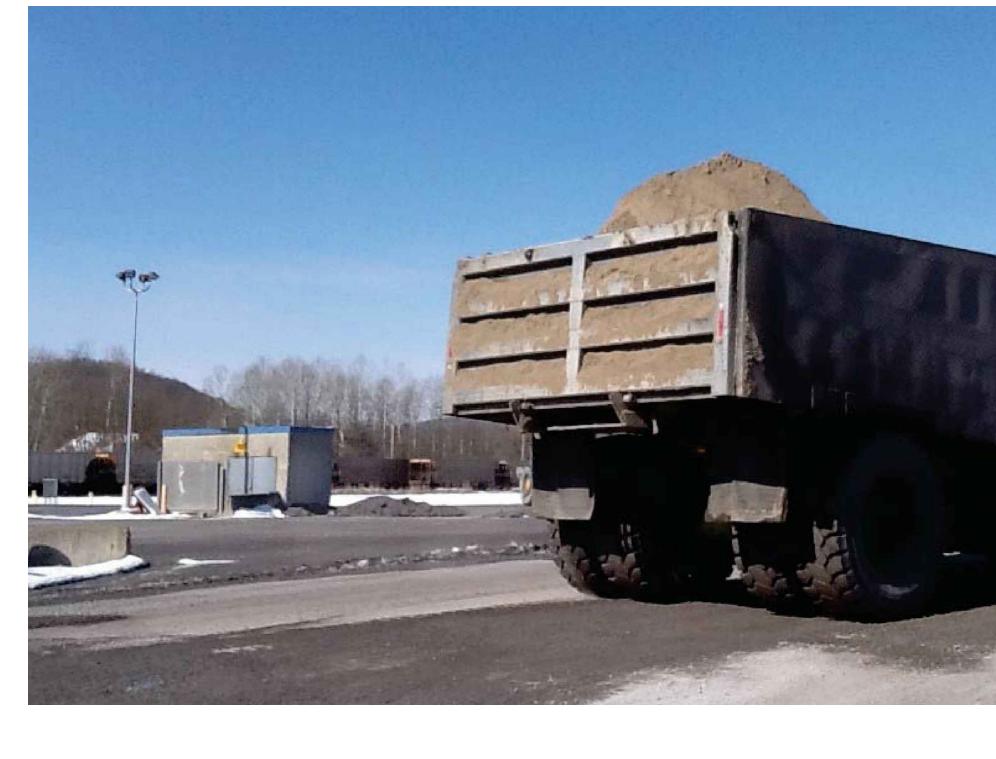

CONEMAUGH GENERATION STATION NEW FLORENCE, PENNSYLVANIA

FIGURE 2 PIPER DIAGRAM

PPROVED BY: DAM PROJ. NO.:

1009194003 DATE:

APRIL 2018

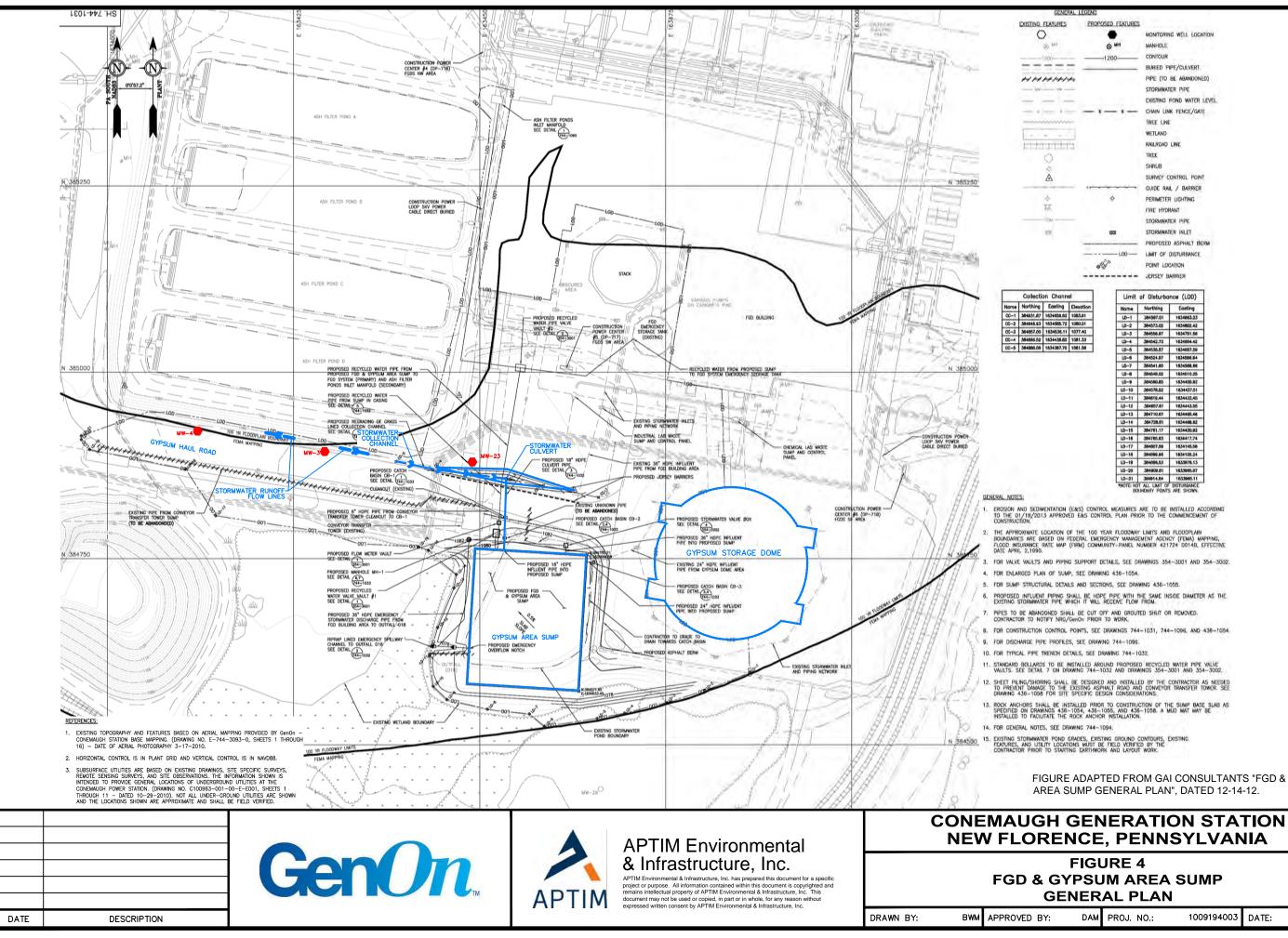
REFERENCE: PHOTOGRAPH TAKEN MARCH 23, 2018.

REV. NO. DATE DESCRIPTION	APTIM Environmental & Infrastructure, Inc. has prepared this document for a specific project or purpose. All information contained within this document is copyrighted and remains intellectual property of APTIM Environmental & Infrastructure, Inc. This document may not be used or copied, in part or in whole, for any reason without expressed written consent by APTIM Environmental & Infrastructure, Inc.
---------------------------	---

C	0	Ν	Ε	N	1/
	Ν	Ε	N	/	F

DRAWN BY: BWM

AUGH GENERATION STATION FLORENCE, PENNSYLVANIA


FIGURE 3 PHOTO OF GYPSUM HAUL TRUCK NEXT TO MONITORING WELLS

BWM APPROVED BY:

DAM PROJ. NO.:

1009194003 DATE:

APRIL 2018

REV. NO.

Ы

01	LD-2	384573.02	163460
40	LD-3	384556.97	163475
33	LD-4	384542.73	163400
50	LD-5	384535.57	163465
12.5	LD-6	384524.97	163456
	LD-7	384541.60	163456
	UD-8	384548.02	183451
	LD-9	384660.85	183440
	10-10	364578.52	183443
	LD-11	364619.44	163443
	LD-12	384657.61	163444
	LD-13	384710.67	163446
	LD-14	364728.61	163446
	LD-15	384761.17	163443
	1.0-16	384765.93	163441
	10-17	384607.59	163414
	10-18	384889.95	163410
	LD-19	384/196.53	163397
	10-20	384909.81	163396
	10.01	784014 84	10770

FIGURE ADAPTED FROM GAI CONSULTANTS "FGD & GYPSUM AREA SUMP GENERAL PLAN", DATED 12-14-12.

1009194003 DATE:

APRIL 2018

Appendix A

Quarterly Background Data for the Upgradient Wells and the Resultant Calculated Background Concentrations

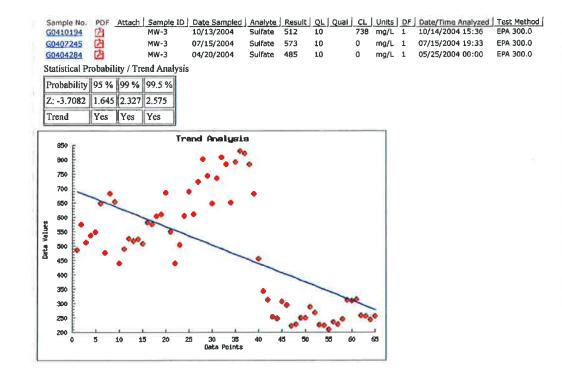
Conemaugh Generating StationAsh Filter Ponds Data for Calculation of Background Values CCR Appendix III Constituents										
Monitoring Well	Date Sampled	Total Boron (mg/L)	Total Calcium (mg/L)	Total Chloride (mg/L)		Total Fluoride (mg/L)	Total Dissolved Solids (mg/L)	Sulfate (mg/L)	рН (S.U.)	
	17-Dec-15	0.29	333	1540	<	0.1	3620	544	5.49	
	27-Jan-16	0.31	288	1280	<	0.1	3180	583	5.87	
	20-Apr-16	0.28	170	652	<	0.5	2410	729	6.09	
MW-1B	19-Jul-16	0.36	208	1310		0.1	2760	575	5.79	
(Upgradient)	11-Oct-16	0.46	192	1010		0.2	2640	438	6.56	
	17-Jan-17	0.43	198	1030	<	0.1	2650	427	5.87	
	24-Apr-17	0.37	166	988	<	0.1	2470	548	5.27	
	20-Jul-17	0.39	345	1560	<	0.1	3740	388	5.00	
	11-Oct-16	0.30	191	251	<	0.1	1200	348	6.28	
	16-Nov-16	0.31	176	94		0.1	868	416	6.95	
	21-Dec-16	0.41	176	101		0.2	1050	519	7.03	
MM 2 (Lingradiant)	25-Jan-17	0.21	137	68		0.2	726	316	6.93	
MW-2 (Upgradient)	21-Mar-17	0.33	158	75		0.1	828	387	6.40	
	25-Apr-17	0.29	136	69	<	0.1	792	373	6.28	
	13-Jun-17	0.30	150	60	<	0.1	768	369	6.15	
	27-Jul-17	0.28	133	67	<	0.1	684	310	6.45	

Notes:

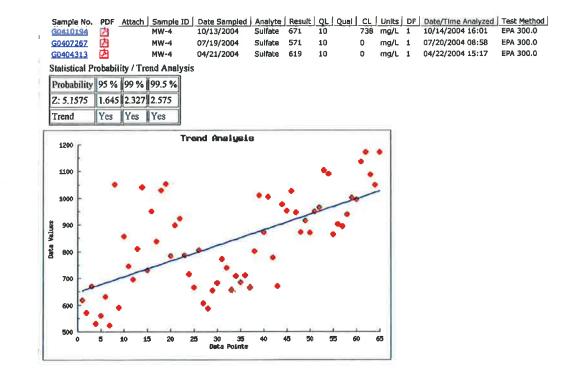
1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.

2. Background values based on statistical evaluation of initial eight rounds of groundwater sampling data; see attached output from Sanitas software application.

Prediction Limit


Conemaugh Generating Station Client: NRG Data: Conemaugh Ash Filter CCR ChemStat Printed 1/15/2018, 10:29 AM

<u>Constituent</u>	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Boron (mg/L)	n/a	0.5756	n/a	n/a	3 future	n/a	17	0	ln(x)	0.000	Param Inter 1 of 2
Calcium (mg/L)	n/a	376.3	n/a	n/a	3 future	n/a	17	0	ln(x)	0.000	Param Inter 1 of 2
Chloride (mg/L)	n/a	1560	n/a	n/a	3 future	n/a	17	0	n/a	0.00563	NP Inter (normality)
Fluoride (mg/L)	n/a	0.2	n/a	n/a	3 future	n/a	17	64.71	n/a	0.00563	NP Inter (NDs) 1 of 2
pH (S.U.)	n/a	7.42	4.586	n/a	3 future	n/a	16	0	x^2	0.000	Param Inter 1 of 2
Sulfate (mg/L)	n/a	788.4	n/a	n/a	3 future	n/a	17	0	ln(x)	0.000	Param Inter 1 of 2
Total dissolved solids (mg/L)	n/a	6975	n/a	n/a	3 future	n/a	17	0	ln(x)	0.000	Param Inter 1 of 2


Appendix B

Historical Sulfate Data (Three Downgradient Monitoring Wells)


	STING		IC A		me David Shot									unt 🛛 🕌 Sign Oı
	mental and I		v Analı	sis										
	1		s By Sile ID		Analysis 😿 Tre	nd Analysis	×		****					
Inalyte					analysis A. He		_	-						
rend					_	A	Analyte	Frac	ce					
Analysis	Please sele	et a D	ate Rang	ge and Site:	2									
rkorders	Note: Da	ate For	mat MM/	DD/YYYY					Select	Mor	nitoring	, Poi	nt(s) Select Analyte(s)
ier Tests	From: 0	1/01/20	04 📃	To: 12	/31/2017				MW-3				Sulfate	
rs By Site ID	NRG - C	ONEM	AUGH ST.	ATION - GW	G1033.10	VI	Search							
rs by Date														
	Export CS	/												
	Sample No		F Attach	Sample ID	Date Sampled	Analyte	Result	QL	Qual	CL	Units	DF	Date/Time Analyzed	Test Method
	G1710052		1	MW-3	10/01/2017	Sulfate	255	2			mg/L	1	10/03/2017 03:19	EPA 300.0
	G1710051	껍	ý	MW-3	10/01/2017	Sulfate	243	10		738	mg/L		10/02/2017 22:35	EPA 300.0
	G1707E08 G1707E07		1	MW-3 MW-3	07/25/2017	Sulfate	256	2		720	mg/L		07/26/2017 08:47	EPA 300.0
	G1704C52		. <u>.</u>	MW-3	07/25/2017 04/25/2017	Sulfate Sulfate	258 314	10 2		/38	mg/L mg/L		07/26/2017 07:18	EPA 300.0 EPA 300.0
	G1704C51	团	1	MW-3	04/25/2017	Sulfate	309	10		738	mg/L		04/26/2017 06:28 04/26/2017 05:47	EPA 300.0
	G1704C50		Ĵ,	MW-3	04/25/2017	Sulfate	312	2		,	mg/L		04/26/2017 01:51	EPA 300.0
	G1701801	견	ż	MW-3	01/17/2017	Sulfate	245	2			mg/L		01/17/2017 19:31	EPA 300.0
	<u>G1701800</u>	内	1	MW-3	01/17/2017	Sulfate	228	10		738	mg/L		01/17/2017 18:36	EPA 300.0
	G1610C34	内	Ì	MW-3	10/24/2016	Sulfate	237	10		738	mg/L	1	10/24/2016 21:23	EPA 300.0
	G1610C33		Ì	MW-3	10/24/2016	Sulfate	211	2			mg/L		10/25/2016 00:04	EPA 300.0
	G1607D13	_	1	MW-3	07/25/2016	Sulfate	225	2			mg/L		07/26/2016 23:38	EPA 300.0
	G1607D12	内内	1	MW-3 MW-3	07/25/2016	Sulfate Sulfate	227	10			mg/L		07/26/2016 22:34	EPA 300.0
	G1604C65 G1604C64	内	1	MW-3	04/25/2016 04/25/2016	Sulfate	267 288	10 2		738	mg/L mg/L		04/26/2016 00:06	EPA 300.0
	G1601813	卤	1	MW-3	01/26/2016	Sulfate	250	2			mg/L		04/26/2016 01:22 01/26/2016 19:36	EPA 300.0 EPA 300.0
	G1601B12	Ž	1	MW-3	01/26/2016	Sulfate	249	10		738	mg/L		01/26/2016 19:26	EPA 300.0
	G1512897	丙	1	MW-3	12/16/2015	Sulfate	227	2			mg/L		12/16/2015 23:44	EPA 300.0
	G1510B75	1	1	MW-3	10/22/2015	Sulfate	222	10		738	mg/L		10/23/2015 11:10	EPA 300.0
	G1507A53	乄	1	MW-3	07/21/2015	Sulfate	293	10		738	mg/L	1	07/21/2015 19:19	EPA 300.0
	G1504C97	内	Ì	MW-3	04/27/2015	Sulfate	306	10		738	mg/L	1	04/27/2015 16:04	EPA 300.0
	<u>G1502038</u>	四	میں د	MW-3	02/02/2015	Sulfate	248	10			mg/L		02/02/2015 17:49	EPA 300.0
	G1410610	内	1	MW-3	10/13/2014	Sulfate	254	10			mg/L		10/13/2014 19;42	EPA 300.0
	G1407578	内内	1	MW-3 MW-3	07/10/2014	Sulfate	312 344	10 10			mg/L		07/10/2014 17:57	EPA 300.0
	G1404A78 G1402036	岁	J.	MW-3	04/16/2014 02/03/2014	Sulfate Sulfate	456	10		738	mg/L mg/L		04/16/2014 18:54	EPA 300.0
	G1310157	团	1	MW-3	10/02/2013	Sulfate	681	10			mg/L		02/04/2014 04:22 10/03/2013 09:23	EPA 300.0 EPA 300.0
	G1307835	四	4	MW-3	07/17/2013	Sulfate	784	10	**	738	mg/L		07/19/2013 11:38	EPA 300.0
	G1304933	内	1	MW-3	04/18/2013	Sulfate	821	10	**	738	mg/L		04/19/2013 09:00	EPA 300.0
	G1301890	内	Ì	MW-3	01/28/2013	Sulfate	830	10	**	738	mg/L		01/29/2013 09:45	EPA 300.0
	G1211317	内	1	MW-3	11/07/2012	Sulfate	792	10	**	738	mg/L	1	11/08/2012 14:35	EPA 300.0
	G1207908	凶	1	MW-3	07/23/2012	Sulfate	649	10		738	mg/L		07/24/2012 09:07	EPA 300.0
	G1204599	凶	1	MW-3	04/12/2012	Sulfate	784	10	**	738	mg/L		04/13/2012 03:21	EPA 300.0
	G1201362	内内	ý.	MW-3	01/09/2012	Sulfate	807	10	**	738	mg/L		01/11/2012 09:16	EPA 300.0
	G1110659 G1107365		I I	MW-3 MW-3	10/17/2011 07/11/2011	Sulfate Sulfate	736 648	10 10			mg/L		10/26/2011 20:33	EPA 300.0
	G1104803	Ż	J.	MW-3	04/21/2011	Sulfate	744	10	#*		mg/L mg/L		07/13/2011 03:03 04/22/2011 01:35	EPA 300.0 EPA 300.0
	G1101588	西	4	MW-3	01/18/2011	Sulfate	803	10	**		mg/L		01/19/2011 11:00	EPA 300.0
	G1010090	内		MW-3	10/04/2010	Sulfate	725	10			mg/L		10/06/2010 10:35	EPA 300.0
	G1007286	四		MW-3	07/12/2010	Sulfate	611	10			mg/L		07/13/2010 23:44	EPA 300.0
	G1004535	四		MM-3	04/20/2010	Sulfate	688	10			mg/L		04/21/2010 06:20	EPA 300.0
	G1001485	西		MW-3	01/20/2010	Sulfate	605	10			mg/L		01/21/2010 10:05	EPA 300.0
	G0910579	凶		MW-3	10/21/2009	Sulfate	505	10			mg/L		10/21/2009 21:14	EPA 300,0
	G0907378 G0904485	乄 乄			07/15/2009	Sulfate	441	10			mg/L		07/15/2009 22:45	EPA 300.0
	G0901497	2			04/20/2009 01/27/2009	Sulfate Sulfate	549 684	10 10			mg/L mg/L		04/22/2009 10:48 02/04/2009 00:00	EPA 300.0 EPA 300.0
	G0810471	卤			10/20/2008	Sulfate	611	10			mg/L		10/21/2008 12:20	EPA 300.0
	G0807419	凶			07/16/2008	Sulfate	604	10			mg/L		07/16/2008 23:15	EPA 300.0
	G0804541	西			04/21/2008	Sulfate	576	10			mg/L		04/22/2008 10:00	EPA 300.0
	G0801435	内		MW-3	01/17/2008	Sulfate	583	10			mg/L		01/18/2008 19:18	EPA 300.0
	<u>G0710360</u>	内		MW-3	10/15/2007	Sulfate	508	10		739	mg/L	1	10/16/2007 18:37	EPA 300.0
	<u>G0707064</u>	内			07/03/2007			10			mg/L		07/03/2007 00:00	EPA 300.0
	<u>G0704373</u>	셛			04/16/2007	Sulfate		10			mg/L		04/17/2007 04:10	EPA 300.0
	<u>G0701360</u>	四						10			mg/L		01/17/2007 10:37	EPA 300.0
	<u>G0610489</u>	内				Sulfate		10			mg/L		10/24/2006 18:53	EPA 300.0
	<u>G0607332</u> <u>G0604336</u>	内内						10			mg/L		07/20/2006 13:02	EPA 300.0
	G0601272	占						10 10			mg/L mg/L		04/19/2006 11:02 01/17/2006 19:48	EPA 300.0 EPA 300.0
	G0510273	Ż						10			mg/L		10/13/2005 23:13	EPA 300.0
	G0507278	Ż						10			mg/L		07/19/2005 16:26	EPA 300.0
	G0504252	内						10			mg/L		04/14/2005 21:22	EPA 300.0

Environm	TING ental and E	nora	Analy	ele										
			By Site ID	X Trend A	malysis <u>x)</u> Tre	nd Analysis	x							
							2.204	P	_					
	Please selec	to Da	to Dana	a and Sitar	9	A	nalyte	i rac	e					
A212					64									
ders			_	DD/YYYY					Select	t Mor	itoring	Poir	t(s) Select Analyte(s)
Tesis	From: 01/	01/200	4	To: [12	31/2017				MW-4	-		Y	Sulfate	
s By Site ID	NRG - CO	NEMAL	JGH ST/	ATION - GW	G1033.10	~	Search							
s by Date	[П												
	Export CSV	1												
	Sample No.		Attach	Sample ID		·	Result						Date/Time Analyzed	· · · · · · · · · · · · · · · · · · ·
	G1710253 G1710252	内内) j	MW-4 MW-4	10/04/2017 10/04/2017	Sulfate Sulfate	1170 1050	10 2	**	738	mg/L	1	10/04/2017 17:41 10/05/2017 08:52	EPA 300.0 EPA 300.0
	G1707F83	团	9	MW-4	07/27/2017	Sulfate	1090	10	**	738	mg/L mg/L	1	07/27/2017 20:28	EPA 300.0
	G1707F82	內	1	MW-4	07/27/2017	Sulfate	1170	2				1	07/27/2017 19:04	EPA 300.0
	G1704071	内	1	MW-4	04/26/2017	Sulfate	1140	10	**	738	mg/L	1	04/27/2017 09:08	EPA 300.0
	G1704D69	四	¥	MW-4	04/26/2017	Sulfate	996	2			mg/L	1	04/28/2017 08:10	EPA 300.0
	G1704D68	凶	¥	MW-4	04/26/2017	Sulfate	1000	2			mg/L	1	04/28/2017 07:52	EPA 300.0
	G1701E56	견	1	MW-4	01/30/2017	Sulfate	940	10	**	738	mg/L		01/31/2017 19:42	EPA 300.0
	G1701E55	内内	1	MW-4	01/30/2017	Sulfate	895	2	**	720	mg/L	1	01/31/2017 19:20	EPA 300.0
	G1610D95 G1610D94	四团) J	MW-4 MW-4	10/26/2016 10/26/2016	Sulfate Sulfate	903 865	10 2	**	738		1	10/26/2016 20:16 10/27/2016 06:30	EPA 300.0 EPA 300.0
	G1607D13	Z	J.	MW-4	07/25/2016	Sulfate	1090	2			mg/L	1	07/27/2016 00:10	EPA 300.0
	G1607D12	西	1	MW-4	07/26/2016	Sulfate	1100	10	**	738	mg/L		07/26/2016 23:22	EPA 300.0
	G1604D34	内	1	MW-4	04/26/2016	Sulfate	965	2				1	04/27/2016 07:47	EPA 300.0
	G1604D33	Ľ٩	*	MW-4	04/26/2016	Sulfate	951	10	**	738	mg/L	4	04/27/2016 07:36	EPA 300.0
	G1602350	凶	J.	MW-4	02/04/2016	Sulfate	870	2				1	02/05/2016 10:12	EPA 300.0
	G1602348	四	1	MW-4	02/04/2016	Sulfate	915	10	**	738	mg/L	1	02/05/2016 10:01	EPA 300.0
	G1512B14	内内	1	MW-4 MW-4	12/21/2015	Sulfate Sulfate	874 946	2 10	**	770		1	12/21/2015 17:27	EPA 300.0
	G1510A90 G1507C23	四	1	MW-4	10/21/2015 07/23/2015	Sulfate	1030	10	**	738 738	mg/L mg/L	1	10/22/2015 19:42 07/23/2015 23:24	EPA 300.0 EPA 300.0
	G1504E71	Þ	1	MW-4	04/29/2015	Sulfate	953	10	**	738	mg/L	1	04/29/2015 18:59	EPA 300.0
	G1501985	团	9	MW-4	01/22/2015	Sulfate	977	10	**	738	mg/L		01/23/2015 09:41	EPA 300.0
	G1410E15	内	1	MW-4	10/27/2014	Sulfate	670	10		738	mg/L	1	10/27/2014 20:39	EPA 300.0
	G1409967	凶	1	MW-4	09/18/2014	Sulfate	777	10	**	738	mg/L	1	09/18/2014 17:48	EPA 300.0
	G1404D04	内	1	MW-4	04/21/2014	Sulfate	1000	10	**	738		1	04/22/2014 15:28	EPA 300.0
	G1401764	内	1	MW-4	01/16/2014	Sulfate	874	10	**	738	mg/L		01/16/2014 23:17	EPA 300.0
	G1310157 G1307578	内内]]	MW-4 MW-4	10/02/2013 07/11/2013	Sulfate Sulfate	1010 802	10 10	**	738 738		1	10/04/2013 08:19 07/15/2013 09:48	EPA 300.0 EPA 300.0
	G1304670	Ŀ	j.	MW-4	04/15/2013	Sulfate	666	10		738		1	04/15/2013 20:14	EPA 300.0
	G1301669	西	1	MW-4	01/15/2013	Sulfate	710	10		736	mg/L		01/15/2013 21:02	EPA 300.0
	G1210910	西	1	MW-4	10/18/2012	Sulfate	686	10		738		1	10/19/2012 13:40	EPA 300.0
	G1207653	内	Ż	MW-4	07/17/2012	Sulfate	708	10		738	mg/L	1	07/18/2012 01:47	EPA 300.0
	G1204788	四	1	MW-4	04/18/2012	Sulfate	658	10		738		1	04/19/2012 02:46	EPA 300.0
	G1201758	内内	1	MW-4	01/18/2012	Sulfate	738	10		738	mg/L		01/19/2012 13:57	EPA 300.0
	G1110659 G1107484	四内	1	MW-4 MW-4	10/17/2011 07/13/2011	Sulfate Sulfate	771 684	10 10	10	738 738	mg/L mg/L	1	10/18/2011 09:52 07/14/2011 16:31	EPA 300.0 EPA 300.0
	G1104684	卤	1	MW-4	04/19/2011	Sulfate	656	10		738	mg/L	10	04/25/2011 17:44	EPA 300.0
	G1101588	内	1	MW-4	01/18/2011	Sulfate	589	10		738	mg/L		01/19/2011 10:43	EPA 300.0
	G1010531	凶		MW-4	10/19/2010	Sulfate	608	10		738	mg/L		10/20/2010 11:47	EPA 300.0
	G1007500	内		MW-4	07/19/2010	Sulfate	806	10	**	738	mg/L		07/20/2010 14:17	EPA 300.0
	G1004119	셫		MW-4	04/06/2010	Sulfate	667	10			mg/L		04/07/2010 12:47	EPA 300.0
	G1001446	内		MW-4	01/18/2010	Sulfate	715	10	2	738	mg/L		01/20/2010 05:51	EPA 300.0
	G0910278 G0907330	内内		MW-4 MW-4	10/12/2009 07/14/2009	Sulfate Sulfate	787 924	10 10	:	738 738	mg/L mg/L		10/13/2009 00:12 07/15/2009 09:33	EPA 300.0 EPA 300.0
	G0904669	Ż		MW-4	04/29/2009	Sulfate	898	10	•	738	mg/L		04/30/2009 01:45	EPA 300.0
	G0901427	겨		MW-4	01/22/2009	Sulfate	784				mg/L		01/22/2009 22:21	EPA 300.0
	G0810386	乄		MW-4	10/15/2008	Sulfate	1050	10	•	738	mg/L	1	10/16/2008 08:50	EPA 300.0
	G0807334	内		MW-4	07/14/2008	Sulfate	1030	10	•	738	mg/L	1	07/14/2008 22:25	EPA 300.0
	G0804285	셛		MW-4	04/10/2008	Sulfate	837	10	•	738	mg/L		04/10/2008 20:29	EPA 300.0
	G0801379	四			01/16/2008	Sulfate	950	10	•	738	mg/L		01/17/2008 10:04	EPA 300.0
	G0710360 G0707064	内 内		MW-4 MW-4	10/16/2007	Sulfate	731	10			mg/L		10/16/2007 18:50	EPA 300.0
	G0704412	거			07/02/2007 04/17/2007	Sulfate Sulfate	1040 811	10 10	-	738 738	mg/L mg/L		07/04/2007 00:33 04/18/2007 08:45	EPA 300.0 EPA 300.0
	G0701360	占			01/15/2007	Sulfate	695	10		738	mg/L		01/17/2007 09:21	EPA 300.0
	G0610426	卤		MW-4	10/19/2006	Sulfate	745	10	•	738	mg/L		10/19/2006 22:04	EPA 300.0
	G0607332	内			07/19/2006	Sulfate	858			738	mg/L		07/20/2006 12:49	EPA 300.0
	G0604336	内			04/18/2006	Sulfate	591	10		738	mg/L		04/19/2006 10:50	EPA 300.0
	<u>G0601272</u>	凶			01/17/2006	Sulfate	1050	10	•	738	mg/L		01/18/2006 19:47	EPA 300.0
	G0510273	四			10/13/2005	Sulfate	523	10		730	mg/L		10/13/2005 23:01	EPA 300.0
	<u>60507302</u>	内			07/19/2005		631	10			mg/L		07/20/2005 12:17	EPA 300.0
	G0504215	内		MW-4	04/12/2005	Sulfate	559	10		738	mg/L		04/14/2005 02:46	EPA 300.0

	ING	_		-										
	ntal and E									_		-		
10	Home Work	korders B	ly Site ID	X Trend A	Analysis 💥 Tre	nd Analysis	×							
	DI			104	-7	A	nalyte 1	Frac	e					
	Please selec		-		2									
				DD/YYYY					Select	Mor	itoring	Poi	nt(s) Select Analyte(s)
	From: 01/	01/2004	4_1	To: [12	/31/2017				MW-2	3		×	Sulfate	
2	NRG-CO	NEMAL	JGH ST/	ATION - GW	G1033.10	~	Search							
L (Export CSV	1												
		0.55	47.0.0.0	Camala ID	Data Campiad	4 b - b -	Desult	~	01		Units	DE	Data Time Archived	Test Method
	Sample No. G1710052	205 2	Attach Z	Sample ID MW-23	Date Sampled 10/01/2017	Analyte Sulfate	Result 575	QL 2	Qual	CL	mg/L	- N.C.	Date/Time Analyzed 10/03/2017 02:43	EPA 300.0
	G1710051	内	1	MW-23	10/01/2017	Sulfate	544	10		738	mg/L		10/02/2017 22:21	EPA 300.0
	G1707E05	凶	1	MW-23	07/24/2017	Sulfate	532	2			mg/L		07/26/2017 07:59	EPA 300.0
	G1707E05	ク	1	MW-23	07/24/2017	Sulfate	536	10		738	mg/L		07/25/2017 20:39	EPA 300.0
	G1704C52 G1704C51	内内	1	MW-23 MW-23	04/24/2017 04/24/2017	Sulfate Sulfate	558 555	2 10		738	mg/L mg/L		04/26/2017 06:56 04/26/2017 06:01	EPA 300.0 EPA 300.0
	G1704C50	西	1	MW-23	04/24/2017	Sulfate	546	2		, 20	mg/L		04/26/2017 02:19	EPA 300.0
	G1701907	内	1	MW-23	01/18/2017	Sulfate	598	10		738	mg/L		01/19/2017 08:54	EPA 300.0
	G1701906	内	1	MW-23	01/18/2017	Sulfate	543	2			mg/L		01/19/2017 09:05	EPA 300,0
	G1610C34	内	1	MW-23	10/24/2016	Sulfate	600	10		738	mg/L		10/24/2016 21:13	EPA 300.0
	G1610C33 G1607845	内内	اللي اللي	MW-23 MW-23	10/24/2016 07/21/2016	Sulfate Sulfate	509 591	2 2			mg/L mg/L		10/24/2016 23:20 07/22/2016 09:40	EPA 300.0 EPA 300.0
	G1607844	团	1	MW-23	07/21/2016	Sulfate	581	10		736	mg/L		07/22/2016 07:40	EPA 300.0
	G1604C65	内	1	MW-23	04/25/2016	Sulfate	558	10		738	mg/∟	1	04/25/2016 23:55	EPA 300.0
	G1604C64	건	1	MW-23	04/25/2016	Sulfate	557	2			mg/L		04/26/2016 01:11	EPA 300.0
	G1602122	껸	4	MW-23	02/02/2016	Sulfate	576	2		320	mg/L		02/03/2016 04:14	EPA 300.0
	G1602121 G1512A95	内内	1	MW-23 MW-23	02/02/2016 12/20/2015	Sulfate Sulfate	569 653	10 2		/38	mg/L mg/L		02/03/2016 03:58 12/21/2015 12:47	EPA 300.0 EPA 300.0
	G1510869	内	1	MW-23	10/15/2015	Sulfate	578	10		738	mg/L		10/16/2015 02:34	EPA 300.0
	G1507288	内	1	MW-23	07/07/2015	Sulfate	567	10		738	mg/L		07/07/2015 23:26	EPA 300.0
	G1504D90	内	1	MW-23	04/28/2015	Sulfate	624	10		738	mg/L		04/29/2015 00:50	EPA 300.0
	<u>G1501837</u>	内内	1	MW-23	01/20/2015	Sulfate	609	10		738	mg/L		01/20/2015 16:38	EPA 300.0
	G1410675 G1407764	四内	1	MW-23 MW-23	10/14/2014 07/15/2014	Sulfate Sulfate	619 626	10 10		738 738	mg/L mg/L		10/14/2014 19:53 07/15/2014 23:06	EPA 300.0 EPA 300.0
	G1404F75	团	1	MW-23	04/24/2014	Sulfate	632	10			mg/L		04/24/2014 20:29	EPA 300.0
	G1403387	内	1	MW-23	03/10/2014	Sulfate	663	10		738	mg/L		03/11/2014 01:30	EPA 300.0
	G1310239	스	1	MW-23	10/03/2013	Sulfate	549	10			mg/L		10/03/2013 18:51	EPA 300.0
	G1307887	内	1	MW-23	07/18/2013	Sulfate	615	10		738	mg/L		07/19/2013 13:15	EPA 300.0
	G1304933 G1301924	内内	1	MW-23 MW-23	04/18/2013 01/21/2013	Sulfate Sulfate	706 666	10 10			mg/L mg/L		04/19/2013 02:45 01/21/2013 17:38	EPA 300.0 EPA 300.0
	G1210541	内	1	MW-23	10/10/2012	Sulfate	588	10		738	mg/L		10/11/2012 04:42	EPA 300.0
	G1207823	内	محين ا	MW-23	07/19/2012	Sulfate	656	10		738	mg/L		07/20/2012 13:04	EPA 300.0
	G1204122	焢	1	MW-23	04/03/2012	Sulfate	676	10			mg/L		04/04/2012 14:24	EPA 300.0
	G1201830 G1110714	内内	1	MW-23 MW-23	01/19/2012	Sulfate	641 705	10 10		738 738	mg/L		01/19/2012 22:58	EPA 300.0
	G1107694	四辺	1	MW-23	10/18/2011 07/18/2011	Sulfate Sulfate	703	10			mg/L mg/L		10/19/2011 08:50 07/20/2011 02:31	EPA 300.0 EPA 300.0
	G1104282	内	1	MW-23	04/07/2011	Sulfate	722	10			mg/L		04/08/2011 16:57	EPA 300.0
	G1101639	西	1	MW-23	01/19/2011	Sulfate	679	10		736	mg/L	1	01/20/2011 11:02	EPA 300.0
	G1010173	内		MW-23	10/06/2010	Sulfate	589	10			mg/L		10/07/2010 15:13	EPA 300.0
	G1007592 G1006237	内内		MW-23 MW-23	07/21/2010 06/08/2010	Sulfate Sulfate	696 775	10 10	**		mg/L mg/L		07/22/2010 12:57 06/09/2010 16:19	EPA 300.0 EPA 300.0
	G1004535	Z		MW-23	04/19/2010	Sulfate	780	10			mg/L		04/21/2010 06:36	EPA 300.0
	G1001485	内		MW-23	01/20/2010	Sulfate	684	10		738	mg/L	1	01/21/2010 09:28	EPA 300.0
	G0910538	四		MW-23	10/20/2009	Sulfate	605	10			mg/L		10/21/2009 07:25	EPA 300.0
	G0907428 G0904485	内内		MW-23 MW-23	07/16/2009 04/20/2009	Sulfate Sulfate	641 665	10			mg/L mg/L		07/17/2009 12:56 04/22/2009 10:11	EPA 300.0 EPA 300.0
	G0901427	内内		MW-23	04/20/2009	Sulfate	591	10 10			mg/L mg/L		01/22/2009 22:09	EPA 300.0
	G0810070	卤		MW-23	10/02/2008	Sulfate	559	10			mg/L		10/02/2008 20:56	EPA 300.0
	G0807134	凶		MW-23	07/03/2008	Sulfate	601	10			mg/L		07/03/2008 20:20	EPA 300.0
1	G0804285	四		MW-23	04/10/2008	Sulfate	616	10			mg/L		04/10/2008 19:14	EPA 300.0
	G0801435 G0710360	内内		MW-23 MW-23	01/17/2008 10/15/2007	Sulfate Sulfate	530 409	10 10			mg/L mg/L		01/18/2008 19:06 10/16/2007 18:25	EPA 300.0 EPA 300.0
1	G0707064	团		MW-23	07/03/2007	Sulfate	524	10		738	mg/L		07/03/2007 00:00	EPA 300.0
	G0704373	因		MW-23	04/16/2007	Sulfate	559	10			mg/L		04/17/2007 03:57	EPA 300.0
	G0701360	内		MW-23	01/16/2007	Sulfate		10		738	mg/L	1	01/17/2007 10:50	EPA 300.0
- EX - C	G0610489	四		MW-23	10/24/2006	Sulfate	359	10			mg/L		10/24/2006 19:05	EPA 300.0
	G0604332	内内		MW-23	07/17/2006	Sulfate		10			mg/L		07/18/2006 19:55	EPA 300.0
	G0601248	凶		MW-23 MW-23	04/17/2006 01/16/2006	Sulfate Sulfate		10 10			mg/L mg/L		04/19/2006 00:40 01/17/2006 17:43	EPA 300.0 EPA 300.0
	G0510273	b		MW-23	10/13/2005	Sulfate		10			mg/L		10/13/2005 23:26	EPA 300.0
	G0507222	内		MW-23	07/13/2005	Sulfate		10			mg/L		07/14/2005 20:49	EPA 300.0
1.1	G0504252	内		MW-23	04/14/2005	Sulfate	328	10		730	mg/L	1	04/14/2005 21:09	EPA 300.0

Appendix B Ash Disposal Site—Assessment of Corrective Measures Report

ASSESSMENT OF CORRECTIVE MEASURES REPORT CCR Release Incident Ash Valley Refuse/Disposal Area

Prepared for:

GenOn Northeast Management Company Conemaugh Generating Station New Florence, PA 15944

Prepared by:

Aptim Environmental & Infrastructure, Inc. Pittsburgh, Pennsylvania

January 2019

Table of Contents_

List of 7	Tables	iii
List of I	Figures	iii
List of <i>I</i>	Appendices	iii
List of A	Acronyms & Abbreviations	iv
1.0	Introduction	.1
2.0	Facility Overview	
3.0	Summary of the Ash Release	
4.0	Immediate Response Actions	
4.0	4.1 Notification of Release	
	4.2 CCR Removal	
	4.3 Retention of Professional Engineering Services	. 4
5.0	Corrective Measures Program	.5 .6 .6 .6 .7 .7 .8 .8 .9 .9 .9
6.0	Sampling Results	
7.0	Recommendation for No Further Action	
8.0	Certification	
Tables Figures		

Appendices

List of Tables _____

Table 1	Background Soil Sample Results
Table 2	Confirmation Soil Sample Results
Table 3	Confirmation Leachate Sample Results
Table 4	Surface Water Sample Results

List of Figures _____

Figure 1	Site Location Map
Figure 2	Overview of Ash Release Area
Figure 3	Soil and Surface Water Sampling Locations (1 of 2)
Figure 4	Soil and Surface Water Sampling Locations (2 of 2)

List of Appendices_____

Appendix A	CCR Release Notification to PADEP
Appendix B	Notice of Time Period Extension for Assessment of Corrective Measures
Appendix C	Newspaper Advertisement of Public Meeting
Appendix D	Supporting Soil and Surficial Materials Report
Appendix E	Analytical Laboratory Reports

List of Acronyms & Abbreviations_____

Aptim Environmental & Infrastructure, Inc.
coal combustion residuals
Disposal of Coal Combustion Residuals from Electric Utilities Final Rule
cubic yards
Conemaugh Generating Station's Ash Valley Refuse/Disposal Site
Environmental Sampling Plan
GenOn Northeast Management Company
global positioning system
Maximum Contaminant Level
Pennsylvania Department of Environmental Protection
Assessment of Corrective Measures Report
Run-On and Run-Off Control System Plan
Regional Screening Level
square feet
Synthetic Precipitation Leaching Procedure
Toxicity Characteristic Leaching Procedure
U.S. Environmental Protection Agency

1.0 Introduction

In 2015, the Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (CCR Rule) was enacted within the Federal Register under Title 40 Code of Federal Regulations §257. The CCR Rule establishes technical requirements for coal combustion residuals (CCR) disposal sites and surface impoundments under Subtitle D of the Resource Conservation and Recovery Act, which is the primary law regulating solid waste. Conemaugh Generating Station's Ash Valley Refuse/Disposal Site (disposal site), operated by GenOn Northeast Management Company (GenOn), is subject to the CCR Rule.

On August 8, 2018, a surficial (non-groundwater) release of CCR was discovered during the performance of a routine inspection of the Conemaugh disposal site and established erosion and sedimentation control features. The release most likely occurred during an extremely intense precipitation event on July 30, 2018, which was localized and rare.

As described in §§257.84(b)(5) and 257.90(d) of the CCR Rule, in the event of a release from a CCR unit, the owner or operator of a disposal site must immediately undertake necessary measures to control the source(s) of the release so as to reduce or eliminate, to the maximum extent feasible, releases of contaminants into the environment. Additionally, the owner or operator must comply with all related applicable requirements in §§257.96-257.98. For surficial (non-groundwater) spills, these requirements generally include assessing and selecting corrective measures to prevent further releases, remediating the release as necessary, and restoring the affected area to original conditions. To document compliance with the CCR Rule, an Assessment of Corrective Measures Report (Report) must be prepared and placed into the facility's operating record per §257.96(d) and §257.105(h)(10). This Report must also be noticed to the State Director per §257.106(h)(8).

Conemaugh Station's responses and subsequent activities to the subject CCR release were in accordance with the above-referenced regulations and guidance from the U.S. Environmental Protection Agency (USEPA) issued in response to a settlement of a portion of the lawsuit challenging the CCR Rule. In the settlement, USEPA agreed to a remand on the issue of defining which non-groundwater releases are subject to the full corrective action process under §§257.96-257.98. In the interim between the settlement and issuance of a revised regulation (which was not issued prior to this report), for no-groundwater CCR release, USEPA "would recommend that compliance determinations focus primarily on the rapid remediation of detected non-groundwater releases, consistent with §257.90(d) rather than adherence to the specific corrective action procedures in §§257.96-257.98."

1

2.0 Facility Overview

GenOn operates the Conemaugh Generating Station located in New Florence, Pennsylvania. The station began operating in 1970 and utilizes two coal-fired boilers each with a steam turbine-driven electric generator that provides electricity to the regional electric grid. CCR materials generated through the operation of these units are managed at the disposal site located directly north of the generating station. The CCR materials that are disposed consist primarily of bottom ash, fly ash, pyrites, and Flue Gas Desulfurization by-product (gypsum). The disposal site is permitted under Pennsylvania Department of Environmental Protection (PADEP) Solid Waste Permit No. 300876.

The disposal site is divided into three stages as shown on Figure 1. Stage I is approximately 160 acres and is located farthest to the north. Stage I started receiving CCR in 1970 and was closed in 1987. Stage II, which is currently active, covers approximately 120 acres and is located directly south of Stage I. Construction of the first phase (Phase IIIA) of Stage III, located directly south of Stage II, was ongoing at the time of the CCR release.

3.0 Summary of the Ash Release

On August 8, 2018, a surficial (non-groundwater) release of CCR materials (ash) was discovered during the performance of a routine inspection of the disposal site (as required by the CCR Rule) and other established erosion and sedimentation control features. As previously noted, the release most likely occurred during an extremely intense precipitation event on July 30, 2018, which was localized and rare.

Ash that was displaced from the active Stage II disposal area was initially observed outside of the disposal site boundary immediately south of Culvert 1C, which connects a Stage III intermediate non-contact stormwater channel to the locally-named "East Valley Stream" (see Figure 2). This stream is a mitigation feature that was relocated in support of the Stage III construction and is located east of the Phase III ultimate disposal site boundary. The non-contact stormwater channel is designed to convey stormwater that falls outside of the disposal site boundary so that it does not come into contact with CCR. Although the majority of deposited CCR materials were located immediately south of Culvert 1C, small pockets of ash were also identified up to 1,800 feet south of Culvert 1C adjacent to the East Valley Stream (see Figures 3 and 4). The deposits of ash in proximity to Culvert 1C and in areas farther south were observed to range in thickness between 1/4 inch to 4 inches.

The channel and stream were inspected upon the discovery of CCR material. It was subsequently determined that a contact water diversion berm (see Figure 2) adjacent to a main haul road along the southern boundary of the Phase II disposal area had been overtopped by contact stormwater (water that had fallen on active areas of the disposal site) and flowed through the referenced channel to Culvert 1C. The subject berm had been temporarily lowered prior to the release in order to facilitate the transport of construction materials to the Phase III area.

Conemaugh Station responded to the ash release through a series of actions relative to PADEP notification, immediate cleanup activities, and implementation of CCR Rule corrective measures assessment requirements, including the retention of professional engineering services. The following sections provide detailed information regarding each of these elements.

4.1 Notification of Release

Upon discovery of the CCR release on August 8, 2018, Conemaugh Station immediately informed PADEP regarding the incident. On August 9, 2018, PADEP conducted an inspection of the area, whereupon verbal authorization was provided for Conemaugh Station to move forward with cleanup activities. A formal report of this incident was prepared and submitted to PADEP on August 13, 2018; a copy of that report is presented in Appendix A. Additionally, as required by §257.96(a) and (f) and §257.106(h)(7) of the CCR Rule, GenOn provided notification to PADEP (via email dated August 23, 2018) that the Conemaugh Station had initiated an Assessment of Corrective Measures, effective August 8, 2018. This notification was also placed into the Conemaugh Station facility's operating record per §257.105(h)(9) and posted to the publicly-accessible website per §257.107(h)(7).

4.2 CCR Removal

In order to minimize the potential for future releases, and as required under §257.90(d), Conemaugh Station and its contractor (R&L Development) began immediately removing the displaced CCR materials following receipt of the above-noted authorization from PADEP. This involved the use of a vacuum truck in the affected reaches of the East Valley Stream and the areas downstream of Culvert 1C. The vacuum truck was utilized in order to minimize disturbance to the established vegetation and ecosystem within and adjacent to the stream bed. These actions were continued until all practical quantities of CCR were removed to minimize potential impacts to human health and/or the environment. All impacted erosion and sedimentation controls were restored and/or improved.

4.3 Retention of Professional Engineering Services

In conjunction with initiation of the Assessment of Corrective Measures activities, GenOn retained professional engineering services from Aptim Environmental & Infrastructure, Inc. (APTIM) to assist with the associated CCR Rule obligations and to evaluate the adequacy and effectiveness of the CCR removal actions with respect to protectiveness of public health, welfare, and safety.

5.0 Corrective Measures Program

5.1 Initial On-Site Inspection of Immediate CCR Removal Activities

APTIM representatives visited the site on September 26 and 28, 2018 to assess the extent of the CCR release to the ground surface. APTIM walked the entire path of the CCR release starting at the diversion berm that was overtopped (located just south of the active portion of the Stage II disposal site), along the non-contact stormwater ditch to Culvert 1C, and along the East Valley Stream until approximately 300 feet downstream of Culvert 2 (approximately 2,300 feet downstream of Culvert 1C). The following observations were made:

- No CCR was observed between the access road located just south of the active portion of the Stage II disposal site downslope to Culvert 1C.
- The height of the overtopped diversion berm, which had been temporarily lowered prior to the storm to allow materials to be delivered to the Phase III construction area, had been restored.
- Erosion controls that had been damaged during the storm were observed to have been repaired and/or improved.
- A significant portion, but not all, of the displaced CCR materials downstream of Culvert 1C and along the stream had been removed.

During the noted September 2018 visits, APTIM identified discrete locations where some CCR materials were still visible and requested additional removal activities be conducted in these areas. The majority of the additional areas identified by APTIM were located on the east side of the stream just south of Culvert 1C. The southernmost location was situated just north of the Culvert 2 weir. The additional areas were addressed by Conemaugh Station and its contractor on October 1 and 2, 2018, again with utilization of a vacuum truck to remove the displaced CCR materials.

Each of the identified CCR-impacted areas between Culvert 1C and Culvert 2 were logged with a handheld global positioning system (GPS) unit, and the resultant coordinates were used to locate these areas on Figures 3 and 4. A total of 21 individual areas were identified with a cumulative area of approximately 5,400 square feet (sf). The largest single location (the "Upper Deposit") at the outlet of Culvert 1C covered an area of approximately 4,550 sf. The remaining areas (collectively referred to as the "Lower Deposits" and designated as areas L1 through L20), were much smaller in size, ranging from 1 to 100 sf, for a cumulative total of approximately 850 sf.

5.2 Environmental Sampling Plan Development

APTIM developed an Environmental Sampling Plan (ESP) for the release area to determine whether the CCR removal activities had appropriately mitigated potential environmental impacts

or whether additional action was warranted. This ESP was developed based on site-specific considerations and incorporated both soil and surface water sampling protocols for areas south of Culvert 1C.

5.2.1 Soil Sampling

5.2.1.1 Overview

Soil sampling included both "impacted areas" (areas where CCR had deposited) and "nonimpacted areas" (soils along the stream that were east of Culvert 1C). Sample locations were selected using a random number generator technique to remove bias. Samples were evaluated against site-specific groundwater protection standards and compared to background values to determine whether immediate cleanup activities were appropriate to protect public health, welfare, and safety.

5.2.1.2 Number of Samples

In order to evaluate the effectiveness of cleanup activities, a total of 26 samples were proposed to be collected, including 16 in impacted areas and 10 in non-impacted areas. It is noted that no formal guidance is provided within the CCR Rule on how many samples are required to evaluate a CCR release. Therefore, engineering judgement was used that generally follows the sampling frequency identified in Pennsylvania's Land Recycling Program (Voluntary Cleanup Program), commonly referred to as "Act 2."

The "Upper Deposit" at the outlet of Culvert 1C has an approximate area of 4,550 sf, and conservatively assuming a maximum of 4 inches of CCR was removed, the total soil volume estimated is 57 cubic yards (cy). This volume has been conservatively estimated for the purpose of determining the number of samples to be taken. However, the majority of the CCR deposit thicknesses were less than 4 inches. A total of 8 soil samples were targeted for collection in the "Upper Deposit" area.

The remaining 20 "Lower Deposit" areas have an approximate cumulative total area of 850 sf, and again assuming a conservative maximum of 4 inches of CCR was removed, the total soil volume estimated is 11 cy. A total of 8 soil samples were targeted for collection from the Lower Deposits (L1 through L20).

5.2.1.3 Location of Samples

In order to determine the sampling locations, a 50-foot by 150-foot grid was overlain on the nonimpacted area with a total of 75 blocks (each grid block measuring 10 feet by feet). The 10 soil sample locations were selected using a random number generator in Excel[®] to provide values ranging between 1 and 75. The random sample locations generated were 1, 8, 17, 24, 30, 36, 48, 55, 62, and 66. The 10 selected soil sample locations were translated to the field and documented using GPS coordinates. Figure 3 shows the 10 selected soil sample locations within the non-impacted area.

In order to determine the sampling locations of the impacted "Upper Deposit" area, an 80-foot by 160-foot grid was established with a total of 128 blocks (each grid block measuring 10 feet by 10 feet). The 8 soil sample locations were selected using a random number generator in Excel[®] to provide values ranging between 1 and 128. If a random sampling location within the grid was selected that was not within the CCR deposit limits, a new random sampling location was generated until a total of 8 samples were within the CCR deposit limits. The random sample locations generated were 15, 31, 40, 44, 70, 76, 82, and 105. The 8 selected soil sample locations were translated to the field and documented using GPS coordinates. Figure 3 shows the 8 selected soil sample locations within the "Upper Deposit" area.

The 8 soil sample locations from the "Lower Deposit" areas were again selected using a random number generator in Excel[®] to provide values ranging between 1 and 20. The random sample locations generated were L1, L4, L8, L11, L12, L15, L18, and L20. The 8 soil samples collected within the randomly selected "Lower Deposit" areas were completed as biased sampling. Figures 3 and 4 show the 8 selected soil sample locations within the "Lower Deposit" areas.

5.2.1.4 Comparison Methodology

Background samples were collected from the non-impacted area for comparison purposes to determine if the total metals concentrations in the impacted area soil samples were greater than those collected in the non-impacted area. If the total metals concentrations were found to be similar for both potentially impacted and non-impacted soils, it would serve as indication that CCR materials had been adequately removed. If total metals concentrations were higher in potentially impacted soils, but further testing via leaching analysis (as discussed below) yielded acceptable results when compared to site-specific groundwater standards, it would offer evidence that trace CCR likely remains after cleanup, but does not threaten public health.

5.2.1.5 Testing Methods for Soil Samples

The most likely potential exposure pathway for the impacted soils was determined to be if chemical constituents from the soils that had been underneath the CCR deposit could leach and enter the groundwater. As the CCR material had been deposited on the ground surface, the leaching would most likely occur when rainwater or surface water came into contact with the residually impacted soils.

Based on this potential exposure pathway, a Synthetic Precipitation Leaching Procedure (SPLP) laboratory evaluation was selected. This test method passes a synthetic leaching agent (intended to mimic rainwater) through the soil sample and analyzes the resulting chemical constituents in the leachate. It is noted that leachate is defined as any liquid that, in passing through matter,

7

extracts solutes, suspended solids, or any other component of the material through which it has passed. The SPLP testing methodology is specified in USEPA SW-846 Method 1312. Although considered, the Toxicity Characteristic Leaching Procedure (TCLP) was deemed inappropriate for use, as TCLP uses a leaching agent that is intended to simulate the leachate that would result from a municipal solid waste landfill rather than rainwater.

5.2.1.6 Use of Groundwater Protection Standards

The CCR Rule outlines the establishment of groundwater protection standards for disposal sites using chemical constituents that are known to occur in CCR, which generally includes heavy metals. The actual list of chemical constituents for which groundwater protection standards must be established is contained in Appendix IV of the CCR Rule. Accordingly, the site-specific groundwater protection standards are either federally-published Maximum Contaminant Levels (MCLs) or risk-based Regional Screening Levels (RSLs). For constituents where calculated background exceeds either the MCL or RSL, the background value serves as the groundwater protection standard. Under this line of reasoning, the immediate cleanup measures would be deemed adequate if the concentrations in the leachate generated from SPLP analysis of the soil samples collected in the impacted areas were no greater than the site-specific CCR groundwater standards previously adopted/developed for the Conemaugh disposal site.

5.2.2 Surface Water (Stream) Sampling

Two surface water samples from the East Valley Stream were proposed for collection and laboratory analysis for the CCR Appendix IV constituents, including an upstream (Sample WS-1, non-impacted) and downstream (Sample WS-2, potentially impacted) sample. Sample WS-1was proposed to be collected upstream of the CCR release to establish baseline values for the constituents being analyzed. In the event that a constituent was observed to be leachable during soil testing and was measured at an elevated concentration in the downstream surface water sample location when compared to the upstream sample, this could suggest that trace CCR may be impacting surface water. The approximate surface water sampling locations are shown on Figures 3 and 4.

5.3 *Review of Pertinent Disposal Site Design Documents*

Pertinent engineering reports and plans were reviewed to determine whether modifications to design or operations would be appropriate to minimize the potential for a future release. Documents reviewed included the Phase III Residual Waste Permit Drawings, prepared by GAI Consultants, Inc., dated March 2014, and the Run-on and Run-off Control System Plan (RRCSP), also prepared by GAI Consultants, Inc., dated October 2016. Both documents were prepared under the direction of a licensed professional engineer. The disposal site design, including stormwater controls, has been confirmed to be the same in both documents and meets CCR Rule requirements.

The RRSCP was developed to control the flow of stormwater on and around the disposal site. Engineered controls are used to route and collect runoff from active portions of the disposal site so that the water may be treated prior to off-site discharge through a National Pollutant Discharge Elimination System outfall. As described in the RRCSP, all constructed runoff channels and slope drains around the active Stage II area are designed to manage the 24-hour, 100-year storm event, which exceeds the regulatory requirement and is more protective than the 24-hour, 25-year design storm event specified by the CCR Rule. Temporary channels and other diversion channels around the Phase III intermediate phase areas are designed to meet CCR Rule requirements and pass the 24-year, 25-year storm. When constructed, all permanent Stage III run-on/runoff controls will be sized to manage the 24-hour, 100-year storm event.

Based on a review of site conditions, it appears that the Phase II diversion berm that was overtopped on July 30, 2018 was designed appropriately, but had been temporarily lowered to allow materials to be delivered to the Phase III construction area. This berm had not been appropriately restored prior to the rain event on July 30, but has since been addressed. Based on review of these site documents and subsequent APTIM site visits, it is concluded that the disposal site has been restored to the intended design, which is appropriate and meets regulatory requirements.

5.4 Correctives Measures Assessment

Concurrent with development of the ESP, which was intended to be used to determine the effectiveness of the cleanup activities, additional corrective measures were evaluated. These measures would be implemented in the event immediate cleanup measures did not mitigate the risk to public health. The assessment of corrective measures was completed in accordance with §§257.96-257.98 of the CCR Rule, which require that corrective measures remediate releases and restore the affected area.

5.4.1 Time Period for Assessment

Per §257.96(a), the assessment of corrective measures must be completed within 90 days of the discovery of the release, unless additional time is needed. Because of the complexities related to removal of the displaced ash in the impacted areas and the need to develop a thorough sampling and analysis plan (i.e., the ESP), APTIM's professional engineer certified that a 60-day extension was appropriate for completing the assessment of corrective measures. Notification of this extension is provided in Appendix B.

5.4.2 Requirements for Corrective Measures

Per §257.97(b)(1)-(5), the selected corrective measure used to mitigate a CCR release must:

- Be protective of human health and the environment;
- Attain the groundwater protection standard as specified pursuant to §257.95(h);
- Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of constituents in Appendix IV to this part into the environment;
- Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems; and
- Comply with standards for management of wastes as specified in §257.98(d).

5.4.3 Considered Corrective Measures

Considering that the release was a non-groundwater surficial spill (resulting in deposition of CCR materials on the ground surface), direct removal of the CCR materials (as accomplished by the immediate cleanup activities) was the initially identified approach to meet the above objectives. The removal may encompass only the CCR materials or may also include the underlying soils, if laboratory testing of collected samples indicates that they have been impacted. Therefore, two corrective measures were considered, which would be implemented once laboratory test results were received.

Option 1: No Further Action

In the event that laboratory testing of the soil and surface water samples indicate that all groundwater protection standards are achieved, no further action would be the preferred approach. These results would indicate that completed cleanup activities have been sufficient to address the predominant exposure pathway (i.e., soil impacts to groundwater) and that any potential trace amounts of CCR that remain do not pose a threat to public health and comply with all requirements in §257.97. Removal of the underlying soils would not be necessary and would, in fact, cause undue harm by disturbing the East Valley Stream ecosystem environment.

Option 2: Remove Soils in Release Area

In the event that laboratory testing of the soil and surface water samples indicate that groundwater protection standards are not met due to the CCR release, the underlying soils would be recommended for removal and appropriately disposed. Under this option, additional sampling and removal would be iteratively conducted until sample results demonstrate that groundwater protection standards have been met and the objectives outlined in §257.97 are achieved. Stripping of the soil would destroy existing plant communities (and possibly disturb aquatic habitat) along the East Valley Stream, which would need to be replanted and stabilized following soil removal activities.

5.5 Public Meeting

On December 18, 2018, a public meeting was held in the New Florence Fire Hall to provide information regarding the CCR release and response actions taken to date. A discussion of corrective measures that were intended to be undertaken based on laboratory testing results was presented. Representatives from GenOn and APTIM were both available at the meeting, including the certifying engineer of this report. No representatives from the general public were in attendance. Notice of advertisement for the Public Meeting is provided in Appendix C. This meeting was held in accordance with §257.96(e).

6.0 Sampling Results

APTIM performed both soil and surface water sampling to determine whether the CCR deposits were adequately removed and whether potential environmental impacts were effectively mitigated. The sampling activities occurred on November 13 and 14, 2018.

In accordance with the ESP, a total of 26 soil samples were collected for confirmation purposes, including 10 background samples collected from the non-impacted area and 16 confirmation samples collected from the potentially impacted areas ("Upper" and "Lower Deposits"). In addition, two surface water samples were collected. The soil and surface water sample locations are shown on Figures 3 and 4. When compared to the background samples (see Table 1), the soils in the impacted areas did show slightly elevated metals concentrations at several locations (see Table 2). As discussed in Section 5.2.1.4, these findings suggest that potential trace amounts of CCR materials may still be present in the impacted areas. However, all values for SPLP testing of soil samples (see Table 3) indicate metals concentrations were either non-detect or below the site-specific CCR groundwater protection standards. Again, as mentioned in Section 5.2.1.4, these results offer evidence that although trace amounts of CCR materials may still be present in certain impacted areas, the quantities of these residuals (i) do not constitute an unacceptable risk for potential leaching to groundwater and maintain protectiveness of human health and the environment, and (ii) are generally consistent with concentrations in soil and other surficial materials located in southwestern Pennsylvania – see Appendix D.

The surface water sampling results (see Table 4) indicate that the downstream water is generally consistent with upstream source water, although radium was measured at a slightly higher concentration at the downstream location. The minimal difference in concentration is not believed to be attributed to the CCR release due to the leachability results from the SPLP testing.

The supporting analytical laboratory reports are presented in Appendix E.

The results of laboratory testing indicate that the immediate and subsequent CCR removal activities have mitigated the threat to public health, welfare, and safety. The disposal site stormwater management design has been reviewed and found to meet all CCR regulatory requirements. At the time of the CCR release, it is acknowledged that a runoff diversion berm had been temporarily lowered, which is where the CCR material was released from the disposal site. The diversion berm has been observed by APTIM personnel to have been restored to its original condition in accordance with its design.

It is the opinion of the engineer certifying this report that no further action is warranted based on the observed conditions of the facility and laboratory testing of the soils and surface water. In fact, removing additional soils in the release area would create undue harm to the East Valley Stream ecosystem and is in conflict with the stated objectives of §257.97(b)(4) (Selection of Remedy).

Moreover, groundwater in the area of the ash release ultimately flows southward and passes through the zone monitored by the disposal site's existing CCR groundwater well network (comprised of downgradient Wells MW-9, MW-10, and MW-11). Continued sampling of these wells (most recently in October 2018) under the CCR Assessment Monitoring Program has not yielded any remarkable changes in groundwater quality. Future analytical results would be anticipated as similar and providing further confirmation that the clean-up activities were adequate in mitigating potential impacts to human health and the environment. These well locations and referenced analytical results are contained in the CCR Annual Groundwater Monitoring and Corrective Action Report, dated January 2019, to which this report is appended.

8.0 Certification

I hereby certify, as a qualified professional engineer licensed in the Commonwealth of Pennsylvania, that the information described in this report is factually accurate to the best of my knowledge. I have made the recommendations contained within this report based on a review of available information, observations from my personal on-site visit and visits by colleagues under my direction, and laboratory testing results. I attest that the suggested remedy of no further action has been completed in compliance with the requirements of §257.98.

Certified by: <u>RICHARD SouthORN</u> <u>PE,PG</u> Date: <u>JAN 9/2019</u>

Richard Southorn, P.E., P.G., CPSWQ Professional Engineer Registration No. PE 085411 Aptim Environmental & Infrastructure, Inc.

Tables

Table 1 Background Soil Sample Results CCR Ash Release - Ash Valley Refuse/Disposal Area Conemaugh Generating Station

	Date Sampled	Sample Interval (inches)	Total Antimony	Total Arsenic	Total Barium	Total Beryllium	Total Cadmium	Total Chromium	Total Cobalt	Total Lead	Total Lithium	Total Mercury	Total Molybdenum	Total Selenium	Total Thallium	Total Radium-226 and 228		
Sample ID			(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(pCi/g)		
				Maximum Detected Value														
			< 10.0	17.2	187	1.31	< 5.0	69.4	21.2	27.9	17.8	0.057	< 2.0	2.8	< 10.0	1.58		
B-1 0-4	11/13/2018	0-4	< 10.0	15.5	127	1.11	< 5.0	41.5	17.6	23.2	15.9	0.038	< 2.0	2.3	< 10.0	1.58		
B-2 0-4	11/13/2018	0-4	< 10.0	11.2	123	1.05	< 5.0	41.1	15.7	22.1	12.6	0.057	< 2.0	< 2.0	< 10.0	1.25		
B-3 0-4	11/13/2018	0-4	< 10.0	14.5	87.8	0.74	< 5.0	69.4	9.2	18.5	12.8	0.054	< 2.0	< 2.0	< 10.0	1.29		
B-4 0-4	11/13/2018	0-4	< 10.0	12.1	179	1.12	< 5.0	42.6	21.2	24.8	16.3	0.030	< 2.0	2.2	< 10.0	1.39		
B-5 0-4	11/13/2018	0-4	< 10.0	14.6	166	1.23	< 5.0	43.6	20.4	26.4	14.7	0.039	< 2.0	2.7	< 10.0	1.30		
B-6 0-4	11/13/2018	0-4	< 10.0	16.5	187	1.30	< 5.0	56.5	20.1	26.6	17.8	0.055	< 2.0	2.8	< 10.0	1.34		
B-7 0-4	11/13/2018	0-4	< 10.0	17.2	161	1.23	< 5.0	42.6	16.1	27.3	16.4	0.037	< 2.0	2.6	< 10.0	1.41		
B-8 0-4	11/13/2018	0-4	< 10.0	14.8	160	1.29	< 5.0	53.7	19.6	25.5	15.9	0.041	< 2.0	2.4	< 10.0	1.25		
B-9 0-4	11/13/2018	0-4	< 10.0	16.0	186	1.31	< 5.0	54.6	20.3	27.9	13.2	0.037	< 2.0	2.7	< 10.0	1.41		
B-10 0-4	11/13/2018	0-4	< 10.0	13.1	153	1.18	< 5.0	64.5	18.2	24.9	13.4	0.033	< 2.0	2.1	< 10.0	1.26		

mg/Kg-dry - milligrams per Kilogram-dry

pCi/g - pico Curies per gram

Notes:

1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory quantitation limit.

Table 2 Confirmation Soil Sample Results CCR Ash Release - Ash Valley Refuse/Disposal Area Conemaugh Generating Station

			Total Antimony	Total Arsenic	Total Barium	Total Beryllium	Total Cadmium	Total Chromium	Total Cobalt	Total Lead	Total Lithium	Total Mercury	Total Molybdenum	Total Selenium	Total Thallium	Total Radium-226 and 228	
		Carriela	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(mg/Kg-dry)	(pCi/g)	
Sample ID	Date Sampled	Sample Interval	Site-Specific Standard Value														
1D	Jumpicu	(inches)	< 10.0	17.2	187	1.31	< 5.0	69.4	21.2	27.9	17.8	0.057	< 2.0	2.8	< 10.0	1.58	
			Maximum Detected Value														
			< 10.0	27.2	161	1.39	< 5.0	43.5	22.0	29.1	19.5	0.260	2.1	2.6	< 10.0	2.61	
UD-1 0-4	11/13/2018	0-4	< 10.0 S	25.2	113	1.01	< 5.0	24.8	17.7	20.4	11.5	0.20	< 2.0	2.3	< 10.0	1.41	
UD-2 0-4	11/13/2018	0-4	< 10.0	14.5	123	1.07	< 5.0	33.1	16.7	22.1	16.6	0.072	< 2.0	2.3	< 10.0	1.63	
UD-3 0-4	11/13/2018	0-4	< 10.0	11.3	107	0.94	< 5.0	24.5	12.7	18.9	11.8	0.037	< 2.0	< 2.0	< 10.0	2.33	
UD-4 0-4	11/13/2018	0-4	< 10.0	16.5	136	1.02	< 5.0	30.5	15.4	19.5	19.3	0.099	2.1	2.2	< 10.0	1.65	
UD-5 0-4	11/13/2018	0-4	< 10.0	5.8	50.7	0.31	< 5.0	9.2	6.4	9.7	3.5	0.045	< 2.0	< 2.0	< 10.0	0.60	
UD-6 0-4	11/13/2018	0-4	< 10.0	15.9	118	1.10	< 5.0	27.0	22.0	20.8	13.2	0.054	< 2.0	< 2.0	< 10.0	1.17	
UD-7 0-4	11/14/2018	0-4	< 10.0	27.2	149	1.24	< 5.0	31.5	14.8	22.1	17.2	0.26	1.2 J	2.2	< 10.0	1.61	
UD-8 0-4	11/14/2018	0-4	< 10.0	14.6	135	1.12	< 5.0	31.8	17.5	23.0	17.7	0.040	< 2.0	2.4	< 10.0	1.60	
LD-1 0-4	11/14/2018	0-4	< 10.0	24.5	161	1.20	< 5.0	31.7	16.9	28.9	16.2	0.042	1.2 J	2.5	< 10.0	2.50	
LD-2 0-4	11/14/2018	0-4	< 10.0	11.9	143	1.14	< 5.0	31.4	17.2	23.8	15.8	0.032	< 2.0	2.2	< 10.0	1.47	
LD-3 0-4	11/14/2018	0-4	< 10.0	17.8	147	1.19	< 5.0	32.6	17.8	24.1	17.4	0.040	1.0 J	2.0	< 10.0	2.27	
LD-4 0-4	11/14/2018	0-4	< 10.0	17.6	148	1.39	< 5.0	43.5	21.6	29.1	19.5	0.038	1.2 J	2.5	< 10.0	1.60	
LD-5 0-4	11/14/2018	0-4	< 10.0	20.8	141	1.17	< 5.0	27.7	17.9	27.8	16.0	0.057	1.8 J	2.5	< 10.0	1.55	
LD-6 0-4	11/14/2018	0-4	< 10.0	18.5	149	1.25	< 5.0	29.2	18.6	26.8	15.6	0.052	1.4 J	2.2	< 10.0	2.56	
LD-7 0-4	11/14/2018	0-4	< 10.0	12.8	99.0	0.94	< 5.0	30.1	13.0	20.2	12.6	0.046	< 2.0	2.6	< 10.0	1.38	
LD-8 0-4	11/14/2018	0-4	< 10.0	18.8	137	1.32	< 5.0	30.7	21.5	23.2	11.7	0.095	< 2.0	2.6	< 10.0	2.61	

J - Indicates an estimated value.

mg/Kg-dry - milligrams per Kilogram-dry

pCi/g - pico Curies per gram

S - Spike recovery indicates a possible matrix effect. The method is in control as indicated by the LCS.

Notes:

1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory quantitation limit.

2. The Site-Specific Standard values were determined to be the Maximum Background Soil Sample values, which were sampled on November 13, 2018.

Table 3 Confirmation Leachate Sample Results - SPLP Analysis CCR Ash Release - Ash Valley Refuse/Disposal Area Conemaugh Generating Station

			Total Antimony	Total Arsenic	Total Barium	Total Beryllium	Total Cadmium	Total Chromium	Total Cobalt	Total Fluoride	Total Lead	Total Lithium	Total Mercury	Total Molybdenum	Total Selenium	Total Thallium	Total Radium-226 and 228
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L) (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	
Sample	Date	Sample	Groundwater Protection Standard														
ID.	Sampled	Interval (inches)	MCL	MCL	MCL	MCL	MCL	MCL	RSL	MCL	RSL	RSL	MCL	RSL	MCL	MCL	MCL
			0.006	0.01	2	0.004	0.005	0.1	0.006	4.0	0.15	0.04	0.002	0.1	0.05	0.002	5
			Maximum Detected Value														
			0.05 U	0.010 U	0.093	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.51	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	1.219
UD-1 0-4	11/13/2018	0-4	0.05 U	0.010 U	0.093	0.0005 U	0.0010 U	0.005 U	0.0020 U	0.47	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.217
UD-2 0-4	11/13/2018	0-4	0.05 U	0.010 U	0.074	0.0005 U	0.0010 U	0.005 U	0.0020 U	0.20	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.747
UD-3 0-4	11/13/2018	0-4	0.05 U	0.010 U	0.059	0.0005 U	0.0010 U	0.005 U	0.0020 U	0.26	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.674
UD-4 0-4	11/13/2018	0-4	0.05 U	0.010 U	0.060	0.0005 U	0.0010 U	0.005 U	0.0020 U	0.16	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.0904
UD-5 0-4	11/13/2018	0-4	0.05 U	0.010 U	0.080	0.0005 U	0.0010 U	0.005 U	0.0020 U	0.44	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	1.066
UD-6 0-4	11/13/2018	0-4	0.05 U	0.010 U	0.073	0.0005 U	0.0010 U	0.005 U	0.0020 U	0.18	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	1.057
UD-7 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.070	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.51	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.976
UD-8 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.080	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.18	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	-0.1349
LD-1 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.066	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.08 J	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.836
LD-2 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.069	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.39	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.778
LD-3 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.062	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.09 J	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.515
LD-4 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.074	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.14	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	-0.301
LD-5 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.086	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.05 U	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.907
LD-6 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.086	0.0005 U	0.0010 U	0.0050 U	0.0020 U	0.09 J	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	0.468
LD-7 0-4	11/14/2018	0-4	0.050 U	0.010 U	0.047	0.0005 U	0.0010 U	0.005 U	0.0020 U	0.0917 J	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	-0.032
LD-8 0-4	11/14/2018	0-4	0.05 U	0.010 U	0.062	0.0005 U	0.0010 U	0.005 U	0.0020 U	0.27	0.010 U	0.005 U	< 0.0001 J	0.010 U	0.010 U	0.010 U	1.219

J - Indicates an estimated value.

MCL - Maximum Contaminant Level

mg/L - 1 milligrams per Liter

pCi/L - pico Curies per Liter

RSL - Regional Screening Level

SPLP - Synthetic Precipitation Leaching Procedure

U - The analyte was not detected at or above the listed concentration, which is below the laboratory quantitation limit.

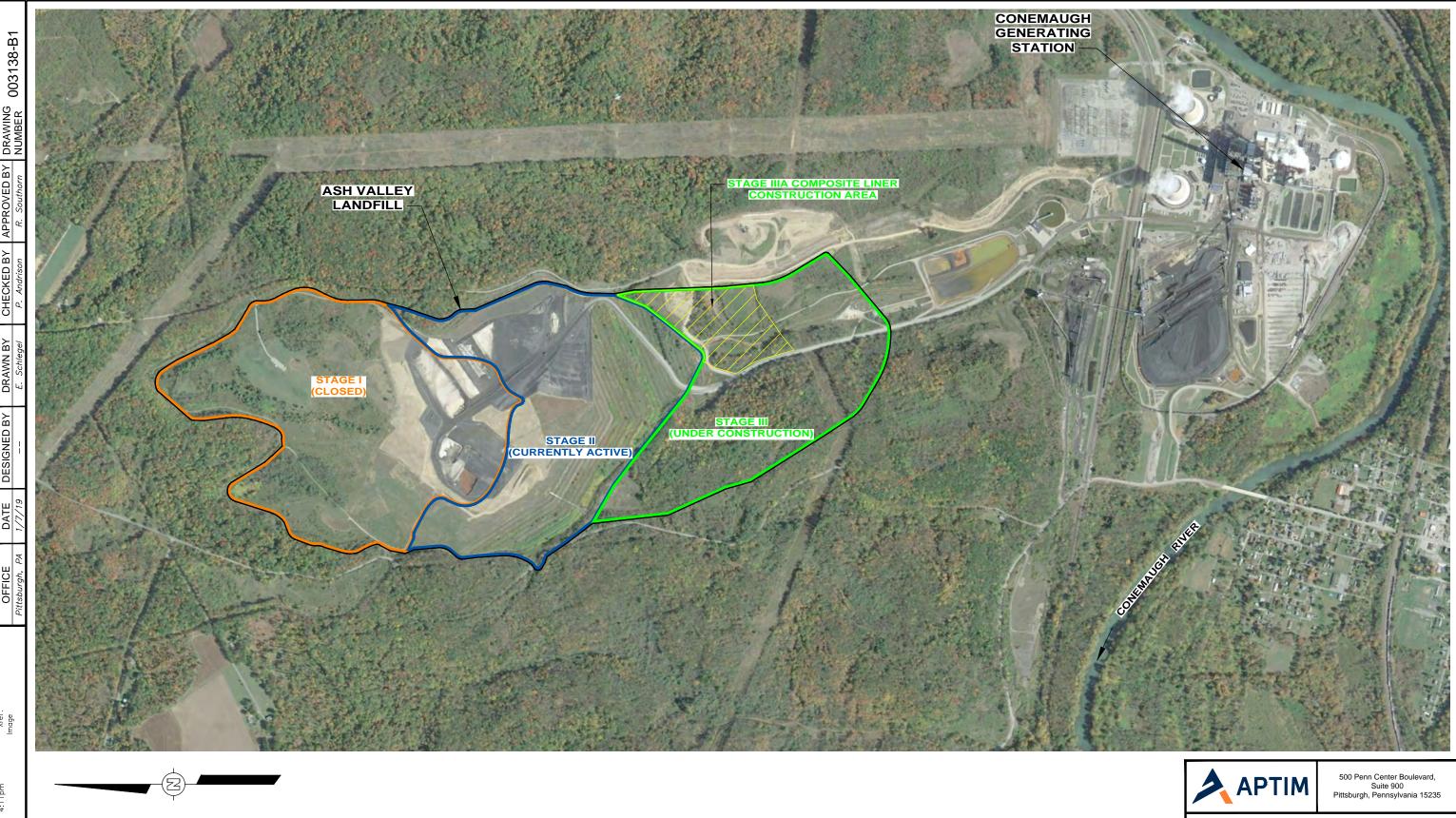
Notes:

1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory quantitation limit.

2. As indicated, Groundwater Protection Standards are either published MCLs or risk-based RSLs.

Table 4 Surface Water Sample Results CCR Ash Release - Ash Valley Refuse/Disposal Area Conemaugh Generating Station

Sample ID	Date Sampled	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Cadmium (mg/L)	Total Chromium (mg/L)	Total Cobalt (mg/L)	Total Fluoride (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Selenium (mg/L)	Total Thallium (mg/L)	Total Radium-226 and 228 (pCi/L)
WS-1	11/14/2018	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.3834
WS-2	11/14/2018	< 0.001	< 0.001	0.03	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	< 0.01	< 0.0002	< 0.02	< 0.001	< 0.0002	0.796

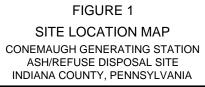

mg/L - milligrams per Liter

pCi/L - pico Curies per Liter

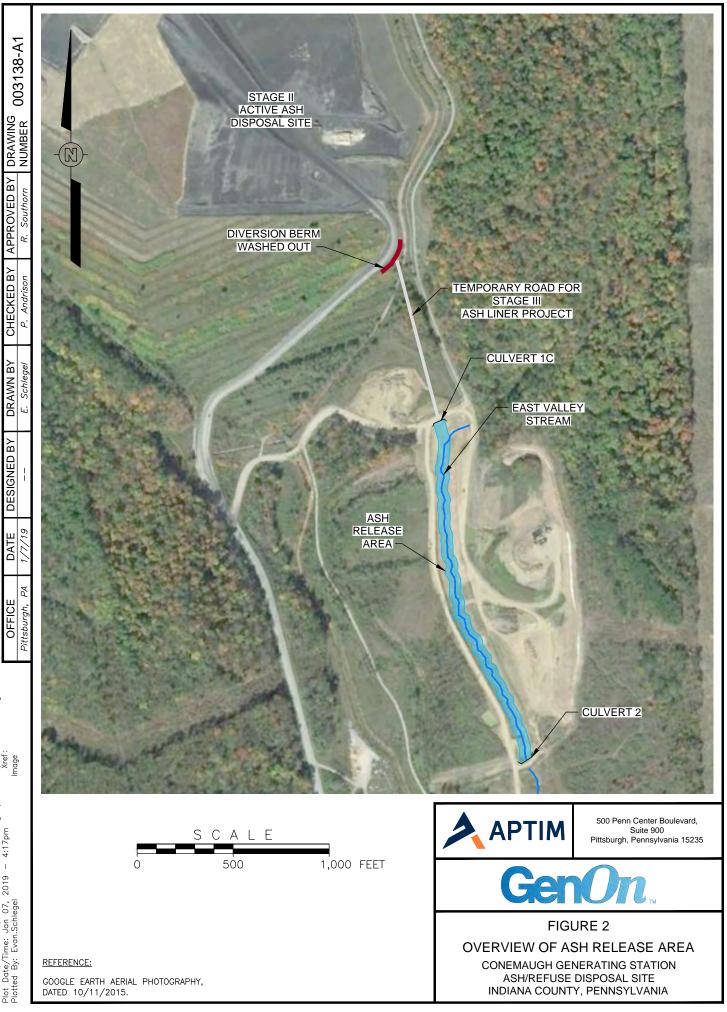
Notes:

1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory quantitation limit.

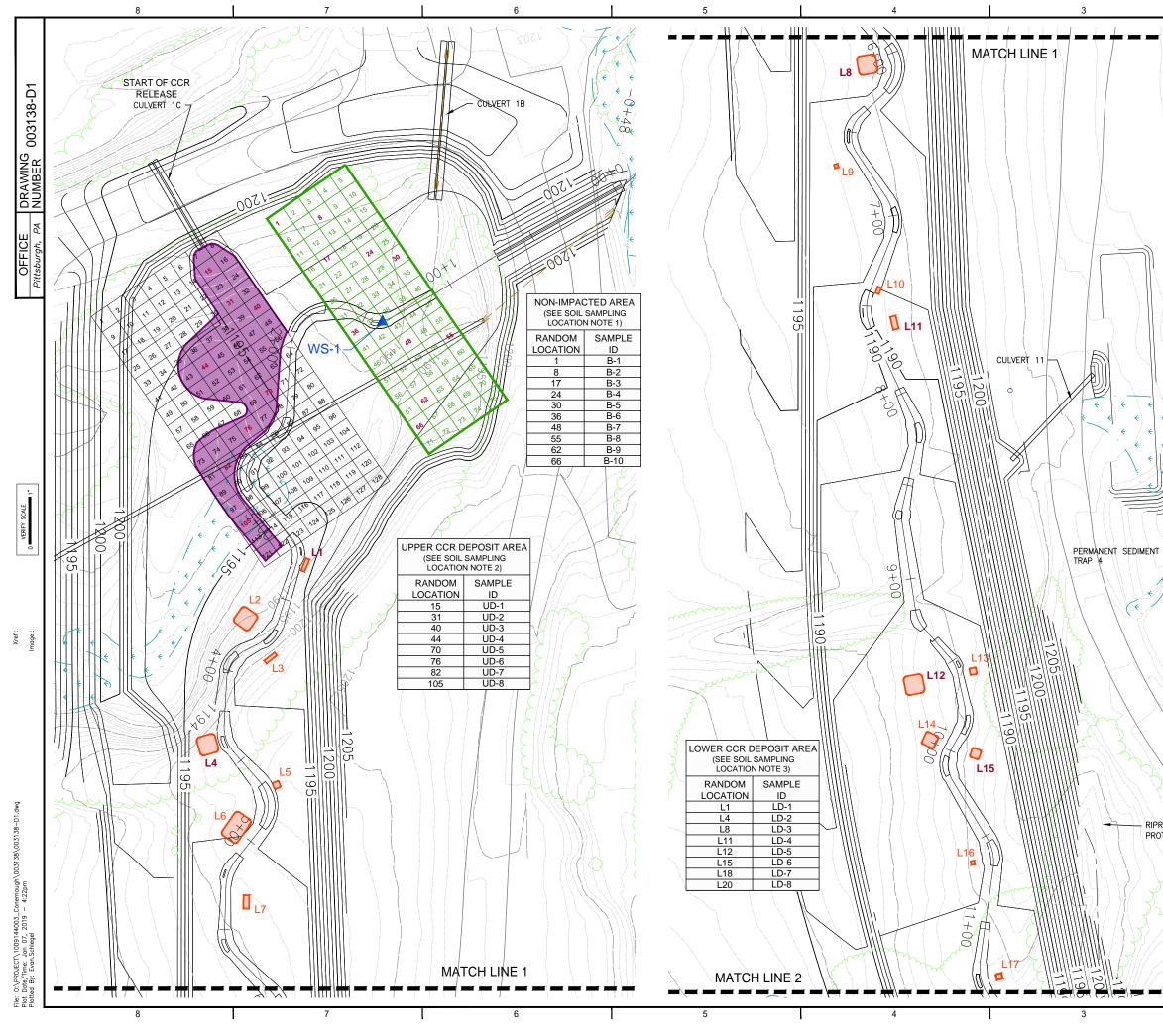
Figures



0:\PR0JECT\1009144003_Conemaugh\003138\003138-B1.dwg Date/Time: Jan 07, 2019 - 4:11pm Xref: ed By: Evan.Schlegel File: Plot


REFERENCE: GOOGLE EARTH AERIAL PHOTOGRAPHY, DATED 10/11/2015. SCALE 1,000

Ο



File: 0:\PR0JECT\1009144003_Conemaugh\003138\003138-A1.dwg Plot Date/Time: Jan 07, 2019 - 4:17pm Xref: Plotted By: Evan.Schlegel

LEGEND:

-1180- GROUND SURFACE CONTOUR (FT AMSL) TREE LINE STREAM UPPER CCR DEPOSITS (TOTAL AREA 4,550 SQ. FT.) LOWER CCR DEPOSITS (CUMULATIVE AREA = 850 SQ. FT.) UN-IMPACTED AREA DESIGNATED FOR SOIL SAMPLING 30 / L12 RANDOMLY SELECTED SAMPLE LOCATION (SEE SOIL SAMPLING LOCATION NOTES 1, 2, and 3)

GENERAL NOTES:

 (\mathbb{N})

1. COAL COMBUSTIBLE RESIDUALS (CCR) AREAS ARE APPROXIMATE BASED ON VISUAL INSPECTIONS AND GLOBAL POSITIONING SYSTEM (GPS) COORDINATES COLLECTED BY APTIM ON SEPTEMBER 26 AND 28, 2018.

2. CCR DEPOSIT THICKNESS VARIED BETWEEN 1/4 INCH AND 4 INCHES. THE CCR DEPOSITS DECREASED IN THICKNESS AS LOCATIONS PROGRESSED DOWNSTREAM TOWARDS CULVERT 2.

SOIL SAMPLING LOCATION NOTES:

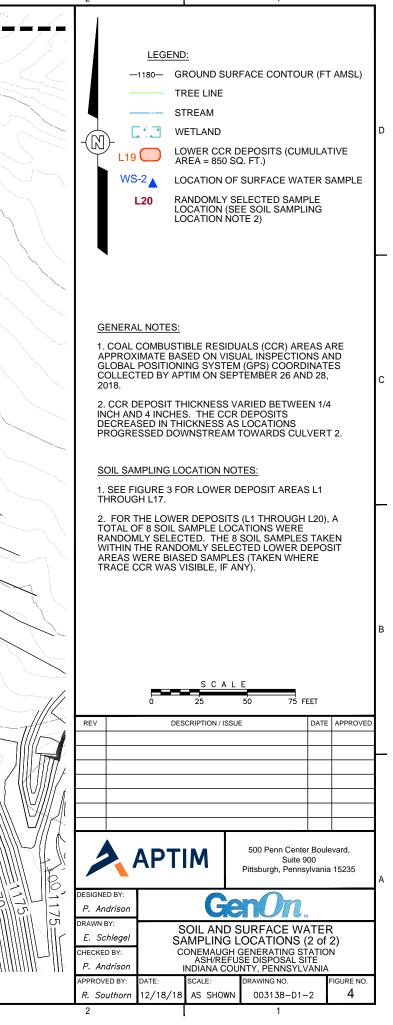
1. FOR THE NON-IMPACTED AREA, A TOTAL OF 10 SOIL SAMPLE LOCATIONS WERE RANDOMLY (DETERMINED USING A RANDOM NUMBER GENERATOR IN EXCEL®) SELECTED WITHIN THE GRID. THE SELECTED SAMPLE LOCATIONS WERE TRANSLATED TO THE FIELD USING GPS COORDINATES.

2. FOR THE UPPER DEPOSIT, A TOTAL OF 8 SOIL SAMPLE LOCATIONS WERE RANDOMLY SELECTED WITHIN THE CCR DEPOSIT LIMITS. THE SELECTED SAMPLE LOCATIONS WERE TRANSLATED TO THE FIELD USING GPS COORDINATES.

3. FOR THE LOWER DEPOSITS (L1 THROUGH L20), A TOTAL OF 8 SOIL SAMPLE LOCATIONS WERE RANDOMLY SELECTED. THE 8 SOIL SAMPLES TAKEN WITHIN THE RANDOMLY SELECTED LOWER DEPOSIT AREAS WERE BIASED SAMPLES (TAKEN WHERE TRACE CCR WAS VISIBLE, IF ANY).

4. SEE FIGURE 4 FOR LOWER DEPOSIT AREAS L18 THROUGH L20.


DESCRIPTION / ISSUE



DATE APPROVE

500 Penn Center Boulevard, **APTIM** 2 Suite 900 Pittsburgh, Pennsylvania 15235 ESIGNED BY G P. Andrisor AWN B SOIL AND SURFACE WATER E. Schlegel SAMPLING LOCATIONS (1 of 2) CONEMAUGH GENERATING STATION ASH/REFUSE DISPOSAL SITE INDIANA COUNTY, PENNSYLVANIA HECKED BY P. Andriso PROVED B CALE GURE NO. RAWING NO 003138-D1-1 3 12/18/1 AS SHOWN . Southor 2

RIPRAP SLOPE PROTECTION (TYP.) REV

Appendix A

CCR Release Notification to PADEP

August 13, 2018

GenOn Northeast Management Company* Conemaugh Generating Station 1442 Plant Road New Florence, PA 15944

Overnight Delivery

Ms. Kristin Gearhart Pennsylvania Department of Environmental Protection Cambria District Office 286 Industrial Park Road Ebensburg, PA 15931

RE: Discharge of Contact Storm Water 5 Day Written Report NPDES Permit No. PA0005011 Conemaugh Generating Station - New Florence, PA

Dear Ms. Gearhart:

As requested on August 9, 2018, GenOn Northeast Management Company (GenOn) is providing this five-day written report of the incident that was discovered at the Conemaugh Generating Station (Station). The incident was discovered on August 8, 2018 during inspections and repair of the landfill erosion and sedimentation controls. Ash was observed adjacent to and west of the East Valley Stream, an unnamed tributary to the Conemaugh River.

Description of the Noncompliance, Cause, and Duration

Based on data gathered from the Station rain gauge located at the Ash Valley landfill, the incident occurred on July 30th between noon and 1:35 pm. Approximately, 0.6 inches of rain fell between noon and 12:30 pm saturating the landfill drainage area. Another 1 inch of rain fell within a 15-minute period between 1:20 pm and 1:35 pm. The runoff from the large drainage area caused contact storm water from the landfill to exceed the capacity of the drainage channel adjacent to the landfill haul road near the entrance to the active Stage II disposal area. The overflow of the drainage channel subsided shortly after the storm.

At this location, a portion of this contact storm water flowed out of the channel over and through the Stage III construction area (~800 linear feet) where the flow joined noncontact storm water runoff and entered a storm water sedimentation trap adjacent to Culvert 1C. Contact storm water intermixed with non-contact storm water exceeded the capacity of the sedimentation trap, flowed through Culvert 1C on the south east side of the landfill, flowed south approximately 150 feet within a vegetated storm water swale where the flow combined with East Valley Stream flow. At this time, the East Valley Stream, a stream mitigation project for the landfill expansion, was well above the normal water levels and within the heavily vegetated constructed floodplain. Based on our inspections of the East Valley stream channel and adjacent areas on August 8, 9 and 10, one to three inches of ash was observed within the Culvert 1C storm water runoff swale and area on the west side of East Valley Stream. Several smaller areas of ash were observed downstream within low areas adjacent to the stream. No ash was observed within the East Valley Stream channel.

Steps Taken or Planned to Reduce, Eliminate, and Prevent Reoccurrence

All erosion and sedimentation controls within this area of the landfill were restored and/or improved to minimize re-occurrence. Additional activities to improve the grade of the haul road are expected to be completed within the next two months. Ash has been removed from sedimentation traps as of August 10.

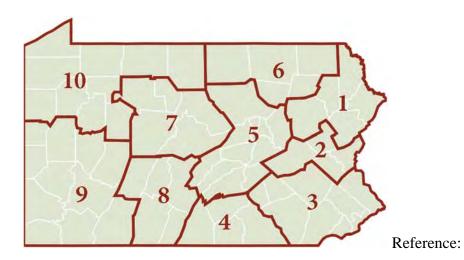
Plans and permits, if necessary, to remove the ash within the in areas adjacent to the stream channel are being developed. We will review our plans with the Department prior to proceeding with the removal work adjacent to and within the stream. Ash removal may include the placement of erosion and sedimentation controls and removal by mechanical means (e.g., excavator) or by utilizing vacuum trucks and laborers to loosen and remove the ash.

Lastly, Conemaugh Station also believes that the very rainy conditions experienced in the area and throughout the Commonwealth in July 2018 resulted in diminished capacity for the soil / land to absorb the unusually high rainfall and thus avoid the consequences from the July 30th event. The table below summarizes the precipitation data for July 2018 for the Commonwealth. As presented below, rainfall experienced in July 2018 was the second highest amount recorded that month during the last 124 years. Conemaugh Station believes that the July 30th event was an isolated and rare occurrence.

.....

Please do not hesitate to contact Stephen Frank (<u>Stephen.frank@genon.com</u>) at 724-249-3610 or John Shimshock (<u>John.Shimshock@genon.com</u>) at 724-235-4596 with any questions or comments concerning this report.

Very truly yours,


John P. Shinshod

John P. Shimshock Environmental Specialist Conemaugh Generating Station

July 2018	Precipitation	Averages	(inches)

State	Average	Departure	Pct Normal	Rank	Driest	Wettest
Pennsylvania	7.37	3.10	173%	124	1.90 in 1909	7.37 in 2018
1-Pocono Mountains	7.88	3.66	187%	121	1.19 in 1936	10.95 in 1947
2-East Central Mtns	8.75	4.17	191%	120	1.01 in 1999	10.17 in 1945
3-Southeastern Piedmont	8.35	3.75	182%	120	0.85 in 1955	8.93 in 1945
4-Lower Susquehanna	9.83	5.96	254%	124	0.97 in 1983	9.83 in 2018
5-Middle Susquehanna	10.74	6.69	265%	124	1.35 in 1909	10.74 in 2018
6-Upper Susquehanna	8.44	4.42	210%	123	1.32 in 1936	8.81 in 2004
7-Central Mountains	8.21	4.00	195%	122	1.83 in 1909	9.19 in 1992
8-South Central Mtns	7.47	<mark>3.66</mark>	<mark>196%</mark>	123	0.95 in 1983	<mark>7.97 in 1989</mark>
9-Southwest Plateau	4.48	0.16	104%	76	1.75 in 1930	9.70 in 1896
10-Northwest Plateau	5.31	0.71	115%	96	1.99 in 2011	10.00 in 1992

Rankings are for the 124 years between 1895 and 2018. 1=driest; 124=wettest. Departures and percent normal are calculated using the 1981-2010 normals.

http://www.nrcc.cornell.edu/regional/tables/tables.html

Appendix B

Notice of Time Period Extension for Assessment of Corrective Measures

APTIM 1607 East Main Street St Charles, Illinois 60174 Tel: +1 630 762 1400 Fax: +1 30 762 1402

November 1, 2018

VIA EMAIL

Mr. Steve Frank, GenOn Mr. John Shimshock, Conemaugh Generating Station

Subject: Assessment of Corrective Measures—Acknowledgement of 60-day Extension CCR Release Incident – Ash Valley Refuse/Disposal Area Conemaugh Generating Station West Wheatfield Township, Indiana County, Pennsylvania

Dear Messrs. Frank and Shimshock:

As you are aware, Title 40 Code of Federal Regulations (CFR) Part 257 Subpart D addresses the management of coal combustion residuals (CCR) in landfills and surface impoundments. Conemaugh Generating Station's Ash Valley Refuse/Disposal Site (operated by GenOn Northeast Management Company [GenOn]) is subject to the CCR Rule. On August 8, 2018, a surficial (non-groundwater) release of CCR was discovered during the performance of a routine inspection of the landfill and established erosion and sedimentation control features. The release most likely occurred during an extremely intense precipitation event on July 30, 2018, which was localized and rare.

As required under §257.90(d), in order to minimize the potential for future releases, Conemaugh Station and its contractor (R&L Development) immediately removed CCR from the onsite erosion and sedimentation control features and repaired them. Conemaugh Station and its contractor have additionally continued with implementation of additional interim measures to further stabilize the situation and minimize potential impacts to human health and/or the environment (e.g., removed nearly all of the displaced CCR). In this regard, a vacuum truck was used shortly after the release and during subsequent interim actions to remove as much of the released CCR as feasible in order to protect human health and the environment. This method of removal was selected in order to minimize disturbance to the vegetation and ecosystem.

Representatives from Aptim Environmental & Infrastructure, Inc. (APTIM) visited the site on September 26th and 28th, 2018 and October 23, 2018 to assess the extent of the CCR release to the ground surface. I, as a qualified professional engineer in the Commonwealth of Pennsylvania, reviewed the above-described interim/corrective actions during the noted site visit on October 23, 2018 and found them to be appropriate to minimize the potential for future release.

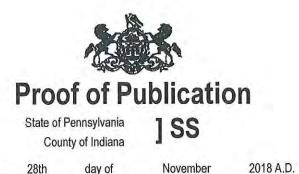
APTIM is currently developing a soil and surface water sampling plan to assess whether the remedial activities undertaken immediately and shortly after the release have appropriately mitigated potential impacts to the health and/or the environment. Soil and surface water sampling will be undertaken once this plan is complete. If a potential impact to human health and/or the environment is found to be present due to the release, further corrective measures will be assessed in accordance with §257.96. The selection of any additional remedy, if required, will be conducted in accordance with §257.97 and implemented in accordance with §257.98. Because of the complexities related to removal of the displaced ash in the impacted areas, and the need to develop an adequate confirmatory sampling and analysis plan, Aptim certifies that a 60-day extension beyond the CCR Rule-specified 90 days is appropriate for completing the assessment of corrective measures. U.S. EPA acknowledged the need for such extensions in the preamble to the final CCR Rule, please see below:

Based on the comments received, as well as the Agency's own experience, EPA recognizes that there may be complex situations that require more time to develop a careful and well-thought out corrective measures assessment. Therefore, the final rule has been modified to allow up to an additional 60 days to complete the assessment of corrective measures, provided that a qualified professional engineer certifies that the additional time is necessary. The initial 90 days plus the additional 60 days, which is within the range of time suggested by the commenters, would provide the owner or operator up to 150 days to complete the corrective measures assessment, which EPA expects will be sufficient. FR 80 (74) April 17, 2015, page 21406

The corrective measures assessment will be completed within 150 days of the observation of the release, representing the inclusion of a 60-day extension per the provisions of §257.96(a), and to provide sufficient time for completion of the upcoming confirmation sampling activities. Thus, the assessment and associated summary report will be completed on or before January 9, 2019.

Please contact me with any questions, either via email at <u>Richard.Southorn@aptim.com</u> or directly at 630-762-3327.

Sincerely,


Richard Southorn, PE, PG

Project Manager Aptim Environmental & Infrastructure, Inc.

Appendix C

Newspaper Advertisement of Public Meeting

before me, the subscriber, a Notary Public in and for said County and State, personally appeared:

Shirley McCombs

who being duly sworn according to laws, deposes and says, that (s)he is the Solicitor of the Indiana Gazette, that the said Indiana Gazette is a daily newspaper of general circulation, published in the borough of Indiana, in the County of Indiana, State of Pennsylvania, by the Indiana Printing & Publishing Company, and was established in said Borough on the second day of July 1890, since which date, said daily newspaper has been regularly issued in said Borough and County, that annexed hereto is a true copy of a notice in the above matter exactly as the same was printed in the regular editions and issues of the said daily newspaper on the following dates, viz:

11/23, 11/24, 11/25

Affiant further deposes and says that (s)he is an employee of the publisher of the said daily newspaper and has been authorized to verify the foregoing statement and the (s)he is not interested in the subject matter of the aforesaid notice or publication and that all allegations in the foregoing statement as to time, place, and character of publication are true.

> NOTARIAL SEAL BARBARA J SULLINGER Notary Public INDIANA BORO, INDIANA COUNTY My Commission Expires Dec 3, 2020

Signature of notarial officer

On this

	\$179.40
Proof of Publication	\$5.00
Proof of Intent	
Total	\$184.40

Indiana Printing & Publishing Company, publishers of the Indiana Gazette, a daily newspaper, hereby

acknowledges receipt of the atoresaid publication costs, and certifies the same have been fully paid.

> Indiana Printing and Publishing Co. P.O. Box 10, 899 Water Street, Indiana, PA 15701

NOTICE Public Meeting Notice GenOn Northeast Manage

ment Company, the operator of the Conemaugh Generating Station I cocated in West Wheatfield Township, Indiana County, PA, will hold a public meeting with interested and affected parties to discuss the incident and the assessment of corrective measures in response to a non-groundwater coal combustion residuals (CCR) release that occurred at the station's residual waste landfill on July 30, 2018. Meeting info is presented at the end of this notice. Landfill operations are subject to the requirements of U.S. EPA's CCR Rule, 40CFR257 Subpart D. The public meeting is required by the Rule, \$257.96(e). Individuals will have an opportunity to provide written or oral comments relevant to this incident, not to exceed the time allotted for the meeting. The meeting will be documented as required by the Rule, \$257.015 (hX11).

mented as required by the Rule, §257.015 (h)(11). WHAT: Public meeting to review Conemaugh Station's actions and corrective measures in response to a

in response to a non-groundwater CCR release that occurred at the station's residual waste landfill on July 30, 2018.

WHEN: Tuesday, December 18, 2018, 6:00 PM to 8:00 PM EST

WHERE: New Florence Fire Hall, 177 13th Street, New Florence, PA 15944

11/23, 11/24, 11/25

Appendix D

Supporting Soil and Surficial Materials Report

UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

CHEMICAL ANALYSES OF SOILS AND OTHER SURFICIAL MATERIALS OF THE CONTERMINOUS UNITED STATES

By

1.1

Josephine G. Boerngen and Hansford T. Shacklette

Open-File Report 81-197

1981

This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards or nomenclature

Contents

Introduction	1
Sample collection, preparation, and analysis	2
Location, description, and concentration of elements for samples of	
surficial materials	3
References cited	6

Table

Page

Page

Table 1.	Location,	description,	and concentration of elements for	
	samples	of surficial	materials	8

Introduction

A sampling program was begun in 1961 that was designed to give estimates of the abundance of elements in soils and other surficial materials and in associated plants from sites selected along routes of travel, and in study areas, of U.S. Geological Survey scientists. The sampling plan was kept simple. The proposed sampling intensity consisted of one sample of soil and one of plants collected at sites about 50 mi. (81 km) along routes of travel to areas of other types of field study. Sampling sites were selected, insofar as possible, that represented soil in its natural condition. This program resulted in the sampling of 863 sites. The results of the soil analyses were published for 35 elements by plotting their concentrations, in two to five frequency classes, on maps (Shacklette, Hamilton, Boerngen, and Bowles, 1971).

Soon after this publication, interest in environmental geochemistry, particularly the application to problems of industrial and vehicular pollution, increased greatly. At the same time, advances in analytical techniques made the analysis of additional elements practical. Therefore, the samples from the first study, with some additional samples, were analyzed and reported as follows: mercury by Shacklette, Boerngen, and Turner (1971); lithium and cadmium by Shacklette, Boerngen, Cahill, and Rahill (1973); and selenium, fluorine, and arsenic by Shacklette, Boerngen, and Keith (1974).

Sampling according to this plan continued, as opportunities arose, until autumn, 1975, resulting in the sampling of 355 additional sites that were selected to give a more uniform geographical coverage of the conterminous United States. These samples were analyzed and the data were merged with those of the original samples to produce the results given in this report.

The elemental composition of only the surficial materials were given in all reports; the data on analysis of the plant samples are held in files of the U.S. Geological Survey.

This study was made possible by the cooperation of many persons in the U.S. Geological Survey. We express our appreciation to those who collected samples, as follows: Jessie M. Bowles, F. A. Branson, R. A. Cadigan, F. C. Canney, H. L. Cannon, F. W. Cater, Jr., M. A. Chaffey, Todd Church, J. J. Connor, Dwight Crowder, R. J. Ebens, R. N. Eicher, J. A. Erdman, R. F. Gantner, G. B. Gott, W. R. Griffitts, T. P. Hill, E. K. Jenne, M. I. Kaufman, J. R. Keith, Frank Kleinhampl, A. T. Miesch, R. F. Miller, R. C. Pearson, E. V. Post, Douglas Richman, James Scott, D. E. Seeland, R. C. Severson, M. H. Staatz, T. A. Steven, M. H. Strobell, V. E. Swanson, R. R. Tidball, H. A. Tourtelot, J. D. Vine, and R. W. White.

We thank the following members of the U.S. Department of Agriculture, Soil Conservation Service for providing soil samples from areas in Minnesota: Donald D. Barron, Carroll R. Carlson, Donald E. DeMartelaire, Royce R. Lewis, Charles Sutton, and Paul Nyberg. We acknowledge the analytical support provided by the following U.S. Geological Survey chemists: Lowell Artis, Philip Aruscavage, A. J. Bartel, S. D. Botts, L. A. Bradley, J. W. Budinsky, Alice Caemmerer, J. P. Cahill, E. Y. Campbell, G. W. Chloe, Don Cole, E. F. Cooley, N. M. Conklin, W. B. Crandell, Maurice Devalliere, P. L. D. Elmore, E. J. Finlay, Johnnie Gardner, J. L. Glenn, T. F. Harms, R. C. Haven, R. H. Heidel, M. B. Hinkle, Claude Huffman, Jr., L. B. Jenkins, R. J. Knight, B. W. Lanthorn, L. M. Lee, K. W. Leong, J. B. McHugh, J. D. Mensik, V. M. Merrit, H. T. Millard, Jr., Wayne Mountjoy, H. M. Nakagawa, H. G. Neiman, Uteana Oda, C. S. E. Papp, R. L. Rahill, V. E. Shaw, G. D. Shipley, Hezekiah Smith, A. J. Sutton, Jr., J. A. Thomas, Barbara Tobin, J. E. Troxel, J. H. Turner, and G. H. VanSickle.

We were assisted in computer programming for the data by J. B. Fife and George Van Trump, Jr.

Sample collection, preparation, and analysis

The sampling sites were selected, if possible, to represent surficial materials that were altered very little from their natural condition and that supported native or cultivated plants suitable for sampling. In practice, this site selection necessitated sampling away from roadcuts and fills, but in some areas only cultivated fields were available for sampling. The materials sampled included soil as defined by soil scientists, beach and dune sands, very stony lithosols, and organic deposits generally considered to be peat instead of soil. Most samples were collected at a depth of about 8 in. (20 cm), which reduced or avoided the effects of surface contamination. In zonal soils, this depth commonly is within the range of the B soil horizon (zone of element accumulation). Some lithosols over nearsurface bedrock did not extend downward to 8 in. (20 cm); they were sampled at the bottom of soil development in the profile.

Areas of field studies commonly were sampled more intensively than at intervals of 50 miles (81 km). Samples used from these studies were selected to represent about the same geographical coverage as did those along roads.

The soil samples were dried in the laboratory, pulverized and sieved, and the minus-2mm fractions were used for analysis. The methods of analysis used for some elements were changed during the course of the study as new techniques and instruments became available. The results published in the first report (Shacklette, Hamilton, Boerngen, and Bowles, 1971) were obtained for most elements by use of a semiquantitative six-step emission spectrographic method (Neiman, 1976). Other methods were used for the following elements: atomic absorption, with flame (Huffman and Dinnin, 1976) for mercury, lithium, magnesium, sodium, rubidium, and zinc; atomic absorption, flameless (Vaughn, 1967) for mercury; X-ray fluorescence spectrometry (Wahlberg, 1976) for calcium, germanium, iron, potassium, selenium, silver, sulfur, and titanium; combustion (Huffman and Dinnin, 1976), total carbon; and neutron activation (Millard, 1975, 1976) for thorium and uranium.

Location, description, and concentration of elements for samples of surficial materials

Table 1 provides one page of descriptive material for 50 samples, arranged alphabetically by Postal Service abbreviations for state names and by county names, followed by four pages of analytical data for these samples, then proceeds to the descriptive page for the next 50 samples, and so on through the table. The state names in the descriptive material of site locations are abbreviated according to the system used by the Government Printing Office (GPO). The following table gives these abbreviations.

State	GPO	Postal Service	State	GPO	Postal Service
Alabama	Ala.	AL	Nebraska	Nebr.	NE
Arizona	Ariz.	AZ	Nevada	Nev.	NV
Arkansas	Ark.	AR	New Hampshire	N.H.	NH
California	Calif.	CA	New Jersey	N.J.	NJ
Colorado	Colo.	CO	New Mexico	N. Mex.	NM
Connecticut	Conn.	CT	New York	N.Y.	NY
Delaware	Del.	DE	North Carolina	N.C.	NC
Florida	Fla.	FL	North Dakota	N. Dak.	ND
Georgia	Ga.	GA	Ohio	Ohio	OH
Idaho	Idaho	Ð	Oklahoma	Okla.	OK
Illinois	111.	IL	Oregon	Oreg.	OR
Indiana	Ind.	IN	Pennsylvania	Pa.	PA
Iowa	Iowa	IA	Rhode Island	R.I.	RI
Kansas	Kans.	KS	South Carolina	S.C.	SC
Kentucky	Ky.	КY	South Dakota	S. Dak.	SD
Louisiana	La.	LA	Tennessee	Tenn.	TN
Maine	Maine	ME	Texas	Tex.	TX
Maryland	Md.	MD	Utah	Utah	UT
Massachusetts	Mass.	MA	Vermont	Vt.	VT
Michigan	Mich.	MI	Virginia	Va.	VA
Minnesota	Minn.	MN	Washington	Wash.	WA
Mississippi	Miss.	MS	West Virginia	W. Va.	WV
Missouri	Mo.	MO	Wisconsin	Wis.	WI
Montana	Mont.	MT	Wyoming	Wyo.	WY

The location of the sampling sites is given by north latitude and west longitude in degrees and minutes, and the collection date is given by year and month. The format used for table 1 allows only 70 spaces for site and soil descriptions, therefore, this column is written in telegraphic style, employing numerous abbreviations, minimum punctuation, and the elimination of unnecessary connectives in the statements in order to give as much information as possible in the limited space. The sampling sites are located more precisely by a descriptive reference to landmarks, such as highways, towns, rivers, or other geographic features. The distances of the sites from these landmarks are approximate, generally rounded to whole numbers. The descriptions of the surficial materials closely follow those made at the sites by the collectors, and are usually expressed in nontechnical terms. A list of the abbreviations that were used follows.

Abbreviation	Word or term	Abbreviation	Word or term
ALLUV	Alluvium	NAT	National
ALT	Alternate	NAT FOR	National forest
BLM	Bureau of Land Management	N.P.	National Park
BR	Branch	NR	Near
BRWN	Brown	PK	Park
C.H.	Courthouse	QUAD	Quadrangle
CO	County	QUAT	Quaternary
CR	Creek	R.	River
DECID.	Deciduous	RD	Road
FT	Fort	RES	Reservation
HATC	Hatchery	RR	Railroad
HOR	Horizon	RT	State Route
HTS	Heights	RX	Rocks
I	Interstate Highway	SED	Sedimentary
IN.	Inch or inches	SERV	Service
IRR	Irrigation	SH	Shale
JCT	Junction	SPGS	Springs
LGHT	Light	SS	Sandstone
LS	Limestone	TERT	Tertiary
MED	Medium	TPK	Turnpike
MI	Mile	US	U.S. Highway
MT	Mount or mountain	YDS	Yards
MX	Mixed	042	

Bismuth, cadmium, praseodymium, and silver were found infrequently in measurable concentrations in the samples. Data for these elements are given in the following table.

2

NO.	STATE	COUNTY	LATI- TUDE	LONGI- TUDE		FCTED	LOCATION, DESCRIPTION, AND CONCENTRATION (PPM) OF ELEMENTS	
							BISMUTH	
GC 171650 250450		PINAL INYO		111 5 117 52	64 66	56	US 60-70 W EDGE OF SUPERIOR; STONY ROUGH SOIL RT 190 OWENS LAKE 5 MI S KEELER; SAND NEAR PLAYA	15 15
							CADMIUM	
060250 242750 243150 270650 185450 066950 155850 024850 023550 191350 022550 267450 152150 022750 056050	CA CA CA CO CO KS KS KS NM NM O NM O H O SD TX O VA	KERN NEVADA SANTA CLARA SHASTA MOFFAT SIIM11T BOURBON LOGAN CASCADE CHAVES AUGLAIZE BROWN HARRIS WYTHE POLK	35 30 39 14 30 39 14 40 39 33 37 39 32 39 32 30 25 29 47 30 25 29 45 31	119 38 121 2 121 33 121 30 108 40 106 9 94 55 101 44 111 10 104 50 83 55 98 7 95 38 80 57 92 35	71 71 65 66 68	77969010560879	JCT RT 33 AND UNNUMBERED RD 10 MI NW BUTTONWILLOW; SOIL NOT DESCRIBED. I-40 AT CISCO; SOIL NOT DESCRIBED. US 101 AT RT 152 EXIT GILROY; SOIL NOT DESCRIBED. IN LASSEN VOLCANIC N.P. 3 MI SE MANZANITA LAKE; B HORIZON SOIL. US 40 5 MI E MASSADONA; BROWN CLAYEY SILT 8 IN. DEPTH. US 6 .5 MI E OFFICERS GUICH CAMPGROUND; BROWN GRAVELLY SOIL ON TILL. US 54 10 MI W FT. SCOTT; DARK PRAIRIE SOIL OVER LIMESTONE. US 40 AT OAKLEY; BLACK PRAIRIE SOIL. 1 MI NORTH MALSTROM AIR BASE; CULTIVATED, PLOW ZONE. US 70 18 MI SW ROSWELL; VERY DRY, TAN, MANY CHERT FRAGMENTS. US 33 1 MI NW LAKEVIEW; BROWN SILTY LOAM CULTIVATED. RT 37 1 MI S GROTON; GRAY MOTTLED B HORIZON LACUSTRINE CLAY, GRASSLAND US 90 2 MI E ADDICKS; DARK ALLUVIAL CLAY. RT 121 AT MAX MEADOWS; MUCK. RT 35 Z MI S LUCK; YELLOW SANDY LOAM.	$ \begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.5\\ 2.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0 \end{array} $
			*				PRASEODYMIUM	
070350	AL	MONTGOMERY	32 17	86 12	73	1	US 231 5 MI S MONTGOMERY; SANDY LOAM	100
							SILVER	
171450 033150 186250 023550 263150 022750	CO ID MT UT	COCONINO CLEAR CREEK BANHOCK CASCADE SUMMIT WYTHE	39 47	111 18 105 47 112 24 111 10 111 15 80 57	71 68	8657	RT 87 AT CLINTS WELL; DARK FOREST SOIL. US 40 ON BERTHOUD PASS; BROWN, ON GRANITE AND GNEISS RUBBLE. I-15 8 MI SE POCATELLO; BROWN SILT, 4 IN. DEPTH. 1 MI NORTH MALSTROM AIR BASE; CULTIVATED, PLOW ZONE. I-80 2 MI S RT 133 EXIT NEAR STREAM BED; BLACK ORGANIC ALLUVIUM. RT 121 AT MAX MEADOWS; MUCK.	3.0 2.0 3.0 .7 5.0 3.0

Some elements were looked for in all samples but were not found. These elements, analyzed by the semiquantative spectrographic method, and their approximate lower detection limits, in parts per million, are as follows: gold, 20; hafnium, 100; indium, 10; platinum, 30; palladium, 1; rhenium, 30; tantalum, 200; tellurium, 2,000; and thallium, 50. If lanthanum or cerium was found in a sample, the following elements, with their stated lower detection limits, were looked for in the same sample but were not found: dysprosium, 50; erbium, 50; gadolinium, 50; holmium, 20; lutetium, 30; terbium, 300; and thulium, 20.

The following symbols used in table 1 are explained as follows: N, not detected in the sample; leaders (--), no data available; <, less than the stated value; and >, greater than the stated value.

References cited

- Huffman, Claude, Jr., and Dinnin, J. I., 1976, Analysis of rocks and soil by atomic absorption spectrometry and other methods, in Miesch, A. T., Geochemical survey of Missouri--Methods of sampling, laboratory analysis, and statistical reduction of data: U.S. Geological Survey Professional Paper 954-A, p. 12-14.
- Millard, H. T., Jr., 1975, Determination of uranium and thorium in rocks and soils by the delayed neutron technique, in U.S. Geological Survey, Geochemical survey of the western coal region, 2d Annual Progress Report July 1975: U.S. Geological Survey Open-File Report 75-436, p. 79-81.
- 1976, Determination of uranium and thorium in USGS standard rocks by the delayed neutron technique, in Flanagan, F. J., ed., Description and analyses of eight new USGS rock standards: U.S. Geological Survey Professional Paper 840, p. 61-65.
- Myers, A. T., Havens, R. G., and Dunton, P. J., 1961, A spectrochemical method for the semiquantitative analysis of rocks, minerals, and ores: U.S. Geological Survey Bulletin 1084-I, p. 207-229.
- Neiman, H. G., 1976, Analysis of rocks, soils and plant ashes by emission spectroscopy, in Miesch, A. T., Geochemical survey of Missouri--Methods of sampling, laboratory analysis, and statistical reduction of data: U.S. Geological Survey Professional Paper 954-A, p. 14-15.
- Shacklette, H. T., Boerngen, J. G., Cahill, J. P., and Rahill, R. L., 1973, Lithium in surficial materials of the conterminous United States and partial data on cadmium: U.S. Geological Survey Circular 673, 8 p.
- Shacklette, H. T., Boerngen, J. G., and Keith, J. R., 1974, Selenium, fluorine, and arsenic in surficial materials of the conterminous United States: U.S. Geological Survey Circular 692, 14 p.

- Shacklette, H. T., Boerngen, J. G., and Turner, R. L., 1971, Mercury in the environment--Surficial materials of the conterminous United States: U.S. Geological Survey Circular 644, 5 p.
- Shacklette, H. T., Hamilton, J. C., Boerngen, J. G., and Bowles, J. M., 1971, Elemental composition of surficial materials in the conterminous United States: U.S. Geological Survey Professional Paper 574-D, 71 p.
- Vaughn, W. W., 1967, A simple mercury vapor detector for geochemical prospecting: U.S. Geological Survey Circular 540, 8 p.
- Wahlberg, J. S., 1976, Analysis of rocks and soils by x-ray fluorescence, in Miesch, A. T., Geochemical survey of Missouri--Methods of sampling, Taboratory analysis, and statistical reduction of data: U.S. Geological Survey Professional Paper 954-A, p. 11-12.
- Ward, F. M., Lakin, H. W., Canney, F. C., and others, 1963, Analytical methods used in geochemical exploration by the U.S. Geological Survey: U.S. Geological Survey Bulletin 1152, 100 p.

Table 1 .-- Location, description, and concentration of elements for samples

of surficial materials

[Data are divided into five-page units. The first page of each unit gives the sample numbers for 50 samples, the state and county names listed alphabetically, the latitude and longitude in degrees and minutes, the date of sample collection, the location of the sampling site, and the description of the sample. The following 4 pages give analytical results for 46 elements for each of the 50 samples in this unit. The second unit follows alphabetically by state and county, and so on through the entire table]

	Sample No.	State	County		Lati- tude	Long- itude	Date Colln.	Site and Soil Descriptions
	GC268950	OR	MALHEUR		44 0	117 0	68 9	US 20-26 10 MI E VALE; B HORIZON SOIL
1	GC269050	OR	MALHEUR		43 47	117 56	68 9	US 20 ABOUT 10 MI E JUNTURA; B HORIZON SOIL
	GC026950	OR	MARION		45 1	122 59	71 9	1-5 2.6 MI N JCT T-5 & US 99E; SOIL ON SILT DEPOSIT
	GC269550	OR	MARION		44 50	123 5	68 9	1-5 S OF TURNER; B HORIZON SOIL
	GC035350	OR	MORROW	•	45 50	119 36	65 8	I-80-US30 3 MI E US 730 JCT; MED BROWN SAND
	GC035650	OR	MULTNOMAH		45 32	122 17	65 8	AT CORBETT OFF 1-80; BROWN SILT
	GC 06 06 50	OR	SHERMAN		45 20	120 46	70 10	US 97 1 MI S GRASS VALLEY; DARK GRAY SILT OVER BASALT
	6076650	OR	TILLAMOOK		45 44	123 56	73 9	RT 101 1 MI N MANZANITA; REDDISH-YELLOW LOAM
	GC076750	OR	TILLAMOOK		45 12	123 55	73 9	US 101 4 MI S CLOVERDALE; PEBBLY LOAM
	60035250	OR	UMATILLA		45 40	118 45	65 8	US 30'1 MI E PENDLETON; GRAY SILT ON BASALT
	GC269450	OR	UMATILLA		45 3	118 59	68 9	US 395 ABOUT 8 MI N DALE; B HORIZON SOIL
	60035150	. OR	UNION		45 20	118 6	65 8	US 30 N EDGE LA GRANDE; GRAY-BROWN CLAY LOAM
	GC035550	OR	WASCO		45 42	121 21	65 8	I-80N 3 MI W ROWENA; BROWN SILT, RESIDUAL ON BASALT
	GC041650	PA	BEDFORD		39 57	78 20	66 10	PA TPK 6 MI W EXIT 12; LIGHT ORANGE-BROWN SANDY LOAM
	6059550	PA	CENTRE		41 2	77 57	70 9	I-80 .5 MI S JCT RT 144 ON GRAVEL TRAIL; SOIL NOT DESCRIBED
	GC041350	PA	CHESTER		40 7	75 50	66 10	PA TPK 5 MI E EXIT 22; BROWN CLAY LOAM
	GC041550	PA	CUMBERLAND		40 10	77 30	66 10	PA TPK 10 MI E EXIT 15; YELLOWISH CLAY LOAM
	GC041450		DAUPHIN		40 10	76 37	66 10	PA TPK 8 MI W EXIT 20; RED SANDY CLAY LOAM
	GC003050	PA	ERIE		41 56	80 29	62 5	I-90 AT US 6N INTERCHANGE; YELLOWISH-ORANGE SAND
	60030950	PA	ERIE		42 11	79 50	72 9	RT 89 3 MI S OF NORTH EAST; HEAVY CLAY FOREST SOIL
	GC041750	PA	FAYETTE		40 5	79 20	66 10	PA TPK 2 MI E EXIT 9; YELLOWISH BROWN SILTY CLAY LOAM
	GC061150	PA	JEFFERSON		41 9	78 54	70 9	US 322 2.5 MI E RT 28 JCT; SOIL NOT DESCRIBED
	GC184550	PA	LEHIGH		40 44	75 37	67 11	NE EXIT PENN, TPK NEAR SLATINGTON; SOIL NOT DESCRIBED
H	GC061350 GC061050	PA	LYCOMING		41 12	77 8	70 9	RT 645 3.9 MI W JCT US 15; SOIL NOT DESCRIBED
P	60061050	PA	MERCER		41 12	80 17	70 9	4.5 MI W JCT US 62 AND US 19; SOIL NOT DESCRIBED
	60184050	PA	SULLIVAN		41 23	76 30	67 10	US 220 2 MI S LAPORTE; B HORIZON FROM SANDSTONE
	GC184450	PA	SUSQUEHANNA		41 38	75 38	67 11	I-81 5 MI S LENOX; SOIL NOT DESCRIBED
12	GCD61450	PA	TIOGA		41 40	77 5	70 9	US 15 2.7 MI S OF N TURNOFF TO ARNOT; SOIL NOT DESCRIBED
	GC041850	PA	WASHINGTON		40 10	80 15	66 10	I-70 AT WASHINGTON; YELLOWISH-ORANGE SILTY LOAM
·	GC006050	RI	PROVIDENCE		41 49	71 43	62 10	US 6 AT JCT RT 102; SANDY & HORIZON
	GC062950	SC	AIKEN		33 24	81 33	70 10	US 78 2 MI S WINDSOR; SANDY, AZONAL, YOUNG PINE STAND
	60196650	SC	CLARENDON		33 52	80 0	65 7	US 378 2 MI E TURBEVILLE; LIGHT YELLOW SAND
	GC063050	SC	DARLINGTON		34 18	79 50	70 10	CO RD 1 MI E DOVESVILLE; SANDY, AZONAL, PINE PLANTATION
	GC196750	SC	HORRY		33 50	79 14	65 7	US 378 11 MI W CONWAY; BLACK SAND AND MUCK
	GC196850	SC	HORRY		33 50 33 51	78 40 82 22	65 7 65 7	US 17 AT LITTLE RIVER; YELLOW SAND
	60196350		MC CORMICK		1116			US 378 1 MI E GEORGIA STATE LINE; RED CLAY WITH QUARTZ FRAGMENTS
	GC063150 GC196550	SC	ORANGEBURG RICHLAND		33 20	80 57 80 56	70 10	CO RD 1 MI E COPE; SANDY, AZONAL, MATURE PINE FOREST US 378 10 MI E COLUMBIA; YELLOW SAND
	GC196450	SC	SALUDA		34 0	81 39	65 7	US 378 10 MI E COLUMBIA, TELLOW SAND US 378 10 MI E SALUDA; RED LITHOSOL WITH QUARTZ FRAGMENTS
	GC211050	SC	SPARTANBURG		34 55	82 0	65 7	US 29 .4 MI W I-85 AT SPARTANBURG; SOIL NOT DESCRIBED
	60267550	SD	BEADLE		44 33	98 19	68 8	RT 37 7 MI S RT 28 JCT, N HURON; DARK BROWN GRAVELLY, CULTIVATED
	GC028850	50	BENNETT		43 13	101 27	72 9	US 18 11 MI E MARTIN; DARK SILT LOAM
	GC029250	SD	BON HOMME		43 5	98 5	72 9	RT 46 12 MI E WAGNER; BLACK CLAY LOAM
	6055250	SD	BROOKINGS		44 0	96 45	70 5	US 14 2 MI W BROOKINGS; BLACK PRAIRIE
		SD			45 25	98 7	68 8	그 같았던 그 해주변에 있게 있었다. 여러 가슴 지방에 앉았다. 영양이 있는 것에 집에 이 이렇게 다양한 해양이었다. 그 가슴 가슴 가슴 다른 것은 것 않았다. 가슴 만큼 다른 것을 하는 것이 못했다. 그 것이 같은 것이 같이 나는 것이 같이 나는 것이 같이 있다.
	GC267450 GC054450	SD	BROWN BUTTE		44 35	103 24	70 5	RT 37 1 MI S GROTON; GRAY MOTTLED B HORIZON LACUSTRINE CLAY, GRASSLAND
			CODINGTON		44 30	97 3	70 5	US 212 JCT RT 79; DARK CLAYEY SOIL
	60055150	SD			45 51	101 55	74 11	US 81 3 MI S WATERTOWN; BLACK PRAIRIE
	GC084150	SD	CORSON		10.00 C		70 5	STANDING ROCK INDIAN RESERVATION; SOIL DERIVED FROM SANDSTONE
	GC054750	S D S D	DEWEY	1	44 54 43 17	100 42 98 20	68 8	US 212 6 MI E RIDGEVIEW; PRAIRIE CLAY LOAM PRATRIE CROUP, CUIT
	6C267750	30	DOUGLAS		43.10	70 20	00 0	US 281 1 MI S .5 MI E ARMOUR; DARK CLAY LOAM, PRAIRIE GROUP, CULT.

TOT

12

 \sim

Sample No.	AL X	As ppm	в ррт	Ba ppm	Be ppm	Br ppm	c x	Ca X	Ce ppm	Co ppm	Cr ppm	Cu ppm
6C268950	>10.00	4.3	20	1,000	1.0			2.60	N	15	70.0	30.0
GC269050	>10.00	3.8	<20	700	1.0			4.50	N	30	30.0	150.0
GC026950	>10.00	6.2	30	1,500	3.0	1.9	2.2	1.21	<150	20	70.0	30.0
GC269550	>10.00	6.0	N	300	N			.20	N	30	70.0	100.0
GC035350	>10.00	2.6	N	700	N			2.40	N	20	50.0	20.0
GC035650	>10.00	4.4	N	700	N			3.20	N	15	100.0	20.0
GC060650	>10.00	5.7	<20	700	1.5			2.32	<150	15	50.0	50.0
GC076650	>10.00	10.3	30	500	N	10.8	4.2	.54	N	10	70.0	70.0
GC076750	10.00	5.5	<20	300	N	7.4	10.4	.19	N	5	150.0	70.0
GC035250	>10.00	6.9	N	700	N			2.20	N	20	50.0	30.0
GC269450	7.00	1.7	N	500	N			4.60	N	30	100.0	150.0
GC035150	>10.00	4.2	N	700	N			1.80	N	30	100.0	30.0
GC035550	>10.00	1.9	N	700	N			3.40	N	30	50.0	30.0
GC041650	7.00	29.0	70	300	2.0			.05	150	30	70.0	50.0
GC059550	5.00	6.1	30	300	N			.06	N	3	30.0	10.0
GC041350	7.00	5.2	20	500	1.5			.30	150	20	50.0	70.0
GC041550	10.00	9.9	50	500	1.5			.20	150	15	100.0	50.0
GC041450	7.00	7.0	70	300	3.0			.20	150	20	70.0	50.0
GC003050	1.50	6.3	30	300	N			.53	N	7	15.0	15.0
GC030950	7.00	15.7	50	500	N	5.3	4.1	.43	<150	10	70.0	50.0
GC041750	7.00	10.0	50 -	500	2.0			.45	150	30	70.0	50.0
GC061150	3.00	3.8	30	200	N			.03	N	3	15.0	7.0
6618/550	5.00	16.0	70	300	1.5			.10	N	15	30.0	50.0
G GC061350	10.00	17.0	50	500	2.0			.04	<150	15	100.0	50.0
Vi 6C061050	7.00	14.0	50	500	1.0		-	.15	150	10	50.0	20.0
GC184050	3.00	11.0	30	150	N			.05	N	7	15.0	15.0
GC184450	5.00	14.0	70	200	1.5			.25	N	10	30.0	15.0
GC061450	7.00	10.0	50	300	1.0			.06	<150	10	30.0	20.0
GC041850	10.00	31.0	50	500	3.0			.25	150	30	100.0	70.0
6006050	>10.00	3.5	N	500	N			1.10	N	10	50.0	15.0
6062950		4.9										
GC196650	1.50	1.1	50	70	N			-10	N	N	15.0	5.0
6063050		3.2									12.0	
60196750	.70	1.0	50	70	N			.10	N	N	5.0	3.0
GC196850	.70		50	50	N			.10	N	N	5.0	5.0
GC196350	>10.00	4.3	N	300	N			-40	N	7	50.0	50.0
GC063150		6.8									50.0	30.0
GC196550	1.50	7.4	50	70	7.0				N	N	15.0	5.0
GC196450	3.00	2.9	N	200	N			.20	N	N	10.0	15.0
GC211050	>10.00	3.4	N	300	N			.25	N	10	50.0	30.0
GC267550	7.00	15.0	20	700	1.0				N	10		
GC028850			<20			<.5		.80			50.0	50.0
	5.00	1.7	50	1,000	N		.9	.76	N	<3	15.0	7.0
6029250				700	1.5	1.4	3.5	1.27	<150	10	70.0	50.0
GC 05 5 2 5 0	5.00	7.0	30	500	N		1.8	1.00	N	7	30.0	10.0
GC267450	7.00	3.9	30	500	1.0	13		7.00	N	7	50.0	30.0
6054450	7.00	17.0	70	1,000	1.0		1.5	1.20	N	10	70.0	30.0
6055150	7.00	10.0	30	700	1.0		4.9	1.00	N	7	70.0	15.0
6084150	7.00	1.9	50	1,000	2.0	<.5	2.2	1.22	N	10	70.0	20.0
GC054750	10.00	12.0	70 50	1,000 700	1.0		1.6	1.10	N	7	70.0	20.0
GC267750									N		70.0	

	Sample No.	FX	Fe X	Ga ppm	Ge ppm	Hg ppm	1 ppm	K %	La ppm	Li ppm	Mg X	Mn ppm	No ppm
-	GC268950	.039	5.00	30		.03		2.20	50	23	1.500	700	N
	GC269050	.043	7.00	30		.02		1.40	50	12	3.000	1,000	5
	6026950	.070	7.00	20	1.78	.06	1.0	1.78	50	18	.700	1.000	N
	GC269550	.016	>10.00	70		.11		.45	N	18	.300	1,500	N
	GC035350	.031	3.00	30		.05		2.00	30	16	1.500	700	N
	GC035650	.019	3.00	30		.28		1.80	30	20	1.000	700	N
	GC060650	.037	7.00	20		.02		1.30	50	25	1.000	500	N
	GC076650	.050	7.00	20	1.37	.07	4.8	1.34	<30	25	.700	700	N
	GC076750		5.00	20	1.21	.06	2.1	.62	N	28	.500	100	N
	GC035250	.043	5.00	30		.02		1.80	50	27	1.500	700	N
	GC269450	.015	7.00	30		.03		. 90	N	14	1.500	1,500	
	GC035150	.037	5.00	30		.11		1.20	50	23	1.000	1.000	5
	GC035550	.030	7.00	30		.38		1.10	N	16	1.500	1,000	N
	GC041650	.033	3.00	30		.06		2.00	70	37	.500	500	N
	GC059550	.009	1.50	5		.13		.78	30	18	.100	150	N
	GC041350	.026	5.00	30		.07		1.90	100	28	.700	1,000	3
	GC041550	.080	5.00	30		.12		2.00	70	55	1.000	200	N
	GC041450	.053	5.00	30		.07		1.30	70	47	1.000	1,500	
	GC003050	.009	1.50	15		.04		1.08	N	14	.300	300	N
	GC030950		3.00	15	1.82	.11	2.2	1.51	<30	39	.500	700	N
. Г	GC041750	.040	7.00	30		.06		1.90	70	64	.700	700	N
	GC061150	.004	.70	N		.05		.36	30	12	.070	300	
	GC184550	.061	3.00	15		.08							N
-	GC061350	.008	7.00	30		.08		2.30	30	27	.300	300	3
22	GC061050	.027	3.00	15		.06		3.26	50	78	.700	700	N
	GC184050	.034	1.50	15				1.25	70	35	.300	700	N
	GC184450	.026		15		.10		.75	30	41	.300	200	N
	6061450	.029	1.50			-14		1.20	30	40	-300	700	N
	60041850		3.00	15		.25		1.29	50	39	_300	1,500	N
	GC006050	.060	7.00	50		.05		2.50	70	80	.500	300	N
	GC062950		3.00	20		.24		1.50	N	24	.700	500	N
		-061		77	1.77	.03				6			
	GC196650	.002	.30	N		.05		.02	30	7	.050	20	N
	GC063050	.017				.03				<5			
	GC196750	<.001	.15	N		.09		.04	N	<5	.020	20	N
	GC196850	.011	. 30	N		.03		.03	N	6	.030	70	N
	GC196350	.012	3.00	30		.13		.65	N	12	.200	100	N
	GC063150	<.001				.06				<5			
	GC196550	<.001	.50	N		.07		.05	30	. 10	.050	50	N
	GC196450	<.001	1.50	10		.07		.60	N	10	.070	200	N
	GC211050	.003	3.00	15		.06		.36	N	17	.100	150	N
	GC267550	.022	5.00	15		.08		2.00	30	23	1.500	5,000	3
	GC028850		1.00	10	1.06	.02	. 6	1.41	N	10	.200	200	Ň
	GC029250	.050	2.00	15	1.52	.05	2.1	1.93	50	25	.500	1,000	N
	GC055250	.017	1.50	15		.05	<.5	1.40	N	17	.500	500	N
	GC267450	.030	2.00	15		.03		1.70	30	27	2.000	3,000	100
	GC054450	.100	3.00	20		.08	.6	2.00	30	61	1.000	200	N
	GC055150	.028	2.00	15		.53	<.5	1.60					N
	GC084150	.040	3.00	15	1.04	.07	1.4	1.98	<30	21	.700	1.000	N
	GC054750	.062	3.00	20	1.04					17	.700	1,500	N
		.041	5.00	20		.06	. 6	1.60	30 50	41 34	.700	200	N 3
	GC267750											700	

	Sample No.	Na X	Nb ppm	Nd ppm	Ni ppm	PZ	Pb ppm	Rb ppm	S X	Sb ppm	Sc ppm	Se ppm	si x
1	GC268950	1.50	10	<70	30	.030	10				15	.3	
	GC269050	1.00	10	70	20	.090	10				30	<.1	
	GC026950	2.00	10	N	15		20	100	.13	<1	15	.2	29
	GC269550	.30	20		30	.120	20				30	. 8	
	GC035350	1.50	20	N	20	.030	15				20	<.1	
	GC035650	2.00	20	N	30	.060	20				15	.2	
	GC060650	2.00	10	70	20		15				20	<.1	
	GC076650	1.00	10	N	7		. 20	60	<.08	<1	20	. 8	24
	GC076750	.50	10		15		15	55	.10	2	10	. 3	20
	GC035250	1.50	20	N	30	.024	20				20	- 4	
	GC269450	2.00	20		70	.060	N				30	<.1	
	GC035150	1.50	30	N	50	.016	30				20	- 4	
	GC035550	2.00	15	N	20	.090	30				20	<.1	
	GC041650	.50	15	70	30	.040	. 30				15	. 3	
	GC059550	.20	10	N	<5		15				5	. 4	
	GC041350 *	.70	10	150	30	.080	30				15	1.3	
	GC041550	.70	15	70	30	.030	20				15	.4	
	GC041450	1.00	15	70	30	.030	30				15	. 4	
	GC003050	.70	10		15	.052	15				7	.1	
	GCD30950	.70	<10	<70	20		30	85	<.08	<1	10	.2	31
	GC041750	.50	15	70	50	.040	30				15	.7	
	60061150	<.05	10	N	N		<10				5	.3	
1	GC184550	.15	10	70	30	.040	30				15	1.1	
2	GC061350	.50	10	70	50		10				15	. 4	
	GC061050	. 50	10	100	15		20				10	- 4	
	GC184050	.15	15	70	15	.024	15				7	. 5	
	GC184450	.70	15	70	15	.050	30				7	. 4.	
	GC061450	.30	10	70	10	22.00	20				7	. 6	
	GC041850	.50	15	70	30	.060	30				15	.3	
	GC006050	1.50	15	N	15	.040	15				10	9	
	60062950											<.1	
	GC196650	N	20	N	N	.004	N				N	.2	
	60063050											.1	
	GC196750	N	N	N	N	.012	N				N	-1	
	GC196850	N	15	N	N	.002	N				N	.1	
	GC196350	.15	N	N	15	.004	N				15	1.3	
	GC063150				144							<.1	
	GC196550	N	20	N	7	.004	N				N	.2	
	GC196450	.30	N	N	5	.008	N				10	. 5	
	GC211050	.07	10		20	.006	N				10	.5	
	GC267550	1.00	10	N	70	.030	15				10	.7	
	6028850	1.00	N		5		15	70	<.08	<1	5	<.1	28
	6029250	1.00	<10	70	50		20	75	<.08	2	10	<.1	29
	GC055250		N		15	.065	15				5	.4	36
	6C267450	1.50	10	<70	30	.030	10				7	.2	
	6054450	1.50	<10	~70 N	30	.052	15				10	1.9	29
	GC055150		<10		20		70				7		
	GC084150	1.00	10	Ň	30	.161	15	80	<.08		10	- 6	30
	6054750	1.00	<10		2 T		. 15	80	<.08	<1		<.1	31
				N	30	.052	A.C.				15	.4	29
	GC267750	1.00	10	<70	70	.024	15		~~		10	.9	

Sample No.	Sn ppm	Sr ppm	Ti X	Th pps	U ppm	V ppm	Y ppm	Yb ppm	In X	Zr pps
GC268950		500	.500			150	50	3.0	50	200
GC269050		300	.700			500	70	7.0	70	150
6026950	1.79	500	1.000	9.23	3.15	200	30	3.0	89	. 150
GC269550		70	.700			500	20	3.0	85	150
GC035350		500	.700			150	. 30	5.0	40	150
GC035650		700	.500			150	30	3.0	70	150
GC060650		500	.700			150	50	3.0	88	200
GC076650	1.44	150	1.000	7.76	3.58	150	20	3.0	77	200
GC076750	.22	70	.500		3.01	200	10	2.0	59	100
GC035250		500	.700			150	30	5.0	50	200
GC269450		300	.700	tere .		300	30	5.0	65	100
GC035150		300	.700			150	30	5.0	55	150
GC035550		700	1.000			200	30	5.0	75	150
GC041650		150	.700			100	50	7.0	60	200
60059550		30	.300			20	15	2.0	24	200
GC041350		70	.700			150	100	10.0	130	150
GC041550		150	.700			150	30	3.0	60	150
GC041450		150	.700			150	30	3.0	80	150
GC003050		70	.150			30	15	3.0	42	200
GC030950	1.79	150	.300	12.79	3.10	100	20	3.0	155	200
GC041750		150	.700			100	30	5.0	110	200
GC061150		10	.500			15	20	3.0	31	500
GC184550		30	.300			70	30	3.0	115	200
4 GC061350		150	.700			100	20	3.0	67	150
GC061050		70	.500			70	30	3.0	113 .	300
GC184050		30	.200			30	20	3.0	55	200
GC184450		30	.300			50	30	3.0	90	300
GC061450		50	.500			50	30	3.0	80	200
GC041850		150	.500			100	30	5.0	80	150
6006050		150	.300			70	20	2.0	30	150
GC062950										
GC196650		N	.500			15	20	3.0	-	500
GC063050		-12		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
GC196750		N	.100			N	N	N		150
GC196850		N	.200			N	N	1.0		700
GC196350		N	200			150	N	1.0	25	50
GC063150	1446				1.22					
GC196550		N	.300			15	30	3.0		500
GC196450	22	50	.200			30	20	3.0		100
GC211050		20	.200			100	N	1.0		100
		200	.300	122		100	30		60	
GC267550	. 34	200	.150		1.99		10	3.0	31	150
GC028850						30				
GC029250	1.48	200	.200	8.59	3.13	150	20	3.0	107	200
GC055250		150	.200			50	15	1.5	54	150
GC267450		300	.200			100	20	2.0	60	150
GC054450		200	.300		·	200	30	3.0	134	100
GC055150		150	.300		277.0	70	20	3.0	150	200
GC084150	. 62	200	.200	9.86	2.23	150	20	3.0	79	100
		300	.300			150	20	3.0	100	100
GC054750 GC267750		200	.300			150	30	5.0	75	200

Appendix E

Analytical Laboratory Reports

Background Samples (B-1 through B-10)

814/443-1671 814/445-6666 FAX: 814/445-6729

Friday, December 28, 2018

John Shimshock GENON - CONEMAUGH STATION CCR CONEMAUGH STATION PO BOX K NEW FLORENCE, PA 15944

RE: Conemaugh CCR IV Background

Order No.: G1811861

Dear John Shimshock:

Geochemical Testing received 10 sample(s) on 11/14/2018 for the analyses presented in the following report.

There were no problems with the analyses and all QC data met NELAC, EPA, and laboratory specifications except where noted in the Case Narrative or Laboratory Results.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Timot W Bey trus

Timothy W. Bergstresser Director of Technical Services

Leslie A. Nemeth Project Manager

Geochemical Testing

CLIENT: GENON - CONEMAUGH STATION CCR **Project:** Conemaugh CCR IV Background Lab Order: G1811861

CASE NARRATIVE

No problems were encountered during analysis of this workorder, except if noted in this report.

SAMPLE RECEIPT CHECKLIST

	Response
COC is present	Yes
COC is filled out in ink and legible	Yes
COC relinquished, signature, date, and time	Yes
Samples arrived within hold time	Yes
Containers properly preserved for the requested testing	Yes
Sample containers have legible labels	Yes
Sample preservation verified	Yes
Appropriate sample containers are used	Yes
Sample container(s) received at proper temperature	Yes
Zero headspace where required	Yes
Sufficient volume for all requested analyses	Yes

Comments on the above checklist: None

Legend:	ND - Not Detected	S - Spike Recovery outside accepted recovery limits				
	J - Indicates an estimated value.	R - RPD outside accepted recovery limits				
	U - The analyte was not detected at or above the listed	E - Value above quantitation range				
	concentration, which is below the laboratory quantitation limit.	** - Value exceeds Action Limit				
	B - Analyte detected in the associated Method Blank	H - Method Hold Time Exceeded				

DF - Dilution Factor Q - Qualifier QL -Quantitation Limit

MCL - Contaminant Limit

Laboratory Results

Geochemi	cal Testing					
CLIENT:	GENON - CONEMAUGH STA	ATION CCR	Clien	t Sample ID:	B-1 0-4	
Lab Order:	G1811861					
Project:	Conemaugh CCR IV Background	nd	Samp	oled By:	APTIM	
Lab ID:	G1811861-001		Colle	ction Date:	11/13/2018	11:20:00 A
Matrix:	SOLID		Recei	ived Date:	11/14/2018	8:54:37 PM
Analyses	Result	QL Q	Units	DF Dat	e Prepared	Date Analyzed
GAMMA SPEC	TROSCOPY	Analyst: A	м			EPA 901.1
Radium-226	0.71+/-0.0401	0.077	pCi/g	1		12/06/18 7:05 PM
Radium-228	0.87+/-0.0742	0.092	pCi/g	1		12/06/18 7:05 PM

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

Ra-228 and Ac-228 are assumed to be in secular equilibrium. The results for Ra-228 are inferred from Ac-228.

TOTAL METALS		Analyst: N	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 6:42 PM
Arsenic	15.5	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Barium	127	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Beryllium	1.11	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Chromium	41.5	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Cobalt	17.6	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Lead	23.2	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Lithium	15.9	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Selenium	2.3	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:30 PM

TOTAL METALS		EPA 7473			
Mercury	0.038	0.010	mg/Kg-dry	1	11/20/18 2:36 PM

Laboratory Results

Geochemi	cal Testing		Date: 28-Dec-18				
CLIENT:	GENON - CONEMAUGH STAT	ION CCR	Clien	t Sample ID:	B-2 0-4		
Lab Order:	G1811861						
Project:	Conemaugh CCR IV Background		Samp	oled By:	APTIM		
Lab ID:	G1811861-002		Colle	ction Date:	11/13/2018	11:25:00 A	
Matrix:	SOLID		Recei	ived Date:	11/14/2018	8:54:37 PM	
Analyses	Result	QL Q	Units	DF Dat	e Prepared	Date Analyzed	
GAMMA SPEC	TROSCOPY	Analyst: A	м			EPA 901.1	
Radium-226	0.55+/-0.0321	0.070	pCi/g	1		12/07/18 9:15 PM	
Radium-228	0.70+/-0.0678	0.073	pCi/g	1		12/07/18 9:15 PM	

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

Ra-228 and Ac-228 are assumed to be in secular equilibrium. The results for Ra-228 are inferred from Ac-228.

TOTAL METALS		Analyst: N	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 7:05 PM
Arsenic	11.2	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Barium	123	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Beryllium	1.05	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Chromium	41.1	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Cobalt	15.7	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Lead	22.1	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Lithium	12.6	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Selenium	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:34 PM

TOTAL METALS		EPA 7473			
Mercury	0.057	0.010	mg/Kg-dry	1	11/20/18 2:36 PM

Geochemical Testing				Date: 28-Dec-18				
CLIENT:	GENON - CONEMAUGH STAT	TION CCR	Clien	t Sample ID:	B-3 0-4			
Lab Order:	G1811861							
Project:	Conemaugh CCR IV Background	l	Samp	led By:	APTIM			
Lab ID:	G1811861-003		Colle	ction Date:	11/13/2018	11:30:00 A		
Matrix:	SOLID		Recei	ved Date:	11/14/2018	8:54:37 PM		
Analyses	Result	QL Q	Units	DF Dat	e Prepared	Date Analyzed		
GAMMA SPEC	TROSCOPY	Analyst: A	м			EPA 901.1		
Radium-226	0.58+/-0.0342	0.072	pCi/g	1		12/08/18 11:15 PN		
Radium-228	0.71+/-0.0637	0.086	pCi/g	1		12/08/18 11:15 PN		

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: N	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 7:09 PM
Arsenic	14.5	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Barium	87.8	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Beryllium	0.74	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Chromium	69.4	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Cobalt	9.2	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Lead	18.5	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Lithium	12.8	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Selenium	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:39 PM

TOTAL METALS		EPA 7473			
Mercury	0.054	0.010	mg/Kg-dry	1	11/20/18 2:36 PM

Geochemical Testing				Date: 28-Dec-18				
CLIENT:	GENON - CONEMAUGH STAT	ION CCR	Clien	t Sample ID:	B-4 0-4			
Lab Order:	G1811861							
Project:	Conemaugh CCR IV Background		Samp	oled By:	APTIM			
Lab ID:	G1811861-004		Colle	ction Date:	11/13/2018	11:35:00 A		
Matrix:	SOLID		Recei	ived Date:	11/14/2018	8:54:37 PM		
Analyses	Result	QL Q	Units	DF Dat	e Prepared	Date Analyzed		
GAMMA SPEC	TROSCOPY	Analyst: A	м			EPA 901.1		
Radium-226	0.58+/-0.0329	0.066	pCi/g	1		12/10/18 12:06 AN		
Radium-228	0.81+/-0.0687	0.091	pCi/g	1		12/10/18 12:06 AN		

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: N	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 7:14 PM
Arsenic	12.1	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Barium	179	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Beryllium	1.12	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Chromium	42.6	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Cobalt	21.2	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Lead	24.8	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Lithium	16.3	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Selenium	2.2	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 6:44 PM

TOTAL METALS		Analyst: RL	EPA 7473		
Mercury	0.030	0.010	mg/Kg-dry	1	11/20/18 2:36 PM

Geochemical Testing				Date: 28-Dec-18				
CLIENT:	GENON - CONEMAUGH STAT	ION CCR	Clien	t Sample ID:	B-5 0-4			
Lab Order:	G1811861							
Project:	Conemaugh CCR IV Background		Samp	led By:	APTIM			
Lab ID:	G1811861-005		Colle	ction Date:	11/13/2018	11:40:00 A		
Matrix:	SOLID		Recei	ved Date:	11/14/2018	8:54:37 PM		
Analyses	Result	QL Q	Units	DF Dat	e Prepared	Date Analyzed		
GAMMA SPEC	TROSCOPY	Analyst: A	M			EPA 901.1		
Radium-226	0.56+/-0.0319	0.065	pCi/g	1		12/10/18 7:11 PM		
Radium-228	0.74+/-0.0614	0.071	pCi/g	1		12/10/18 7:11 PM		

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: N	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AN
Arsenic	14.6	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AN
Barium	166	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AN
Beryllium	1.23	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AN
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AN
Chromium	43.6	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AN
Cobalt	20.4	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AN
Lead	26.4	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AN
Lithium	14.7	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AN
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AN
Selenium	2.7	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AN
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:32 AN

TOTAL METALS		EPA 7473			
Mercury	0.039	0.010	mg/Kg-dry	1	11/20/18 2:36 PM

Geochemical Testing				Date: 28-Dec-18				
CLIENT:	GENON - CONEMAUGH STA	TION CCR	Clien	t Sample ID:	B-6 0-4			
Lab Order:	G1811861							
Project:	Conemaugh CCR IV Backgroun	d	Samp	oled By:	APTIM			
Lab ID:	G1811861-006		Colle	ction Date:	11/13/2018	11:45:00 A		
Matrix:	SOLID		Recei	ived Date:	11/14/2018	8:54:37 PM		
Analyses	Result	QL Q	Units	DF Dat	e Prepared	Date Analyzed		
GAMMA SPEC	TROSCOPY	Analyst: A	м			EPA 901.1		
Radium-226	0.6+/-0.0344	0.070	pCi/g	1		12/11/18 7:23 AM		
Radium-228	0.74+/-0.0634	0.081	pCi/g	1		12/11/18 7:23 AM		

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: N	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AN
Arsenic	16.5	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AN
Barium	187	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AN
Beryllium	1.30	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AN
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AN
Chromium	56.5	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AN
Cobalt	20.1	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AN
Lead	26.6	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AN
Lithium	17.8	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AN
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AN
Selenium	2.8	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AN
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:51 AN

TOTAL METALS		EPA 7473			
Mercury	0.055	0.010	mg/Kg-dry	1	11/20/18 2:36 PM

Geochemical Testing				Date: 28-Dec-18				
CLIENT:	GENON - CONEMAUGH STATI	ON CCR	Clien	t Sample ID:	: B-7 0-4			
Lab Order:	G1811861							
Project:	Conemaugh CCR IV Background		Samp	oled By:	APTIM			
Lab ID:	G1811861-007		Colle	ction Date:	11/13/2018	11:50:00 A		
Matrix:	SOLID		Recei	ived Date:	11/14/2018	8:54:37 PM		
Analyses	Result	QL (Q Units	DF Dat	e Prepared	Date Analyzed		
GAMMA SPEC	TROSCOPY	Analyst:	AM			EPA 901.1		
Radium-226	0.62+/-0.0342	0.067	pCi/g	1		12/11/18 7:52 PM		
Radium-228	0.79+/-0.0671	0.088	pCi/g	1		12/11/18 7:52 PM		

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: N	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AN
Arsenic	17.2	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AN
Barium	161	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AN
Beryllium	1.23	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AN
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AN
Chromium	42.6	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AN
Cobalt	16.1	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AN
Lead	27.3	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AN
Lithium	16.4	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AN
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AN
Selenium	2.6	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AN
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 11:55 AN

TOTAL METALS		EPA 7473			
Mercury	0.037	0.010	mg/Kg-dry	1	11/20/18 2:36 PM

Geochemi	cal Testing		Date: 28-Dec-18			
CLIENT:	GENON - CONEMAUGH STA	TION CCR	Clien	t Sample ID:	: B-8 0-4	
Lab Order:	G1811861					
Project:	Conemaugh CCR IV Backgroun	d	Samp	oled By:	APTIM	
Lab ID:	G1811861-008		Colle	ction Date:	11/13/2018	11:55:00 A
Matrix:	SOLID		Recei	ived Date:	11/14/2018	8:54:37 PM
Analyses	Result	QL Q	Units	DF Dat	e Prepared	Date Analyzed
GAMMA SPEC	TROSCOPY	Analyst: A	м			EPA 901.1
Radium-226	0.6+/-0.0341	0.068	pCi/g	1		12/12/18 7:58 AM
Radium-228	0.65+/-0.0669	0.079	pCi/g	1		12/12/18 7:58 AM

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: N	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PN
Arsenic	14.8	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PN
Barium	160	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PN
Beryllium	1.29	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PN
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PN
Chromium	53.7	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PN
Cobalt	19.6	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PN
Lead	25.5	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PN
Lithium	15.9	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PN
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PN
Selenium	2.4	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PN
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 12:00 PN

TOTAL METALS		EPA 7473			
Mercury	0.041	0.010	mg/Kg-dry	1	11/20/18 2:36 PM

Geochemical Testing				Date: 28-Dec-18			
CLIENT:	GENON - CONEMAUGH STAT	ION CCR	Clien	t Sample ID:	: B-9 0-4		
Lab Order:	G1811861						
Project:	Conemaugh CCR IV Background		Samp	oled By:	APTIM		
Lab ID:	G1811861-009		Colle	ction Date:	11/13/2018	12:00:00 P	
Matrix:	SOLID		Recei	ived Date:	11/14/2018	8:54:37 PM	
Analyses	Result	QL Q	Units	DF Dat	e Prepared	Date Analyzed	
GAMMA SPEC	TROSCOPY	Analyst: A	M			EPA 901.1	
Radium-226	0.62+/-0.0345	0.071	pCi/g	1		12/12/18 8:31 PM	
Radium-228	0.79+/-0.0672	0.086	pCi/g	1		12/12/18 8:31 PM	

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: N	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Arsenic	16.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Barium	186	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Beryllium	1.31	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Chromium	54.6	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Cobalt	20.3	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Lead	27.9	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Lithium	13.2	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Selenium	2.7	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:37 PM

TOTAL METALS		EPA 7473			
Mercury	0.037	0.010	mg/Kg-dry	1	11/20/18 2:36 PM

Geochemical Testing				Date: 28-Dec-18			
CLIENT:	GENON - CONEMAUGH	Í STATION CCR	-	Client Sam	ole ID:	B-10 0-4	
Lab Order:	G1811861						
Project:	Conemaugh CCR IV Back	ground		Sampled By	:	APTIM	
Lab ID:	G1811861-010			Collection I	Date:	11/13/2018	12:05:00 P
Matrix:	SOLID			Received D	ate:	11/14/2018	8:54:37 PM
Analyses	Res	alt QL	Q Ur	its DF	Date	e Prepared	Date Analyzed
GAMMA SPEC	TROSCOPY	Analyst	: AM				EPA 901.1
Radium-226	0.57+/-0.0	0.062	pC	i/g 1			12/13/18 10:19 AN
Radium-228	0.69+/-0.0	0.068	рС	i/g 1			12/13/18 10:19 AN

NOTES:

QL is equal to the MDA

Result includes the uncertainty which is calculated at the 95% confidence level (1.96-sigma).

The reported value for Ra-226 is the average of its daughter's Pb-214 and Bi-214 activity due to the possibility of U-235 interference.

TOTAL METALS		Analyst: N	IXS		EPA 3050	EPA 6010
Antimony	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Arsenic	13.1	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Barium	153	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Beryllium	1.18	0.10	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Cadmium	< 5.0	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Chromium	64.5	5.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Cobalt	18.2	0.5	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Lead	24.9	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Lithium	13.4	1.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Molybdenum	< 2.0	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Selenium	2.1	2.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM
Thallium	< 10.0	10.0	mg/Kg-dry	1	11/20/18 1:30 PM	11/23/18 1:42 PM

TOTAL METALS		Analyst: RL	EPA 7473		
Mercury	0.033	0.010	mg/Kg-dry	1	11/20/18 2:36 PM

Shuttle/Cooler ID#:		CH/	AIN O	FC	CHAIN OF CUSTODY	Geochemical Testing	Testing
Geochemical Testing	•	2005 North Center Avenue	Avenue •	Somerse	Somerset PA 15501 • (814) 44:	Form F-3 (814) 443-1671 • Fax (814) 445-6729	Form F-5002, 12.16
Billing Client: GEN ON	1 3		· • •	ompany	APTIN	Phone: (412) 380-427	2124-
	VO		e-mail:	I M CIULO	monito Direction of the	Fax: ()	
MON LIDI		ALAGI :diz	Sampled b	y: LATT	Sampled by: IATTI ANDRISON AND	State Sampled:	PA
WO#: C 18 18 6 1	- 11		Project:		EVAN SHLEAD	PO/Quote#:	
				water		nHZ Not Hazardous / HZ Hazardous	PCBs
Sample Type: G Grab	C Composite	D Distribution/DW	in/DW R Raw/DW		O Other		
Sample Location/ Description	Lab Number	Sample Da Matrix	Date Time (Military)	e Sample ary) Type	**Analyses Requested	ed Remarks/	S/ Number of Containers
**NOTE: IF multiple analytes from one bottle, OR if	analytes from one b	ottle, OR if multipl	e bottles for one	analyte, THE	multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG	S LISTED ON ATTACHED FIELD	2
8-1 0-4	100	50 n/i	11/13/18 1120	0 6	SEE BOTTLES	Field Filtered: Y / N	-
8-1 4-8	1	11 05	113/18 1122	5 2	_	Field Filtered: Y / N	-
8-2 0-4	(00	1/11 05	13/18 1125	-		Field Filtered: Y / N	
8-2 4-8	1	411 05	TZ11 81/21/11			Field Filtered: Y / N	
B-3 0-4	{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	50 11/12	11/13/18 11 30			Field Filtered: Y / N	-
B-3 48	l	50 11/1	11/13/18 1132			Field Filtered: Y / N	-
8-4 0-4	5 au	1 1 05	11/13/18 1135			Field Filtered: Y / N	-
8-4 4-8	l	50 11/13	11/13/18 1137		A	Field Filtered: Y / N	-
Note Deficiencies Here:						-	
Relinquished by (Company & Signature)	/ & Signature)	Date	Time (Military)	arv)	Received by (Company & Signature).	natura). Data	Time Militan
Am AmiaMmenter	hien	11/13/18	1615	8	the contract of the	1-11	Josy (
SAMPLES MUST BE PRESERVED ON ICE.	RESERVED O	N ICE.		Ice prese	Ice present on receipt: <u>X</u> Yes or No Sample Receiving (1st Review): <u>V</u>	Cooler Temp (°C) on receipt: Client Support (2nd Review):	eipt: 5 ew):
				1 C 12 12 1	1	1	

Shuttle/Cooler ID#:		ပ	HAIN	JO N	บ	HAIN OF CUSTODY	Ö	Geochemical Testing	esting
Geochemical Testing	•	2005 North Cent	nter Avenue	۰	merse	Somerset PA 15501 • (814)	(814) 443-1671 •	Fax (814) 445-	Form F-5002, 12.16 6729
Billing Client: 6ENON	2		Con	Contact (Company):	ipany):	APTIM	Phone:	1e: (413 380-427	4272
Address: CONEMPUGH	ANGH		e-mail:	ail:			Fax:	()	
LORI	PA	Zip: 15944		Sampled by:	PAT	ATT ANDRISON AND		State Sampled: 74	
WO#: 6/8/1/861			Project:	ect:	7	1		PO/Quote#:	
			PW Potable Water			SO Soil SL Sludge	nHZ Not Hazard	nHZ Not Hazardous / HZ Hazardous	PCBs
Sample Type: G Grab	C Composite	D Dis	D Distribution/DW	R Raw/DW		S Special/DW O Other			
Sample Location/ Description	Lab Number	Sample Matrix	Date	Time (Military)	Sample Type	**Analyses Requested	ested	Remarks/ Presenvatives	Number of Containers
**NOTE: IF multiple	e analytes from one l	ottle, OR if I	multiple bottle	s for one ana	lyte, THEN	**NOTE: IF multiple analytes from one bottle, OR if multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG	ESS LISTED ON	ATTACHED FIELD LOG	2
8-5 0-4	500	20	11/13/18	1140	q	SEE BOMES		Field Filtered: Y / N	-
B5 48	1	8	11 13/18	1142	9			Field Filtered: Y / N	-
86 04	9008	50	11/13/18	1145	Ø			Field Filtered: Y / N	-
86 48	1	8	11/13/18	1147	9			Field Filtered: Y / N	-
87 04	5 m 600 7	20	11/13/18	1150	G			Field Filtered: Y / N	-
8-7 4-0	l	50	11/13/18	1152	9			Field Filtered: Y / N	-
36 04	800	50	11/13/18	1155	0			Field Filtered: Y / N	-
B-8 4-8)	50	11/13/18	1121	9	>		Field Filtered: Y / N	-
Note Deficiencies Here:			•		-				•
Relinquished by (Company & Signature)	y & Signature)	Date		Time (Military)	2	Received by (Company &	& Signature).	Date	Time (Military)
APMIN Jahue MI	Indran	11/13	18	1015	C	my m		31-12-11	8054
SAMPLES MILET DE DDESEDVED ON 125									
	AEGENVED O	IN ICE.			ce preser Sample	Ice present on receipt: <u> Yes or</u> Sample Receiving (1st Review):	No Cooler Client	Cooler Temp (°C) on receipt: Client Support (2nd Review)	
					idino)	Mananing / 101 Mananing		Cilent Support (2nd Review):	

Shuttle/Cooler ID#:		C	HAIN	b	S	CHAIN OF CUSTODY	Ge	Geochemical Testing	esting
Geochemical Testing	sting • 2005 North	North Cente	nter Avenue	•	merset	Somerset PA 15501 • (814)	(814) 443-1671 • F	Fax (814) 445-6729	Form F-5002, 12.16 6729
Billing Client: 66N0N			Cont	Contact (Company):	pany):	Amin	Phone	Phone: (412) 380 -	2120-
Address: CONEMAND H	Wet		e-mail:	ait:	•		Fax: ((
City: NON PORONCE	te: PA	Zip: 1594	+	Sampled by:	Path	ath Andrison and	State :	State Sampled:	PA
WO#: 61811861			Project:	ect:	4	Evan Schlegel	PO/Quote#:	iote#:	
Sample Matrix: GW Ground Water			PW Potable Water	WW Wastewater	Π	SO Soil SL Sludge	nHZ Not Hazardo	nHZ Not Hazardous / HZ Hazardous	PCBs
campie i ype. Clab				R Raw/DW	s S	S Special/DW 0 Other			
Sample Location/ Description	Lab Number	Sample Matrix	Date	Time (Military)	Sample Type	**Analyses Requested	lested	Remarks/ Preservatives.	Number of Containers
**NOTE: IF multiple	e analytes from one	bottle, OR if I	nultiple bottle.	s for one ana	yte, THEN	**NOTE: IF multiple analytes from one bottle, OR if multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG	ESS LISTED ON A	TTACHED FIELD LOG	
89 0-4	00 9	50	11/13/18	1200	6	Sate Bomes	L.	Field Filtered: Y / N	1
69 48	[So	113/18	1202	9	_		Field Filtered: Y / N	1
8-10 0.4	010	So	113/18	1205	6		LL.	Field Filtered: Y / N	-
13-10 4-8	I	SO	11 13/18	1207	6		LL.	Field Filtered: Y / N	1
40-1 0-4	(SO	11/13/18	1330	0		LL.	Field Filtered: Y / N	m
8-4 1-0n	1	SO	11 13/18	1335	9		Ľ.	Field Filtered: Y / N	m
40-2 0-4	١	50.	113/19	1345	6		E.	Field Filtered: Y / N	m
U0-2 48)	So	113/18	1350	9	•	E.	Field Filtered: Y / N	m
Note Deficiencies Here:					-				
Relinquished by (Company & Signature)	ny & Signature)	Date		Time (Military)	Å	Received by (Company & Signature):	Signature):	Date	Time (Militarv)
APMM Jakua MD	whiten	11/13	8	1615	5	r-Mar	×	11.11.11	<i>p2054</i>
SAMPLES MUST BE PRESERVED ON ICE.	RESERVED (ON ICE.		-	ce presen Sample	Ice present on receipt: XYes or Sample Receiving (1st Review)	No Cooler	Cooler Temp (°C) on receipt:	M
					aidilipo	sample Receiving (1st Keview):		Client Support (2nd Review):	

Confirmation Soil and Leachate Samples (UD-1 through UD-8 and LD-1 through LD-8)

814/443-1671 814/445-6666 FAX: 814/445-6729

Friday, December 21, 2018

John Shimshock GENON - CONEMAUGH STATION CCR CONEMAUGH STATION PO BOX K NEW FLORENCE, PA 15944

RE: Conemaugh CCR IV SPLP

Order No.: G1811860

Dear John Shimshock:

Geochemical Testing received 6 sample(s) on 11/14/2018 for the analyses presented in the following report.

There were no problems with the analyses and all QC data met NELAC, EPA, and laboratory specifications except where noted in the Case Narrative or Laboratory Results.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Timot W Bey truse

Timothy W. Bergstresser Director of Technical Services

Leslie A. Nemeth Project Manager

Geochemical Testing

CLIENT:GENON - CONEMAUGH STATION CCRProject:Conemaugh CCR IV SPLPLab Order:G1811860

CASE NARRATIVE

No problems were encountered during analysis of this workorder, except if noted in this report.

SAMPLE RECEIPT CHECKLIST

	Response
COC is present	Yes
COC is filled out in ink and legible	Yes
COC relinquished, signature, date, and time	Yes
Samples arrived within hold time	Yes
Containers properly preserved for the requested testing	Yes
Sample containers have legible labels	Yes
Sample preservation verified	Yes
Appropriate sample containers are used	Yes
Sample container(s) received at proper temperature	Yes
Zero headspace where required	Yes
Sufficient volume for all requested analyses	Yes

Comments on the above checklist: None

The radiological analysis (Radium 226 by EPA 903.1; Radium 228 by EPA 904.0) was subcontracted to Pace Analytical (PADEP 65-00282). A copy of the subcontractor's laboratory report is enclosed with this Analytical Report.

Legend:	ND - Not Detected	S - Spike Recovery outside accepted recovery limits
	J - Indicates an estimated value.	R - RPD outside accepted recovery limits
	U - The analyte was not detected at or above the listed	E - Value above quantitation range
	concentration, which is below the laboratory quantitation limit.	** - Value exceeds Action Limit
	B - Analyte detected in the associated Method Blank	H - Method Hold Time Exceeded
	Q - Qualifier QL -Quantitation Limit DF - Dilution Fact	MCL - Contaminant Limit I.D. 56-00306 PA DEP

Geochemica	l Testing					1	Date: 21-Dec-18	
CLIENT:	GENON - CONEM	IAUGH STA	TION CCF	٤	Client	Samp	le ID: UD-1 0-4	
Lab Order: Project:	G1811860 Conemaugh CCR I	V SPLP			Sample Collect	-		8 1:30:00 PM
Lab ID: Matrix:	G1811860-001 SOLID				Receiv			8 7:39:08 PM
Analyses		Result	QL	Q	Units	DF	Date Prepared	Date Analyzed
TOTAL METALS			Analyst:	RL	L			EPA 7473
Mercury		0.20	0.010		mg/Kg-dry	1		11/20/18 2:36 PM
SPLP INORGAN	ICS		Analyst:	MB	G		EPA 300.0	EPA 300.0
Fluoride		0.47	0.05		mg/L	1	11/16/18 11:45 A	M 11/16/18 12:09 PM
TOTAL METALS			Analyst:	мх	S		EPA 3050	EPA 6010
Antimony		< 10.0	10.0	s	mg/Kg-dry	1	11/20/18 1:30 PM	11/26/18 11:24 AM
Arsenic		25.2	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Barium		113	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Beryllium		1.01	0.10		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Cadmium		< 5.0	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Chromium		24.8	5.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Cobalt		17.7	0.5		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Lead		20.4	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Lithium		11.5	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Molybdenum		< 2.0	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Selenium		2.3	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	11/21/18 5:39 PM
Thallium NOTES: S - Spike recove	ry indicates a possible m	< 10.0 natrix effect. The	10.0 e method is	in co	mg/Kg-dry ntrol as indicat	1 ted bv 1	11/20/18 1:30 PM	11/21/18 5:39 PM
SPLP METALS F			Analyst:			,	SM 3112 B	EPA 7470
Mercury		< 0.0001	0.0001	J	mg/L	1	11/19/18 9:20 AM	11/19/18 1:49 PM
SPLP METALS F	LUID #1		Analyst:		0		EPA 200.2	EPA 200.7
Antimony		0.05	0.05	U	mg/L	1		A 11/20/18 1:46 PM

SPLP METALS FLUID #1		Analyst: N	MXS		EPA 200.2	EPA 200.7
Antimony	0.05	0.05	U mg/L	1	11/19/18 11:25 AM	1 11/20/18 1:46 PM
Arsenic	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	1 11/20/18 1:46 PM
Barium	0.093	0.005	mg/L	1	11/19/18 11:25 AM	1 11/20/18 1:46 PM
Beryllium	0.0005	0.0005	U mg/L	1	11/19/18 11:25 AM	1 11/20/18 1:46 PM
Cadmium	0.0010	0.0010	U mg/L	1	11/19/18 11:25 AM	1 11/20/18 1:46 PM
Chromium	0.005	0.005	U mg/L	1	11/19/18 11:25 AM	1 11/20/18 1:46 PM
Cobalt	0.0020	0.0020	U mg/L	1	11/19/18 11:25 AM	1 11/20/18 1:46 PM
Lead	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	1 11/20/18 1:46 PM
Lithium	0.005	0.005	U mg/L	1	11/19/18 11:25 AM	1 11/20/18 1:46 PM
Molybdenum	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	1 11/20/18 1:46 PM
Selenium	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	1 11/20/18 1:46 PM
Thallium	0.010	0.010	U mg/L	1	11/19/18 11:25 AM	1 11/20/18 1:46 PM
GAMMA SPECTROSCOPY		Analyst: 🖌	AM			EPA 901.1
Radium-226	0.70+/-0.0756	0.073	pCi/g	1		11/15/18 6:45 PM
Radium-228	0.71+/-0.0647	0.097	pCi/g	1		11/15/18 6:45 PM

Geochemi	cal Testing					D	ate:	21-Dec-18	
CLIENT:	GENON - CONEN	MAUGH STA	TION CCR	ł	Clien	t Sampl	e ID:	UD-1 0-4	
Lab Order:	G1811860								
Project:	Conemaugh CCR	IV SPLP			Samp	led By:		APTIM	
Lab ID:	G1811860-001				Collec	ction Da	ate:	11/13/2018	1:30:00 PM
Matrix:	SOLID				Recei	ved Dat	e:	11/14/2018	7:39:08 PM
Analyses		Result	QL	Q U	nits	DF	Date	Prepared	Date Analyzed
GAMMA SPEC	TROSCOPY		Analyst:	AM					EPA 901.1
QL is equal to	the MDA								
Result includes	the uncertainty which is	calculated at the	e 95% confid	lence lev	el (1.96-	sigma).			
The reported v	alue for Ra-226 is the ave	erage of its daug	hter's Pb-21	4 and Bi	-214 acti	ivity due t	o the p	ossibility of U-	235 interference.
Ra-228 and Ac	-228 are assumed to be	in secular equilib	rium. The r	esults for	r Ra-228	are infer	red fror	n Ac-228.	
	OGICAL PARAMETE	रऽ	Analyst:	SUB					EPA 903.1 MOD
Radium 226		0.366+-0.382	0.5	pC	;i/L	1			12/06/18 10:42 AM
	OGICAL PARAMETE	रऽ	Analyst:	SUB					EPA 904.0 MOD
Radium 228		-0.149+-0.331	0.8	pC	i/L	1			12/05/18 12:09 PM
SPLP FLUID #	1		Analyst:	ALD					EPA 1312
Final pH Metals		6.56		S.	U.	1			11/15/18 8:00 PM
SPLP FLUID #	3		Analyst:	MAG					EPA 1312
Final pH Non Me	tals	8.01		S.	U.	1			11/15/18 9:16 AM

Geochemical	Testing				I	Date: 21-Dec-18	
CLIENT:	GENON - CONEMAUGH ST	ATION CCI	ι	Client	Samp	le ID: UD-2 0-4	
Project: Lab ID:	G1811860 Conemaugh CCR IV SPLP G1811860-002 SOLID			Sampl Collect Receiv	tion D	ate: 11/13/201	8 1:45:00 PM 8 7:39:08 PM
Analyses	Result	QL	Q	Units	DF	Date Prepareo	Date Analyzed
TOTAL METALS		Analyst:	RLI	_			EPA 7473
Mercury	0.072	0.010		mg/Kg-dry	1		11/20/18 2:36 PM
	s	Analyst:	MR	G		EPA 300.0	EPA 300.0
Fluoride	0.20			mg/L	1		M 11/16/18 1:03 PM
	0.20			U U	·		
TOTAL METALS		Analyst:	MX			EPA 3050	EPA 6010
ntimony	< 10.0			mg/Kg-dry	1	11/20/18 1:30 PM	
Arsenic Barium	14.5 123			mg/Kg-dry	1	11/20/18 1:30 PM 11/20/18 1:30 PM	
Beryllium	123			mg/Kg-dry mg/Kg-dry	1 1	11/20/18 1:30 PM	
Cadmium	< 5.0			mg/Kg-dry	1	11/20/18 1:30 PM	
hromium	33.1			mg/Kg-dry	1	11/20/18 1:30 PM	
cobalt	16.7			mg/Kg-dry	1	11/20/18 1:30 PM	
ead	22.1			mg/Kg-dry	1	11/20/18 1:30 PM	
ithium	16.6	1.0		mg/Kg-dry	1	11/20/18 1:30 PM	
lolybdenum	< 2.0	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	I 11/21/18 5:48 PM
Selenium	2.3	2.0		mg/Kg-dry	1	11/20/18 1:30 PM	1 11/21/18 5:48 PM
hallium	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30 PM	1 11/21/18 5:48 PM
PLP METALS FL	UID #1	Analyst:	GX	I		SM 3112 B	EPA 7470
lercury	< 0.0001	0.0001	J	mg/L	1	11/19/18 9:20 AM	I 11/19/18 1:51 PM
PLP METALS FL	UID #1	Analyst:	MX	s		EPA 200.2	EPA 200.7
ntimony	0.05	0.05	U	mg/L	1	11/19/18 11:25 A	M 11/20/18 1:51 PM
rsenic	0.010	0.010	U	mg/L	1	11/19/18 11:25 A	M 11/20/18 1:51 PM
arium	0.074			mg/L	1		M 11/20/18 1:51 PM
eryllium	0.0005		U	mg/L	1		M 11/20/18 1:51 PM
admium	0.0010		U	mg/L	1		M 11/20/18 1:51 PM
hromium	0.005		U	mg/L	1		M 11/20/18 1:51 PM
obalt ead	0.0020 0.010		U U	mg/L mg/L	1 1		M 11/20/18 1:51 PM M 11/20/18 1:51 PM
ithium	0.005		U	mg/L	1		M 11/20/18 1:51 PM
lolybdenum	0.010		U	mg/L	1		M 11/20/18 1:51 PM
elenium	0.010		U	mg/L	1		M 11/20/18 1:51 PM
hallium	0.010		U	mg/L	1		M 11/20/18 1:51 PM
SAMMA SPECTRO	DSCOPY	Analyst:	AM				EPA 901.1
adium-226	0.71+/-0.0788	0.074		pCi/g	1		11/16/18 6:52 AM
Radium-228	0.92+/-0.0751			pCi/g	1		11/16/18 6:52 AM

Geochemi	cal Testing				Date:	21-Dec-18	
CLIENT:	GENON - CONI	EMAUGH STA	TION CCR	Clie	nt Sample ID:	UD-2 0-4	
Lab Order:	G1811860						
Project:	Conemaugh CCR	LIV SPLP		San	pled By:	APTIM	
Lab ID:	G1811860-002			Col	lection Date:	11/13/2018	1:45:00 PM
Matrix:	SOLID			Rec	eived Date:	11/14/2018	7:39:08 PM
Analyses		Result	QL	Q Units	DF Dat	e Prepared	Date Analyzed
GAMMA SPEC	TROSCOPY		Analyst:	۹M			EPA 901.1
NOTES: QL is equal to	the MDA						
Result includes	the uncertainty which	is calculated at the	95% confide	nce level (1.9	6-sigma).		
The reported v	alue for Ra-226 is the a	verage of its daug	hter's Pb-214	and Bi-214 a	ctivity due to the	possibility of U-	235 interference.
Ra-228 and Ac	-228 are assumed to be	e in secular equilib	rium. The re	sults for Ra-2	28 are inferred fro	m Ac-228.	
SPLP RADIOL	OGICAL PARAMETI	ERS	Analyst:	SUB			EPA 903.1 MOD
Radium 226		0.503+-0.523	0.8	pCi/L	1		LFA 303.1 WOD
				poi/L	I		12/14/18 10:03 PM
SPLP RADIOL	OGICAL PARAMETI	ERS	Analyst:	·	I		
	OGICAL PARAMETI	ERS 0.244+-0.301	Analyst: 3 0.6	·	1		12/14/18 10:03 PM
Radium 228				SUB pCi/L			12/14/18 10:03 PM EPA 904.0 MOD
Radium 228			0.6	SUB pCi/L			12/14/18 10:03 PM EPA 904.0 MOD 12/14/18 2:12 PM
SPLP RADIOL Radium 228 SPLP FLUID # Final pH Metals SPLP FLUID #	1	0.244+-0.301	0.6	SUB pCi/L ALD S.U.	1		12/14/18 10:03 PM EPA 904.0 MOD 12/14/18 2:12 PM EPA 1312

Geochemical	Testing				Ι	Date: 21-Dec	c-18		
CLIENT: C	ENON - CONEMAUGH STA	ATION CCR		Client	Samp	le ID: UD-3	0-4		
Project: C	61811860 Conemaugh CCR IV SPLP 61811860-003			Sample Collect				2:05:00 I	PM
Matrix: S	OLID			Receiv	ed Da	te: 11/14/	2018	7:39:08 I	PM
Analyses	Result	QL	Q	Units	DF	Date Prepa	ared	Date A	nalyzed
TOTAL METALS		Analyst:	RLI	_				EPA 74	73
Mercury	0.037	0.010		mg/Kg-dry	1			11/20/18	2:36 PM
	3	Analyst:	мв	G		EPA 300.0		EPA 30	0.0
luoride	0.26	0.05		mg/L	1	11/16/18 11:4	45 AM		
OTAL METALS		Analyst:	MY	e -		EPA 3050		EPA 60	10
	< 10.0	Analyst. 10.0			1	11/20/18 1:30			6:24 PM
ntimony rsenic	< 10.0	2.0		mg/Kg-dry mg/Kg-dry	1 1	11/20/18 1:30			5:53 PM
arium	11.3	2.0 1.0		mg/Kg-dry	1	11/20/18 1:30			5:53 PM
eryllium	0.94	0.10		mg/Kg-dry	1	11/20/18 1:30			5:53 PM
admium	< 5.0	5.0		mg/Kg-dry	1	11/20/18 1:30			5:53 PM
hromium	24.5	5.0		mg/Kg-dry	1	11/20/18 1:30			5:53 PM
obalt	12.7	0.5		mg/Kg-dry	1	11/20/18 1:30			5:53 PM
ead	18.9	2.0		mg/Kg-dry	1	11/20/18 1:30			5:53 PM
ithium	11.8	2.0 1.0		mg/Kg-dry	1	11/20/18 1:30			5:53 PM
olybdenum	< 2.0	2.0		mg/Kg-dry	1	11/20/18 1:30			5:53 PM
elenium	< 2.0	2.0		mg/Kg-dry	1	11/20/18 1:30			5:53 PM
hallium	< 10.0	10.0		mg/Kg-dry	1	11/20/18 1:30			5:53 PM
PLP METALS FLU	JID #1	Analyst:	GX	l		SM 3112 B		EPA 74	70
lercury	< 0.0001	0.0001	J	mg/L	1	11/19/18 11:3	32 AM	11/20/18	9:55 AM
PLP METALS FLU	JID #1	Analyst:	MX	S		EPA 200.2		EPA 20	0.7
ntimony	0.05	0.05	U	mg/L	1	11/19/18 11:2	25 AM	11/20/18	1:55 PM
rsenic	0.010	0.010	U	mg/L	1	11/19/18 11:2	25 AM	11/20/18	1:55 PM
arium	0.059	0.005		mg/L	1	11/19/18 11:2	25 AM	11/20/18	1:55 PM
eryllium	0.0005	0.0005	U	mg/L	1	11/19/18 11:2	25 AM	11/20/18	1:55 PM
admium	0.0010	0.0010	U	mg/L	1	11/19/18 11:2	25 AM	11/20/18	1:55 PM
hromium	0.005	0.005	U	mg/L	1	11/19/18 11:2	25 AM	11/20/18	1:55 PM
obalt	0.0020	0.0020	U	mg/L	1	11/19/18 11:2			
ead	0.010	0.010	U	mg/L	1	11/19/18 11:2			
thium	0.005	0.005	U	mg/L	1	11/19/18 11:2			
lolybdenum	0.010	0.010	U	mg/L	1	11/19/18 11:2			
elenium	0.010	0.010	U	mg/L	1	11/19/18 11:2			
hallium	0.010	0.010	U	mg/L	1	11/19/18 11:2	25 AM	11/20/18	1:55 PM
AMMA SPECTRO	SCOPY	Analyst:	AM					EPA 90	1.1
adium-226	0.99+/-0.0504	0.054		pCi/g	1			11/16/18	7:57 PM
Radium-228	1.34+/-0.0862	0.045		pCi/g	1			11/16/18	7:57 PM

Geochemi	cal Testing				Date	21-Dec-18	
CLIENT:	GENON - CONE	MAUGH STA	FION CCR	Clie	ent Sample ID	: UD-3 0-4	
Lab Order:	G1811860						
Project:	Conemaugh CCR	IV SPLP		San	pled By:	APTIM	
Lab ID:	G1811860-003			Col	lection Date:	11/13/2018	2:05:00 PM
Matrix:	SOLID			Rec	eived Date:	11/14/2018	7:39:08 PM
Analyses		Result	QL	Q Units	DF Da	te Prepared	Date Analyzed
GAMMA SPEC	TROSCOPY		Analyst:	AM			EPA 901.1
QL is equal to	the MDA						
Result includes	the uncertainty which is	calculated at the	95% confide	ence level (1.9	6-sigma).		
The reported v	alue for Ra-226 is the av	verage of its daug	hter's Pb-214	and Bi-214 a	ctivity due to the	possibility of U	-235 interference.
Ra-228 and Ac	-228 are assumed to be	in secular equilib	rium. The re	sults for Ra-2	28 are inferred fi	om Ac-228.	
	OGICAL PARAMETE	RS	Analyst:	SUB			EPA 903.1 MOD
Radium 226		0.394+-0.410	0.6	pCi/L	1		12/06/18 10:42 AM
SPLP RADIOL	OGICAL PARAMETE	RS	Analyst:	SUB			EPA 904.0 MOD
Radium 228		0.280+-0.460	1.0	pCi/L	1		12/05/18 12:09 PM
SPLP FLUID #	1		Analyst:	ALD			EPA 1312
Final pH Metals		7.66		S.U.	1		11/15/18 8:00 PM
SPLP FLUID #	3		Analyst:	MAG			EPA 1312
Final pH Non Me	tals	8.42		S.U.	1		11/15/18 9:16 AM

Geochemical	Geochemical Testing					Date: 21-Dec-18					
		EMAUGH STA	FION CCR	ł	Client Sample ID: UD-4 0-4						
	G1811860 Conemaugh CC	R IV SPLP			Sampl	ed Bv:		APTIM			
Ū	G1811860-004				Collect			11/13/2018	2.20.00	PM	
						11/14/2018					
Matrix:	SOLID				Receiv	ed Da	te:	11/14/2018	/:39:08	PM	
Analyses		Result	QL	Q	Units	DF	Date	Prepared	Date A	nalyzed	
TOTAL METALS			Analyst:	RLI	-				EPA 74	73	
Mercury		0.099	0.010		mg/Kg-dry	1			11/20/18	2:36 PM	
SPLP INORGANIC	s		Analyst: MBG EPA 300.0		EPA 30	0.0					
Fluoride		0.16	0.05		mg/L	1	11/16/1	8 11:45 AM	11/16/18	1:39 PM	
TOTAL METALS			Analyst:	lyst: MXS EPA 3050		3050	EPA 60	10			
Antimony		< 10.0	10.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	6:28 PM	
Arsenic		16.5	2.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/21/18	6:16 PM	
Barium		136	1.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/21/18	6:16 PM	
Beryllium		1.02	0.10		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/21/18	6:16 PM	
Cadmium		< 5.0	5.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/21/18	6:16 PM	
Chromium		30.5	5.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/21/18	6:16 PM	
Cobalt		15.4	0.5		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/21/18	6:16 PM	
_ead		19.5	2.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/21/18	6:16 PM	
_ithium		19.3	1.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/21/18	6:16 PM	
Nolybdenum		2.1	2.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/21/18	6:16 PM	
Selenium		2.2	2.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/21/18	6:16 PM	
Fhallium		< 10.0	10.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/21/18	6:16 PM	
SPLP METALS FL	.UID #1		Analyst:	GX			SM 31	112 B	EPA 74	70	
Mercury		< 0.0001	0.0001	J	mg/L	1	11/19/1	8 11:32 AM	11/20/18	10:01 AM	
SPLP METALS FL	.UID #1		Analyst:	MX	S		EPA 2	200.2	EPA 20	0.7	
Antimony		0.05	0.05	U	mg/L	1	11/19/1	8 11:25 AM	11/20/18	2:18 PM	
Arsenic		0.010	0.010	U	mg/L	1	11/19/1	8 11:25 AM	11/20/18	2:18 PM	
Barium		0.060	0.005		mg/L	1	11/19/1	8 11:25 AM	11/20/18	2:18 PM	
Beryllium		0.0005	0.0005	U	mg/L	1		8 11:25 AM			
Cadmium		0.0010	0.0010	U	mg/L	1		8 11:25 AM			
Chromium		0.005	0.005	U	mg/L	1		8 11:25 AM			
Cobalt		0.0020	0.0020	U	mg/L	1		8 11:25 AM			
_ead		0.010	0.010	U	mg/L	1		8 11:25 AM			
_ithium		0.005	0.005	U	mg/L	1		8 11:25 AM			
Molybdenum		0.010	0.010	U	mg/L	1		8 11:25 AM			
Selenium		0.010	0.010	U	mg/L	1		8 11:25 AM			
Thallium		0.010	0.010	U	mg/L	1	11/19/1	8 11:25 AM			
GAMMA SPECTR	OSCOPY		Analyst: AM						EPA 90		
Radium-226		0.82+/-0.0442	0.074		pCi/g	1				7:59 PM	
Radium-228		0.83+/-0.0696	0.089		pCi/g	1			11/16/18	7:59 PM	

Geochemi	cal Testing		Date: 21-Dec-18						
CLIENT:	GENON - CONEM	IAUGH STAT	TION CCR	Clie	nt Sample ID	: UD-4 0-4			
Lab Order:	G1811860				_				
Project:	Conemaugh CCR I	V SPLP		Sam	pled By:	APTIM			
Lab ID:	G1811860-004			Coll	ection Date:	11/13/2018	2:20:00 PM		
Matrix:	SOLID Received Date: 11/14/		11/14/2018	7:39:08 PM					
Analyses		Result	QL	Q Units	DF Dat	te Prepared	Date Analyzed		
GAMMA SPEC	TROSCOPY		Analyst: /	AM			EPA 901.1		
QL is equal to	the MDA								
Result includes	the uncertainty which is	calculated at the	95% confide	nce level (1.9	δ-sigma).				
The reported v	alue for Ra-226 is the ave	erage of its daug	hter's Pb-214	and Bi-214 a	ctivity due to the	possibility of U	-235 interference.		
Ra-228 and Ac	-228 are assumed to be i	n secular equilibi	ium. The rea	sults for Ra-22	8 are inferred fr	om Ac-228.			
	OGICAL PARAMETER	RS	Analyst: \$	SUB			EPA 903.1 MOD		
Radium 226		0.148+-0.409	0.8	pCi/L	1		12/14/18 10:03 PM		
	OGICAL PARAMETER	RS	Analyst:	SUB			EPA 904.0 MOD		
Radium 228	-0	.0576+-0.299	0.7	pCi/L	1		12/14/18 2:12 PM		
SPLP FLUID #	1		Analyst: /	ALD			EPA 1312		
Final pH Metals		3.97		S.U.	1		11/15/18 8:00 PM		
SPLP FLUID #	3		Analyst: I	MAG			EPA 1312		
Final pH Non Me	tals	6.64		S.U.	1		11/15/18 9:16 AM		

Geochemical	eochemical Testing					Date: 21-Dec-18						
CLIENT:	GENON - CONEM	AUGH STA	TION CCF	ł	Client	Samp	le ID: U	JD-5 0-4				
Lab Order: Project: Lab ID: Matrix:	G1811860 Conemaugh CCR IV G1811860-005 SOLID	/ SPLP			Sampl Collect Receiv	tion D	ate: 11/13/2018 3:00:00 PM					
Analyses		Result	QL	Q	Units	DF	Date	Prepared	Date A	nalyzed		
TOTAL METALS			Analyst:	RLI	_				EPA 74	73		
Mercury		0.045	0.010		mg/Kg-dry	1			11/20/18	2:36 PM		
SPLP INORGANI	19		Analyst:	MR	G		EPA 3	00.0	EPA 30	0 0		
Fluoride		0.44	0.05		mg/L	1		3 11:45 AM				
		0.77			U U	•						
TOTAL METALS	AL METALS Analyst: MXS			EPA 3	050	EPA 60	10					
Antimony		< 10.0	10.0		mg/Kg-dry	1		3 1:30 PM	11/23/18	6:33 PM		
Arsenic		5.8	2.0		mg/Kg-dry	1		3 1:30 PM		6:20 PM		
Barium		50.7	1.0		mg/Kg-dry	1		3 1:30 PM		6:20 PM		
Beryllium		0.31	0.10		mg/Kg-dry	1		3 1:30 PM		6:20 PM		
Cadmium		< 5.0	5.0		mg/Kg-dry	1		3 1:30 PM		6:20 PM		
Chromium		9.2	5.0		mg/Kg-dry	1		3 1:30 PM		6:20 PM		
Cobalt		6.4	0.5		mg/Kg-dry	1		3 1:30 PM		6:20 PM		
ead		9.7	2.0		mg/Kg-dry	1		3 1:30 PM		6:20 PM		
.ithium		3.5	1.0		mg/Kg-dry	1		3 1:30 PM		6:20 PM		
Nolybdenum		< 2.0	2.0		mg/Kg-dry	1		3 1:30 PM		6:20 PM		
Selenium		< 2.0	2.0		mg/Kg-dry	1		3 1:30 PM		6:20 PM		
「hallium		< 10.0	10.0		mg/Kg-dry	1	11/20/18	3 1:30 PM	11/21/18	6:20 PM		
SPLP METALS FL	_UID #1		Analyst:	GX			SM 31	12 B	EPA 74	70		
Mercury		< 0.0001	0.0001	J	mg/L	1	11/19/18	3 11:32 AM	11/20/18	10:02 AM		
SPLP METALS FI	_UID #1		Analyst:	MX	S		EPA 2	00.2	EPA 20	0.7		
Antimony		0.05	0.05	U	mg/L	1	11/19/18	3 11:25 AM	11/20/18	2:23 PM		
Arsenic		0.010	0.010	U	mg/L	1	11/19/18	3 11:25 AM	11/20/18	2:23 PM		
Barium		0.080	0.005		mg/L	1	11/19/18	3 11:25 AM	11/20/18	2:23 PM		
Beryllium		0.0005	0.0005	U	mg/L	1	11/19/18	3 11:25 AM	11/20/18	2:23 PM		
Cadmium		0.0010	0.0010	U	mg/L	1		3 11:25 AM				
Chromium		0.005	0.005	U	mg/L	1		3 11:25 AM				
Cobalt		0.0020	0.0020	U	mg/L	1		3 11:25 AM				
ead		0.010	0.010	U	mg/L	1		3 11:25 AM				
_ithium		0.005	0.005	U	mg/L	1		3 11:25 AM				
Molybdenum		0.010	0.010	U	mg/L	1		3 11:25 AM				
Selenium		0.010	0.010	U	mg/L	1		3 11:25 AM				
Thallium		0.010	0.010	U	mg/L	1	11/19/18	3 11:25 AM	11/20/18	2:23 PM		
GAMMA SPECTR	OSCOPY		Analyst:	AM					EPA 90	1.1		
Radium-226	0.	35+/-0.0283	0.065		pCi/g	1			11/19/18	6:56 PM		
Radium-228	0.1	25+/-0.0473	0.078		pCi/g	1			11/19/18	6:56 PM		

Geochemi	eochemical Testing					Date: 21-Dec-18						
CLIENT:	GENON - CONE	MAUGH STAT	ION CCR	Client Sample ID: UD-5 0-4								
Lab Order:	G1811860											
Project:	Conemaugh CCR	IV SPLP	V SPLP Sampled By: A				APTIM					
Lab ID:	G1811860-005				Collect	ion Da	ate:	11/13/2018	3:00:00 PM			
Matrix:	fatrix: SOLID				Receiv	ed Dat	e:	11/14/2018	7:39:08 PM			
Analyses		Result	QL	Q U	nits	DF	Date	Prepared	Date Analyzed			
GAMMA SPECTROSCOPY			Analyst:	АМ					EPA 901.1			
NOTES: QL is equal to	the MDA											
Result includes	s the uncertainty which i	s calculated at the	95% confid	ence lev	el (1.96-si	gma).						
The reported v	value for Ra-226 is the a	verage of its daugh	iter's Pb-21	4 and Bi	214 activi	ty due t	o the p	ossibility of U-	235 interference.			
Ra-228 and Ad	c-228 are assumed to be	in secular equilibri	um. The re	esults for	Ra-228 a	re infer	red fror	n Ac-228.				
SPLP RADIOL	OGICAL PARAMETE	RS	Analyst:	SUB					EPA 903.1 MOD			
Radium 226		0.564+-0.527	0.7	pC	i/L	1			12/06/18 10:42 AM			
SPLP RADIOL	OGICAL PARAMETE	RS	Analyst:	SUB					EPA 904.0 MOD			
Radium 228		0.502+-0.418	0.8	pC	i/L	1			12/05/18 12:09 PM			
SPLP FLUID #	1		Analyst:									
Final pH Metals	inal pH Metals 6.13		,	ALD					EPA 1312			
		6.13	,	ALD S.I	J.	1			EPA 1312 11/15/18 8:00 PM			
SPLP FLUID #	3	6.13	Analyst:	S.I	J.	1						

1.D. 56-00306 PA DEP

Geochemical	Geochemical Testing					Date: 21-Dec-18					
CLIENT:	GENON - CONI	EMAUGH STA	FION CCR	ł	Client Sample ID: UD-6 0-4						
Lab Order: Project:	G1811860 Conemaugh CCF	R IV SPLP			Sampled By: APTIM Collection Date: 11/13/2018 3:10:00 P						
Lab ID:	G1811860-006							1/13/2018			
Matrix:	SOLID				Receiv	ed Da	te:	11/14/2018	/:59:08	P IVI	
Analyses		Result	QL	Q	Units	DF	Date	Prepared	Date A	nalyzed	
TOTAL METALS			Analyst:	RLI	_				EPA 74	73	
Mercury		0.054	0.010		mg/Kg-dry	1			11/20/18	2:36 PM	
	cs		Analyst:	МΒ	G		EPA 3	00.0	EPA 30	0.0	
luoride		0.18	0.05		mg/L	1	11/16/18	8 11:45 AM	11/16/18	2:15 PM	
TOTAL METALS			Analyst:	мх	S		EPA 3	050	EPA 60	10	
Antimony		< 10.0	10.0		mg/Kg-dry	1	11/20/18	8 1:30 PM	11/23/18	6:37 PM	
Arsenic		15.9	2.0		mg/Kg-dry	1	11/20/18	8 1:30 PM	11/21/18	6:25 PM	
Barium		118	1.0		mg/Kg-dry	1	11/20/18	8 1:30 PM	11/21/18	6:25 PM	
Beryllium		1.10	0.10		mg/Kg-dry	1		8 1:30 PM	11/21/18	6:25 PM	
Cadmium		< 5.0	5.0		mg/Kg-dry	1	11/20/18	8 1:30 PM	11/21/18	6:25 PM	
Chromium		27.0	5.0		mg/Kg-dry	1	11/20/18	8 1:30 PM	11/21/18	6:25 PM	
Cobalt		22.0	0.5		mg/Kg-dry	1	11/20/18	8 1:30 PM	11/21/18	6:25 PM	
.ead		20.8	2.0		mg/Kg-dry	1	11/20/18	8 1:30 PM	11/21/18	6:25 PM	
ithium		13.2	1.0		mg/Kg-dry	1	11/20/18	8 1:30 PM	11/21/18	6:25 PM	
lolybdenum		< 2.0	2.0		mg/Kg-dry	1	11/20/18	8 1:30 PM	11/21/18	6:25 PM	
Selenium		< 2.0	2.0		mg/Kg-dry	1	11/20/18	8 1:30 PM	11/21/18	6:25 PM	
hallium		< 10.0	10.0		mg/Kg-dry	1	11/20/18	8 1:30 PM	11/21/18	6:25 PM	
SPLP METALS FI	UID #1		Analyst:	GX	I		SM 31	12 B	EPA 74	70	
lercury		< 0.0001	0.0001	J	mg/L	1	11/19/18	8 11:32 AM	11/20/18	10:04 AM	
PLP METALS FL	UID #1		Analyst:	MX	s		EPA 2	00.2	EPA 20	0.7	
Antimony		0.05	0.05	U	mg/L	1	11/19/18	8 11:25 AM	11/20/18	2:28 PM	
rsenic		0.010	0.010	U	mg/L	1	11/19/18	8 11:25 AM	11/20/18	2:28 PM	
Barium		0.073	0.005		mg/L	1	11/19/18	8 11:25 AM	11/20/18	2:28 PM	
Beryllium		0.0005	0.0005	U	mg/L	1	11/19/18	8 11:25 AM	11/20/18	2:28 PM	
Cadmium		0.0010	0.0010	U	mg/L	1	11/19/18	8 11:25 AM	11/20/18	2:28 PM	
Chromium		0.005	0.005	U	mg/L	1		8 11:25 AM			
Cobalt		0.0020	0.0020	U	mg/L	1		8 11:25 AM			
ead		0.010	0.010	U	mg/L	1		8 11:25 AM			
ithium		0.005	0.005	U	mg/L	1		8 11:25 AM			
lolybdenum		0.010	0.010	U	mg/L	1		8 11:25 AM			
Selenium		0.010	0.010	U	mg/L	1		8 11:25 AM			
Fhallium		0.010	0.010	U	mg/L	1	11/19/18	8 11:25 AM	11/20/18	2:28 PM	
GAMMA SPECTR	OSCOPY		Analyst: AM						EPA 90	1.1	
Radium-226		0.58+/-0.0361	0.079		pCi/g	1			11/20/18	7:31 PM	
Radium-228		0.59+/-0.0562	0.077		pCi/g	1			11/20/18	7:31 PM	

Geochemi	eochemical Testing					Date: 21-Dec-18						
CLIENT:	GENON - CONEM	MAUGH STAT	TION CO	CR	Client Sample ID: UD-6 0-4							
Lab Order:	G1811860											
Project:	Conemaugh CCR	IV SPLP			Sam	pled By:		APTIM				
Lab ID:	G1811860-006				Colle	ection Da	ate:	11/13/2018	3:10:00 PM			
Matrix:	rix: SOLID Received Date: 11/1		11/14/2018	7:39:08 PM								
Analyses		Result	QI	Q	Units	DF	Date	Prepared	Date Analyzed			
AMMA SPECTROSCOPY			Analys	t: A	И				EPA 901.1			
NOTES: QL is equal to	the MDA											
Result includes	the uncertainty which is	calculated at the	0.5%	fidon		-:						
		calculated at the	95% 001	nuena	ce level (1.96	-sigma).						
The reported v	alue for Ra-226 is the ave					,	o the p	ossibility of U-	235 interference.			
·	-	erage of its daugl	nter's Pb-	214 a	nd Bi-214 ac	tivity due t		2	235 interference.			
Ra-228 and Ac	alue for Ra-226 is the ave	erage of its daugl in secular equilibr	nter's Pb-	214 a e resu	nd Bi-214 ac	tivity due t		2	235 interference. EPA 903.1 MOD			
Ra-228 and Ac	alue for Ra-226 is the ave -228 are assumed to be i OGICAL PARAMETER	erage of its daugl in secular equilibr	nter's Pb- ium. The	214 a resu t: Sl	nd Bi-214 ac	tivity due t		2				
Ra-228 and Ac SPLP RADIOL Radium 226	alue for Ra-226 is the ave -228 are assumed to be i OGICAL PARAMETER	erage of its daugt in secular equilibr RS 0.737+-0.668	nter's Pb- ium. The Analys	214 a • resu t: Sl	nd Bi-214 ac Its for Ra-228 J B pCi/L	tivity due t 8 are infer		2	EPA 903.1 MOD			
Ra-228 and Ac SPLP RADIOL Radium 226 SPLP RADIOL	alue for Ra-226 is the ave -228 are assumed to be i OGICAL PARAMETER	erage of its daugt in secular equilibr RS 0.737+-0.668	nter's Pb- ium. The Analys 1.(214 a resu t: SI t: SI	nd Bi-214 ac Its for Ra-228 J B pCi/L	tivity due t 8 are infer		2	EPA 903.1 MOD 12/10/18 1:33 PM			
Ra-228 and Ac SPLP RADIOL Radium 226 SPLP RADIOL Radium 228	alue for Ra-226 is the ave -228 are assumed to be i OGICAL PARAMETER	erage of its daugt in secular equilibr RS 0.737+-0.668 RS	nter's Pb- ium. The Analys 1.(Analys	214 a resu t: SI t: SI	nd Bi-214 ac Its for Ra-228 JB pCi/L JB pCi/L	tivity due t 8 are infer 1		2	EPA 903.1 MOD 12/10/18 1:33 PM EPA 904.0 MOD			
Ra-228 and Ac SPLP RADIOL Radium 226 SPLP RADIOL Radium 228 SPLP FLUID #	alue for Ra-226 is the ave -228 are assumed to be i OGICAL PARAMETER	erage of its daugt in secular equilibr RS 0.737+-0.668 RS	nter's Pb- ium. The Analys 1.(Analys 0.6	214 a resu t: SI t: SI	nd Bi-214 ac Its for Ra-228 JB pCi/L JB pCi/L	tivity due t 8 are infer 1		2	EPA 903.1 MOD 12/10/18 1:33 PM EPA 904.0 MOD 12/10/18 1:12 PM			
Ra-228 and Ac SPLP RADIOL Radium 226	alue for Ra-226 is the ave 228 are assumed to be i OGICAL PARAMETER OGICAL PARAMETER	erage of its daugh in secular equilibr RS 0.737+-0.668 RS 0.320+-0.300	nter's Pb- ium. The Analys 1.(Analys 0.6	214 a resu t: SU t: SU t: SU	nd Bi-214 ac Its for Ra-228 pCi/L JB pCi/L D S.U.	tivity due t 8 are infer 1 1		2	EPA 903.1 MOD 12/10/18 1:33 PM EPA 904.0 MOD 12/10/18 1:12 PM EPA 1312			

814/443-1671 814/445-6666 FAX: 814/445-6729

Wednesday, December 12, 2018

John Shimshock GENON - CONEMAUGH STATION CCR CONEMAUGH STATION PO BOX K NEW FLORENCE, PA 15944

RE: Conemaugh CCR IV SPLP

Order No.: G1811867

Dear John Shimshock:

Geochemical Testing received 4 sample(s) on 11/15/2018 for the analyses presented in the following report.

There were no problems with the analyses and all QC data met NELAC, EPA, and laboratory specifications except where noted in the Case Narrative or Laboratory Results.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Timot W Bey truse

Timothy W. Bergstresser Director of Technical Services

Leslie A. Nemeth Project Manager

Geochemical Testing

CLIENT:GENON - CONEMAUGH STATION CCRProject:Conemaugh CCR IV SPLPLab Order:G1811867

CASE NARRATIVE

No problems were encountered during analysis of this workorder, except if noted in this report.

SAMPLE RECEIPT CHECKLIST

	Response
COC is present	Yes
COC is filled out in ink and legible	Yes
COC relinquished, signature, date, and time	Yes
Samples arrived within hold time	Yes
Containers properly preserved for the requested testing	Yes
Sample containers have legible labels	Yes
Sample preservation verified	Yes
Appropriate sample containers are used	Yes
Sample container(s) received at proper temperature	Yes
Zero headspace where required	Yes
Sufficient volume for all requested analyses	Yes

Comments on the above checklist: None

The radiological analysis (Radium 226 by EPA 903.1; Radium 228 by EPA 904.0) was subcontracted to Pace Analytical (PADEP 65-00282). A copy of the subcontractor's laboratory report is enclosed with this Analytical Report.

Legend:	ND - Not Detected	S - Spike Recovery outside accepted recovery limits
	J - Indicates an estimated value.	R - RPD outside accepted recovery limits
	U - The analyte was not detected at or above the listed	E - Value above quantitation range
	concentration, which is below the laboratory quantitation limit.	** - Value exceeds Action Limit
	B - Analyte detected in the associated Method Blank	H - Method Hold Time Exceeded
	Q - Qualifier QL -Quantitation Limit DF - Dilution Factor	MCL - Contaminant Limit I.D. 56-00306 PA DEP

Geochemic	Geochemical Testing					Date: 12-Dec-18						
CLIENT:	GENON - COI	NEMAUGH STAT	TION CCF	ł	Client Sample ID: UD-7 0-4							
Lab Order: Project: Lab ID: Matrix:	G1811867 Conemaugh CC G1811867-001 SOLID				Sampled By: APTIM Collection Date: 11/14/2018 9 Received Date: 11/15/2018 6							
Analyses	SOLID	Result	QL	Q	Units	DF		Prepared		Date Analyzed		
TOTAL METALS	6		Analyst:	RLI	L				EPA 74	73		
Mercury		0.26	0.010		mg/Kg-dry	1			11/20/18	2:36 PM		
-			Analyst	мр	^			200.0				
SPLP INORGAN	105	0.54	Analyst:				EPA		EPA 30			
Fluoride		0.51	0.05		mg/L	1	11/16/	18 11:45 AM	11/16/18	2:33 PM		
TOTAL METALS	6		Analyst:	MX	S		EPA	3050	EPA 60	10		
Antimony		< 10.0	10.0		mg/Kg-dry	1	11/20/	18 1:30 PM	11/23/18	1:46 PM		
Arsenic		27.2	2.0		mg/Kg-dry	1	11/20/	18 1:30 PM	11/23/18	1:46 PM		
Barium		149	1.0		mg/Kg-dry	1	11/20/	18 1:30 PM	11/23/18	1:46 PM		
Beryllium		1.24	0.10		mg/Kg-dry	1	11/20/	18 1:30 PM	11/23/18	1:46 PM		
Cadmium		< 5.0	5.0		mg/Kg-dry	1		18 1:30 PM		1:46 PM		
Chromium		31.5	5.0		mg/Kg-dry	1		18 1:30 PM		1:46 PM		
Cobalt		14.8	0.5		mg/Kg-dry	1		18 1:30 PM		1:46 PM		
Lead		22.1	2.0		mg/Kg-dry	1		18 1:30 PM		1:46 PM		
Lithium		17.2	1.0		mg/Kg-dry	1		18 1:30 PM		1:46 PM		
Molybdenum		1.2	2.0	J	mg/Kg-dry	1		18 1:30 PM		1:46 PM		
Selenium		2.2	2.0		mg/Kg-dry	1		18 1:30 PM		1:46 PM		
Thallium		< 10.0	10.0		mg/Kg-dry	1	11/20/	18 1:30 PM	11/23/18	1:46 PM		
SPLP METALS	FLUID #1		Analyst:	GX	I		SM 3	112 B	EPA 74	70		
Mercury		< 0.0001	0.0001	J	mg/L	1	11/19/	18 11:32 AM	11/20/18	10:06 AM		
SPLP METALS	FLUID #1		Analyst:	MX	S		EPA	200.2	EPA 20	0.7		
Antimony		0.05	0.05	U	mg/L	1	11/19/	18 11:25 AM	11/20/18	2:32 PM		
Arsenic		0.010	0.010	U	mg/L	1	11/19/	18 11:25 AM				
Barium		0.070	0.005		mg/L	1	11/19/	18 11:25 AM	11/20/18	2:32 PM		
Beryllium		0.0005	0.0005	U	mg/L	1	11/19/	18 11:25 AM	11/20/18	2:32 PM		
Cadmium		0.0010	0.0010	U	mg/L	1		18 11:25 AM				
Chromium		0.0050	0.0050	U	mg/L	1		18 11:25 AM				
Cobalt		0.0020	0.0020	U	mg/L	1		18 11:25 AM				
Lead		0.010	0.010	U	mg/L	1		18 11:25 AM				
Lithium		0.005	0.005	U	mg/L	1		18 11:25 AM				
Molybdenum		0.010	0.010	U	mg/L	1		18 11:25 AM				
Selenium		0.010	0.010	U	mg/L	1		18 11:25 AM 18 11:25 AM				
Thallium		0.010	0.010	U	mg/L	1	11/19/	10 11.23 AM				
GAMMA SPECT	ROSCOPY		Analyst:	AM					EPA 90			
Radium-226		0.71+/-0.0380	0.073		pCi/g	1				7:47 AM		
Radium-228		0.90+/-0.0735	0.086		pCi/g	1			11/21/18	7:47 AM		

Geochemi	eochemical Testing					Date: 12-Dec-18						
CLIENT:	GENON - CONE	MAUGH STA	TION CCR	Cl	ient Sample	ID: UD-7 0-4						
Lab Order:	G1811867											
Project:	Conemaugh CCR	IV SPLP	SPLP Sampled By: APTI									
Lab ID:	G1811867-001			С	ollection Dat	te: 11/14/2018	8 9:30:00 AM					
Matrix:	ix: SOLID Received Date: 11/1		: 11/15/2018	8 6:32:36 AM								
Analyses		Result	QL	Q Units	DF	Date Prepared	Date Analyzed					
GAMMA SPEC	TROSCOPY		Analyst:	AM			EPA 901.1					
QL is equal to	the MDA											
Result includes	the uncertainty which is	s calculated at the	e 95% confid	ence level (1	.96-sigma).							
The reported v	alue for Ra-226 is the a	verage of its daug	hter's Pb-21	4 and Bi-214	activity due to	the possibility of L	J-235 interference.					
Ra-228 and Ac	-228 are assumed to be	in secular equilib	orium. The re	esults for Ra-	228 are inferre	d from Ac-228.						
SPLP RADIOL	OGICAL PARAMETE	RS	Analyst:	SUB			EPA 903.1 MOD					
Radium 226		0.132+-0.301	0.2	pCi/L	1		12/06/18 9:43 PM					
SPLP RADIOL	OGICAL PARAMETE	RS	Analyst:	SUB			EPA 904.0 MOD					
Radium 228		0.844+-0.439	0.8	pCi/L	1		12/05/18 12:09 PM					
SPLP FLUID #	1		Analyst:	ALD			EPA 1312					
Final pH Metals		4.68		S.U.	1		11/15/18 8:00 PM					
SPLP FLUID #	3		Analyst:	MAG			EPA 1312					
Final pH Non Me	tals	8.29		S.U.	1		11/15/18 9:16 AM					

Geochemica	Geochemical Testing					Date: 12-Dec-18					
CLIENT:		IEMAUGH STA	FION CCR	Ł	Client Sample ID: UD-8 0-4						
Lab Order: Project: Lab ID:	G1811867 Conemaugh CC G1811867-003	R IV SPLP			Sampled By: APTIM Collection Date: 11/14/2018 9:					AM	
Matrix:	SOLID				Receiv	ed Da	te:	11/15/2018	6:32:36	AM	
Analyses		Result	QL	Q	Units	DF	Date	Prepared	Date A	nalyzed	
TOTAL METALS			Analyst:	RLI	_				EPA 74	73	
Mercury		0.040	0.010		mg/Kg-dry	1			11/20/18	2:36 PM	
	IICS Analyst: MBG EPA 300.0		300.0	EPA 30	0.0						
Fluoride		0.18	0.05		mg/L 1 11/16/18 11:45 AM		8 11:45 AM	11/16/18	2:51 PM		
TOTAL METALS			Analyst:	0		3050	EPA 60	10			
Antimony		< 10.0	10.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:51 PM	
Arsenic		14.6	2.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:51 PM	
Barium		135	1.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:51 PM	
Beryllium		1.12	0.10		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:51 PM	
Cadmium		< 5.0	5.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:51 PM	
Chromium		31.8	5.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:51 PM	
Cobalt		17.5	0.5		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:51 PM	
_ead		23.0	2.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:51 PM	
_ithium		17.7	1.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:51 PM	
Molybdenum		< 2.0	2.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:51 PM	
Selenium		2.4	2.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:51 PM	
Thallium		< 10.0	10.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:51 PM	
SPLP METALS F	LUID #1		Analyst:	GX	I		SM 31	112 B	EPA 74	70	
Mercury		< 0.0001	0.0001	J	mg/L	1	11/19/1	8 11:32 AM	11/20/18	10:26 AM	
SPLP METALS F	LUID #1		Analyst:	MX	S		EPA 2	200.2	EPA 20	0.7	
Antimony		0.05	0.05	U	mg/L	1	11/19/1	8 11:25 AM	11/20/18	2:46 PM	
Arsenic		0.010	0.010	U	mg/L	1	11/19/1	8 11:25 AM	11/20/18	2:46 PM	
Barium		0.080	0.005		mg/L	1	11/19/1	8 11:25 AM	11/20/18	2:46 PM	
Beryllium		0.0005	0.0005	U	mg/L	1	11/19/1	8 11:25 AM	11/20/18	2:46 PM	
Cadmium		0.0010	0.0010	U	mg/L	1	11/19/1	8 11:25 AM	11/20/18	2:46 PM	
Chromium		0.0050	0.0050	U	mg/L	1	11/19/1	8 11:25 AM	11/20/18	2:46 PM	
Cobalt		0.0020	0.0020	U	mg/L	1		8 11:25 AM			
_ead		0.010	0.010	U	mg/L	1		8 11:25 AM			
₋ithium		0.005	0.005	U	mg/L	1		8 11:25 AM			
Molybdenum		0.010	0.010	U	mg/L	1		8 11:25 AM			
Selenium		0.010	0.010	U	mg/L	1		8 11:25 AM			
Thallium		0.010	0.010	U	mg/L	1	11/19/1	8 11:25 AM	11/20/18	2:46 PM	
GAMMA SPECTR	OSCOPY		Analyst: AM						EPA 90	1.1	
Radium-226		0.71+/-0.0385	0.074		pCi/g	1			11/21/18	8:20 PM	
Radium-228		0.89+/-0.0732	0.083		pCi/g	1			11/21/18	8:20 PM	

Geochemi	eochemical Testing					Date: 12-Dec-18						
CLIENT:	GENON - CONH	EMAUGH STA	TION CC	R	Client Sample ID: UD-8 0-4							
Lab Order:	G1811867					_						
Project:	Conemaugh CCR	IV SPLP Sampled By:				APTIM						
Lab ID:	G1811867-003				Colle	ection Da	ate:	11/14/2018	9:50:00 AM			
Matrix:	rix: SOLID Received Date:		11/15/2018	6:32:36 AM								
Analyses		Result	QL	Q	Units	DF	Date	Prepared	Date Analyzed			
GAMMA SPEC NOTES:	TROSCOPY		Analyst	: AI	И				EPA 901.1			
QL is equal to	the MDA											
Result includes	the uncertainty which i	s calculated at the	e 95% conf	ideno	ce level (1.96	-sigma).						
The reported v	alue for Ra-226 is the a	verage of its daug	ghter's Pb-2	14 a	ind Bi-214 ac	tivity due t	o the p	ossibility of U	-235 interference.			
Ra-228 and Ac	-228 are assumed to be	e in secular equilib	orium. The	resu	Its for Ra-22	8 are infer	red froi	m Ac-228.				
	OGICAL PARAMETI	ERS	Analyst	: ડા	JB				EPA 903.1 MOD			
Radium 226		0.0821+-0.581	1.2		pCi/L	1			12/07/18 12:08 PM			
SPLP RADIOL	OGICAL PARAMET	RS	Analyst	: รเ	JB				EPA 904.0 MOD			
Radium 228		-0.217+-0.347	0.9		pCi/L	1			12/05/18 3:36 PM			
SPLP FLUID #	1		Analyst	: Al	D				EPA 1312			
Final pH Metals		6.05			S.U.	1			11/15/18 8:00 PM			
SPLP FLUID #	PLP FLUID #3 A			: M	AG				EPA 1312			
inal pH Non Metals 7.53					S.U.	1			11/15/18 9:16 AM			

Geochemical Testing				Date: 12-Dec-18							
CLIENT: Lab Order:	GENON - CC G1811867	NEMAUGH STATION CCR Client Sample ID: LD-1 0-4									
Lab Order: Project: Lab ID: Matrix:	Conemaugh C G1811867-00 SOLID		SPLP			Sampled By: Collection Date: Received Date:			APTIM 11/14/2018 10:05:00 A 11/15/2018 6:32:36 AM		
Analyses		Result	QL	Q	Units	DF	Date Prepared		Date Analyzed		
TOTAL METALS			Analyst:	RLI	_				EPA 74	73	
Mercury		0.042	0.010		mg/Kg-dry	1			11/20/18	2:36 PM	
SPLP INORGA	NICS		Analyst:	мв	G		EPA 3	300.0	EPA 30	0.0	
Fluoride		0.08	0.05	J	mg/L	1		8 11:45 AM			
TOTAL METAL	.S		Analyst: MXS			EPA 3050		EPA 6010			
Antimony		< 10.0	10.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:55 PM	
Arsenic		24.5	2.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:55 PM	
Barium		161	1.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:55 PM	
Beryllium		1.20	0.10		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:55 PM	
Cadmium		< 5.0	5.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:55 PM	
Chromium		31.7	5.0		mg/Kg-dry	1	11/20/1	8 1:30 PM	11/23/18	1:55 PM	
Cobalt		16.9	0.5		mg/Kg-dry	1	11/20/1	1:30 PM	11/23/18	1:55 PM	
ead		28.9	2.0		mg/Kg-dry	1	11/20/1	1:30 PM	11/23/18	1:55 PM	
_ithium		16.2	1.0		mg/Kg-dry	1	11/20/1	1:30 PM	11/23/18	1:55 PM	
Molybdenum		1.2	2.0	J	mg/Kg-dry	1	11/20/1	1:30 PM	11/23/18	1:55 PM	
Selenium		2.5	2.0		mg/Kg-dry	1	11/20/1	1:30 PM	11/23/18	1:55 PM	
Thallium		< 10.0	10.0		mg/Kg-dry	1	11/20/1	1:30 PM	11/23/18	1:55 PM	
SPLP METALS FLUID #1			Analyst:	GX	l		SM 3 ⁻	112 B	EPA 74	70	
Mercury		< 0.0001	0.0001	J	mg/L	1	11/19/1	8 11:32 AM	11/20/18	10:49 AM	
SPLP METALS FLUID #1			Analyst: MXS			EPA 2	EPA 200.2 EPA		0.7		
Antimony		0.05	0.05	U	mg/L	1	11/19/1	8 11:25 AM	11/20/18	5:10 PM	
Arsenic		0.010	0.010	U	mg/L	1	11/19/1	8 11:25 AM	11/20/18	5:10 PM	
Barium		0.066	0.005		mg/L	1	11/19/1	8 11:25 AM	11/20/18	5:10 PM	
Beryllium		0.0005	0.0005	U	mg/L	1	11/19/1	8 11:25 AM	11/20/18	5:10 PM	
Cadmium		0.0010	0.0010	U	mg/L	1		8 11:25 AM			
Chromium		0.0050	0.0050	U	mg/L	1		8 11:25 AM			
Cobalt		0.0020	0.0020	U	mg/L	1		8 11:25 AM			
_ead		0.010	0.010	U	mg/L	1		8 11:25 AM			
_ithium		0.005	0.005	U	mg/L	1		8 11:25 AM			
Molybdenum		0.010	0.010	U	mg/L	1		8 11:25 AM			
Selenium Thallium		0.010 0.010	0.010 0.010	U U	mg/L mg/L	1 1		8 11:25 AM 8 11:25 AM			
GAMMA SPEC	TROSCOPY	0.010	Analyst:		····g/ =	•	, 10/		EPA 90		
		1 11+/ 0 0567			nCi/a	1					
Radium-226		1.11+/-0.0567	0.052		pCi/g	1				8:20 PM	
Radium-228		1.39+/-0.0877	0.038		pCi/g	1			11/21/18	8:20 PM	

Geochemical Testing					Date: 12-Dec-18						
CLIENT:	TION CCR	CCR Client Sample ID: LD-1 0-4									
Lab Order:	G1811867				_						
Project:	Conemaugh CCR	IV SPLP		Sampled By: APTIM							
Lab ID:	G1811867-005			Col	lection Date:	11/14/2018	8 10:05:00 A				
Matrix:	SOLID			Rec	eived Date:	11/15/2018	18 6:32:36 AM				
Analyses		Result	QL	Q Units	DF Da	te Prepared	Date Analyzed				
GAMMA SPEC NOTES: QL is equal to			Analyst:	AM			EPA 901.1				
Result includes	the uncertainty which is	s calculated at the	95% confide	ence level (1.9	6-sigma).						
The reported v	alue for Ra-226 is the av	verage of its daug	hter's Pb-214	and Bi-214 a	ctivity due to the	e possibility of U	-235 interference.				
Ra-228 and Ac	-228 are assumed to be	in secular equilib	rium. The re	sults for Ra-2	28 are inferred f	rom Ac-228.					
	OGICAL PARAMETE	RS	Analyst:	SUB			EPA 903.1 MOD				
Radium 226		0.349+-0.364	0.5	pCi/L	1		12/06/18 10:00 PM				
SPLP RADIOL	OGICAL PARAMETE	RS	Analyst:	SUB			EPA 904.0 MOD				
Radium 228		0.487+-0.402	0.8	pCi/L	1		12/05/18 12:09 PM				
SPLP FLUID #	1		Analyst:	ALD			EPA 1312				
Final pH Metals		4.54		S.U.	1		11/17/18 1:00 PM				
SPLP FLUID #3			Analyst:	MAG			EPA 1312				
Final pH Non Me	tals	7.52		S.U.	1		11/15/18 9:16 AM				

Geochemical Testing				Date: 12-Dec-18							
CLIENT:		VEMAUGH STATION CCR Client Sample ID: LD-2 0-4									
Lab Order: Project: Lab ID: Matrix:	DID: G1811867-007 Collection Date:						ate:	APTIM 11/14/2018 10:55:00 A 11/15/2018 6:32:36 AM			
Analyses		Result	QL	Q	Units	DF	Date	Prepared	Date Analyzed		
TOTAL METALS			Analyst: RL		_				EPA 74	73	
Mercury		0.032	0.010		mg/Kg-dry	1			11/20/18	2:36 PM	
SPLP INORGA	NICS		Analyst:	мв	G		EPA	300.0	EPA 30	0.0	
Fluoride		0.39	0.05		mg/L	1		18 11:45 AM			
	-	0.00			U	•					
TOTAL METAL	.S		Analyst:	MX			EPA		EPA 60		
Antimony		< 10.0	10.0		mg/Kg-dry	1		18 1:30 PM		2:00 PM	
Arsenic		11.9	2.0		mg/Kg-dry	1		18 1:30 PM		2:00 PM	
Barium		143	1.0		mg/Kg-dry	1		18 1:30 PM		2:00 PM	
Beryllium Cadmium		1.14 < 5.0	0.10 5.0		mg/Kg-dry	1 1		18 1:30 PM 18 1:30 PM		2:00 PM 2:00 PM	
Chromium		< 5.0 31.4	5.0		mg/Kg-dry mg/Kg-dry	1		18 1:30 PM		2:00 PM 2:00 PM	
Cobalt		17.2	0.5		mg/Kg-dry	1		18 1:30 PM		2:00 PM	
Lead		23.8	2.0		mg/Kg-dry	1		18 1:30 PM		2:00 PM	
Lithium		15.8	1.0		mg/Kg-dry	1		18 1:30 PM		2:00 PM	
Molybdenum		< 2.0	2.0		mg/Kg-dry	1		18 1:30 PM		2:00 PM	
Selenium		2.2	2.0		mg/Kg-dry	1	11/20/	18 1:30 PM	11/23/18	2:00 PM	
Thallium		< 10.0	10.0		mg/Kg-dry	1	11/20/	18 1:30 PM	11/23/18	2:00 PM	
SPLP METALS FLUID #1			Analyst: GXI		l		SM 3	112 B	EPA 74	70	
Mercury		< 0.0001	0.0001	J	mg/L	1	11/19/	18 11:32 AM	11/20/18	11:17 AM	
SPLP METALS	PLP METALS FLUID #1		Analyst: MXS				EPA 200.2		EPA 200.7		
Antimony		0.05	0.05	U	mg/L	1	11/19/	18 11:25 AM	11/20/18	6:52 PM	
Arsenic		0.010	0.010	U	mg/L	1	11/19/	18 11:25 AM	11/20/18	6:52 PM	
Barium		0.069	0.005		mg/L	1	11/19/	18 11:25 AM	11/20/18	6:52 PM	
Beryllium		0.0005	0.0005	U	mg/L	1	11/19/	18 11:25 AM	11/20/18	6:52 PM	
Cadmium		0.0010	0.0010	U	mg/L	1		18 11:25 AM			
Chromium		0.0050	0.0050	U	mg/L	1		18 11:25 AM			
Cobalt		0.0020	0.0020	U	mg/L	1		18 11:25 AN			
Lead		0.010	0.010	U	mg/L	1		18 11:25 AM			
Lithium		0.005	0.005	U	mg/L	1		18 11:25 AM			
Molybdenum		0.010	0.010	U	mg/L	1		18 11:25 AM			
Selenium Thallium		0.010 0.010	0.010 0.010	U U	mg/L mg/L	1 1		18 11:25 AM 18 11:25 AM			
GAMMA SPEC	TROSCOPY	0.010	Analyst:		ing/L	I	11/19/	10 11.20 AIV	EPA 90		
	INUSCUPT	0.04.10.0051	•	AIVI	- 0:1-	4					
Radium 226		0.64+/-0.0354	0.069		pCi/g	1				9:01 AM	
Radium-228		0.83+/-0.0693	0.088		pCi/g	1			11/22/18	9:01 AM	

Geochemical Testing					Date: 12-Dec-18						
CLIENT:	CLIENT: GENON - CONEMAUGH STATIO				CR Client Sample ID: LD-2 0-4						
Lab Order:	G1811867					•					
Project:	Conemaugh CCR	CR IV SPLP Sampled By:					APTIM				
Lab ID:	G1811867-007	7-007						8 10:55:00 A			
Matrix:	SOLID							11/15/2018 6:32:36 AM			
Analyses		Result	QL	Q	Units	DF	Date	Prepared	Date Analyzed		
GAMMA SPEC	TROSCOPY		Analyst:	AM					EPA 901.1		
NOTES: QL is equal to	the MDA										
Result includes	s the uncertainty which i	s calculated at the	e 95% confi	dence le	evel (1.96-	-sigma).					
The reported v	alue for Ra-226 is the a	verage of its daug	hter's Pb-21	14 and E	Bi-214 acti	ivity due to	the p	ossibility of U	-235 interference.		
Ra-228 and Ac	c-228 are assumed to be	e in secular equilib	rium. The r	results f	or Ra-228	are inferr	ed fror	n Ac-228.			
SPLP RADIOL	OGICAL PARAMETE	ERS	Analyst:	SUB					EPA 903.1 MOD		
Radium 226		0.477+-0.498	0.7	р	Ci/L	1			12/07/18 12:08 PM		
SPLP RADIOL	OGICAL PARAMETE	ERS	Analyst:	SUB					EPA 904.0 MOD		
Radium 228		0.301+-0.570	1.2	р	Ci/L	1			12/05/18 3:36 PM		
SPLP FLUID #	1		Analyst:	ALD					EPA 1312		
Final pH Metals		3.67		S	S.U.	1			11/18/18 11:00 AM		
SPLP FLUID #3			Analyst:	MAG					EPA 1312		
Final pH Non Me	tals	10.7		S	S.U.	1			11/15/18 9:16 AM		

814/443-1671 814/445-6666 FAX: 814/445-6729

Wednesday, December 12, 2018

John Shimshock GENON - CONEMAUGH STATION CCR CONEMAUGH STATION PO BOX K NEW FLORENCE, PA 15944

RE: Conemaugh CCR IV SPLP

Order No.: G1811869

Dear John Shimshock:

Geochemical Testing received 4 sample(s) on 11/15/2018 for the analyses presented in the following report.

There were no problems with the analyses and all QC data met NELAC, EPA, and laboratory specifications except where noted in the Case Narrative or Laboratory Results.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Timot W Bey trus

Timothy W. Bergstresser Director of Technical Services

Leslie A. Nemeth Project Manager

Geochemical Testing

CLIENT:GENON - CONEMAUGH STATION CCRProject:Conemaugh CCR IV SPLPLab Order:G1811869

CASE NARRATIVE

No problems were encountered during analysis of this workorder, except if noted in this report.

SAMPLE RECEIPT CHECKLIST

	Response
COC is present	Yes
COC is filled out in ink and legible	Yes
COC relinquished, signature, date, and time	Yes
Samples arrived within hold time	Yes
Containers properly preserved for the requested testing	Yes
Sample containers have legible labels	Yes
Sample preservation verified	Yes
Appropriate sample containers are used	Yes
Sample container(s) received at proper temperature	Yes
Zero headspace where required	Yes
Sufficient volume for all requested analyses	Yes

Comments on the above checklist: None

The radiological analysis (Radium 226 by EPA 903.1; Radium 228 by EPA 904.0) was subcontracted to Pace Analytical (PADEP 65-00282). A copy of the subcontractor's laboratory report is enclosed with this Analytical Report.

Legend:	ND - Not Detected	S - Spike Recovery outside accepted recovery limits
	J - Indicates an estimated value.	R - RPD outside accepted recovery limits
	U - The analyte was not detected at or above the listed	E - Value above quantitation range
	concentration, which is below the laboratory quantitation limit.	** - Value exceeds Action Limit
	B - Analyte detected in the associated Method Blank	H - Method Hold Time Exceeded
	Q - Qualifier QL -Quantitation Limit DF - Dilution Factor	I.D. 56-00306 PA DEP

MCL - Contaminant Limit

Geochemical Testing					Date: 12-Dec-18				
CLIENT:	GENON - CONE	MAUGH STAT	FION CCR		Client	Sampl	le ID:	LD-3 0-4	
Lab Order: Project: Lab ID: Matrix:	G1811869 Conemaugh CCR G1811869-001 SOLID	maugh CCR IV SPLP 1869-001			Sampled By: Collection Da Received Dat			APTIM 11/14/2018 11/15/2018	11:15:00 A 6:58:38 AM
Analyses	JOLID	Result	QL	Q	Units	DF		Prepared	Date Analyzed
TOTAL METALS			Analyst:	RLI	_				EPA 7473
Mercury		0.040	0.010		mg/Kg-dry	1			11/20/18 2:36 PM
SPLP INORGAN			Analyst:	MR	G		FDA	300.0	EPA 300.0
Fluoride		0.09	0.05	J	mg/L	1		18 11:45 AM	
		0.09	0.05	J	mg/∟	1	11/10/	10 11.45 Alvi	
TOTAL METALS			Analyst:	MX	S		EPA	3050	EPA 6010
Antimony		< 10.0	10.0		mg/Kg-dry	1	11/20/	'18 1:30 PM	11/23/18 2:09 PM
Arsenic		17.8	2.0		mg/Kg-dry	1	11/20/	'18 1:30 PM	11/23/18 2:09 PM
Barium		147	1.0		mg/Kg-dry	1		18 1:30 PM	11/23/18 2:09 PM
Beryllium		1.19	0.10		mg/Kg-dry	1		18 1:30 PM	11/23/18 2:09 PM
Cadmium		< 5.0	5.0		mg/Kg-dry	1	11/20/	'18 1:30 PM	11/23/18 2:09 PM
Chromium		32.6	5.0		mg/Kg-dry	1	11/20/	18 1:30 PM	11/23/18 2:09 PM
Cobalt		17.8	0.5		mg/Kg-dry	1	11/20/	18 1:30 PM	11/23/18 2:09 PM
Lead		24.1	2.0		mg/Kg-dry	1	11/20/	18 1:30 PM	11/23/18 2:09 PM
Lithium		17.4	1.0		mg/Kg-dry	1	11/20/	'18 1:30 PM	11/23/18 2:09 PM
Molybdenum		1.0	2.0	J	mg/Kg-dry	1	11/20/	'18 1:30 PM	11/23/18 2:09 PM
Selenium		2.0	2.0		mg/Kg-dry	1	11/20/	18 1:30 PM	11/23/18 2:09 PM
Thallium		< 10.0	10.0		mg/Kg-dry	1	11/20/	18 1:30 PM	11/23/18 2:09 PM
SPLP METALS F	LUID #1		Analyst:	GX	l		SM 3	112 B	EPA 7470
Mercury		< 0.0001	0.0001	J	mg/L	1	11/19/	'18 11:32 AM	11/20/18 11:16 AM
SPLP METALS F	LUID #1		Analyst:	МХ	S		EPA	200.2	EPA 200.7
Antimony		0.05	0.05	U	mg/L	1			11/20/18 5:33 PM
Arsenic		0.010	0.010	U	mg/L	1			11/20/18 5:33 PM
Barium		0.062	0.005		mg/L	1	11/19/	'18 11:25 AM	11/20/18 5:33 PM
Beryllium		0.0005	0.0005	U	mg/L	1			11/20/18 5:33 PM
Cadmium		0.0010	0.0010	U	mg/L	1	11/19/	'18 11:25 AM	11/20/18 5:33 PM
Chromium		0.0050	0.0050	U	mg/L	1			11/20/18 5:33 PM
Cobalt		0.0020	0.0020	U	mg/L	1			11/20/18 5:33 PM
Lead		0.010	0.010	U	mg/L	1			11/20/18 5:33 PM
Lithium		0.005	0.005	U	mg/L	1			11/20/18 5:33 PM
Molybdenum		0.010	0.010	U	mg/L	1			11/20/18 5:33 PM
Selenium		0.010	0.010	U	mg/L	1			11/20/18 5:33 PM
Thallium		0.010	0.010	U	mg/L	1	11/19/	18 11:25 AM	11/20/18 5:33 PM
GAMMA SPECT	ROSCOPY		Analyst:	AM					EPA 901.1
Radium-226		0.97+/-0.0496	0.054		pCi/g	1			11/22/18 11:36 PM
Radium-228		1.3+/-0.0828	0.036		pCi/g	1			11/22/18 11:36 PM

Geochemical Testing					Date: 12-Dec-18				
CLIENT:	IENT: GENON - CONEMAUGH STATION CCR			Clie	Client Sample ID: LD-3 0-4				
Lab Order:	G1811869								
Project:	Conemaugh CCR	IV SPLP		Sam	pled By:	APTIM			
Lab ID:	G1811869-001			Coll	ection Date:	11/14/2018	11:15:00 A		
Matrix:	SOLID			Rece	eived Date:	11/15/2018	6:58:38 AM		
Analyses		Result	QL Q	Units	DF Date	e Prepared	Date Analyzed		
GAMMA SPECTROSCOPY NOTES:			Analyst: A l	M			EPA 901.1		
QL is equal to	the MDA								
Result includes	s the uncertainty which i	s calculated at the	e 95% confiden	ce level (1.9	6-sigma).				
The reported v	alue for Ra-226 is the a	verage of its daug	hter's Pb-214 a	nd Bi-214 a	ctivity due to the	possibility of U	-235 interference.		
Ra-228 and Ad	-228 are assumed to be	e in secular equilib	prium. The resu	ilts for Ra-22	8 are inferred fro	om Ac-228.			
SPLP RADIOL	OGICAL PARAMETE	RS	Analyst: SI	JB			EPA 903.1 MOD		
Radium 226		0.155+-0.353	0.2	pCi/L	1		12/06/18 10:00 PM		
SPLP RADIOL	OGICAL PARAMETE	RS	Analyst: SI	JB					
Radium 228							EPA 904.0 MOD		
		0.360+-0.353	0.7	pCi/L	1		EPA 904.0 MOD 12/05/18 12:09 PM		
SPLP FLUID #	1	0.360+-0.353	0.7 Analyst: A l	pCi/L	1				
	1	0.360+-0.353 3.71		pCi/L	1		12/05/18 12:09 PM		
SPLP FLUID # Final pH Metals SPLP FLUID #	-			pCi/L -D S.U.			12/05/18 12:09 PM EPA 1312		

Geochemical Testing					Date: 12-Dec-18				
CLIENT:	GENON - CON	NEMAUGH STAT	FION CCR	L	Client	Samp	le ID:	LD-4 0-4	
Lab Order: Project: Lab ID: Matrix:	G1811869 Conemaugh CC G1811869-003 SOLID	ER IV SPLP			Sampl Collect Receiv	tion D	ate:	APTIM 11/14/2018 11/15/2018	11:40:00 A 6:58:38 AM
Analyses		Result	QL	Q	Units	DF	Date	e Prepared	Date Analyzed
TOTAL METAL	.S		Analyst:	RL	L				EPA 7473
Mercury		0.038	0.010		mg/Kg-dry	1			11/20/18 2:36 PM
SPLP INORGA	NICS		Analyst:	мв	G		EPA	300.0	EPA 300.0
Fluoride		0.14	0.05		mg/L	1		6/18 11:45 AM	
	c		Analyst		0			2050	
TOTAL METAL	.5	. 10.0	Analyst:	IVIX				3050	EPA 6010
Antimony		< 10.0	10.0		mg/Kg-dry	1)/18 1:30 PM	11/23/18 2:33 PM
Arsenic		17.6	2.0		mg/Kg-dry	1)/18 1:30 PM	11/23/18 2:33 PM
Barium		148 1.39	1.0 0.10		mg/Kg-dry	1)/18 1:30 PM)/18 1:30 PM	11/23/18 2:33 PM 11/23/18 2:33 PM
Beryllium Cadmium		< 5.0	5.0		mg/Kg-dry mg/Kg-dry	1 1)/18 1:30 PM	11/23/18 2:33 PM
Chromium		43.5	5.0		mg/Kg-dry	1)/18 1:30 PM	11/23/18 2:33 PM
Cobalt		21.6	0.5		mg/Kg-dry	1)/18 1:30 PM	11/23/18 2:33 PM
Lead		29.1	2.0		mg/Kg-dry	1)/18 1:30 PM	11/23/18 2:33 PM
Lithium		19.5	1.0		mg/Kg-dry	1)/18 1:30 PM	11/23/18 2:33 PM
Molybdenum		1.2	2.0	J	mg/Kg-dry	1)/18 1:30 PM	11/23/18 2:33 PM
Selenium		2.5	2.0		mg/Kg-dry	1	11/20)/18 1:30 PM	11/23/18 2:33 PM
Thallium		< 10.0	10.0		mg/Kg-dry	1	11/20)/18 1:30 PM	11/23/18 2:33 PM
SPLP METALS	FLUID #1		Analyst:	GX	I		SM 3	3112 B	EPA 7470
Mercury		< 0.0001	0.0001	J	mg/L	1	11/19)/18 11:32 AM	11/20/18 11:25 AM
SPLP METALS	FLUID #1		Analyst:	МХ	s		EPA	200.2	EPA 200.7
Antimony		0.05	0.05	U	mg/L	1	11/19	/18 11:25 AM	11/20/18 5:37 PM
Arsenic		0.010	0.010	U	mg/L	1	11/19	/18 11:25 AM	11/20/18 5:37 PM
Barium		0.074	0.005		mg/L	1	11/19)/18 11:25 AM	11/20/18 5:37 PM
Beryllium		0.0005	0.0005	U	mg/L	1			11/20/18 5:37 PM
Cadmium		0.0010	0.0010	U	mg/L	1			11/20/18 5:37 PM
Chromium		0.0050	0.0050	U	mg/L	1			11/20/18 5:37 PM
Cobalt		0.0020	0.0020	U	mg/L	1			11/20/18 5:37 PM
Lead		0.010	0.010	U	mg/L	1			11/20/18 5:37 PM
Lithium		0.005	0.005	U	mg/L	1			11/20/18 5:37 PM
Molybdenum Selenium		0.010 0.010	0.010 0.010	U	mg/L	1			11/20/18 5:37 PM 11/20/18 5:37 PM
Selenium Thallium		0.010	0.010	U U	mg/L mg/L	1 1			11/20/18 5:37 PM 11/20/18 5:37 PM
GAMMA SPEC	TROSCOPY		Analyst:		J				EPA 901.1
Radium-226		0.73+/-0.0407	0.070		pCi/g	1			11/22/18 11:37 PM
Radium-228		0.87+/-0.0732	0.070		pCi/g pCi/g	1			11/22/18 11:37 PM

Geochemical Testing					Date: 12-Dec-18				
CLIENT:	GENON - CONE	MAUGH STAT	TION CCR	Clier	nt Sample ID:	LD-4 0-4			
Lab Order:	G1811869								
Project:	Conemaugh CCR	IV SPLP		Sam	pled By:	APTIM			
Lab ID:	G1811869-003			Colle	ection Date:	11/14/2018	11:40:00 A		
Matrix:	SOLID			Rece	ived Date:	11/15/2018	6:58:38 AM		
Analyses		Result	QL Q	Units	DF Date	e Prepared	Date Analyzed		
GAMMA SPECTROSCOPY			Analyst: A	м			EPA 901.1		
NOTES: QL is equal to	the MDA		-						
Result include	s the uncertainty which i	s calculated at the	95% confiden	ce level (1.96	S-sigma).				
The reported v	alue for Ra-226 is the a	verage of its daug	hter's Pb-214 a	and Bi-214 ad	tivity due to the	possibility of U	-235 interference.		
Ra-228 and A	c-228 are assumed to be	e in secular equilib	rium. The res	ults for Ra-22	8 are inferred fro	om Ac-228.			
SPLP RADIOL	OGICAL PARAMETE	RS	Analyst: SUB						
Radium 226				JB			EPA 903.1 MOD		
SPLP RADIOLOGICAL PARAMETERS			1.0	рСі/L	1		EPA 903.1 MOD 12/07/18 12:08 PM		
SPLP RADIOL	OGICAL PARAMETE	-0.227+-0.394	1.0 Analyst: S	pCi/L	1				
	OGICAL PARAMET	-0.227+-0.394		pCi/L	1		12/07/18 12:08 PM		
Radium 228		-0.227+-0.394	Analyst: S	pCi/L J B pCi/L			12/07/18 12:08 PM EPA 904.0 MOD		
Radium 228 SPLP FLUID #		-0.227+-0.394	Analyst: S 1.0	pCi/L J B pCi/L			12/07/18 12:08 PM EPA 904.0 MOD 12/05/18 3:36 PM		
SPLP RADIOL Radium 228 SPLP FLUID # Final pH Metals SPLP FLUID #	1	-0.227+-0.394 ERS -0.074+-0.479	Analyst: S 1.0	pCi/L JB pCi/L LD S.U.	1		12/07/18 12:08 PM EPA 904.0 MOD 12/05/18 3:36 PM EPA 1312		

Geochemical Testing					Date: 12-Dec-18				
CLIENT:	GENON - CO	NEMAUGH STAT	FION CCR		Client	Samp	le ID:	LD-5 0-4	
Lab Order: Project: Lab ID: Matrix:	G1811869 Conemaugh Cu G1811869-00: SOLID				Sampl Collect Receiv	tion D	ate:	APTIM 11/14/2018 11/15/2018	11:55:00 A 6:58:38 AM
Analyses	SOLID	Result	QL	Q	Units	DF		e Prepared	Date Analyzed
TOTAL METAL	_S		Analyst:	RLI	L				EPA 7473
Mercury		0.057	0.010		mg/Kg-dry	1			11/20/18 2:36 PM
SPLP INORGA	NICS		Analyst:	MR	6		EDA	300.0	EPA 300.0
Fluoride		0.05	0.05	U	mg/L	1			11/16/18 5:32 PM
Fluoride		0.05	0.05	U	mg/L	I	11/10	/10 11.45 AIVI	11/10/10 5.32 PW
TOTAL METAL	_S		Analyst:	MX	S		EPA	3050	EPA 6010
Antimony		< 10.0	10.0		mg/Kg-dry	1	11/20	/18 1:30 PM	11/23/18 3:10 PM
Arsenic		20.8	2.0		mg/Kg-dry	1		/18 1:30 PM	11/23/18 3:10 PM
Barium		141	1.0		mg/Kg-dry	1		/18 1:30 PM	11/23/18 3:10 PM
Beryllium		1.17	0.10		mg/Kg-dry	1		/18 1:30 PM	11/23/18 3:10 PM
Cadmium		< 5.0	5.0		mg/Kg-dry	1		/18 1:30 PM	11/23/18 3:10 PM
Chromium		27.7	5.0		mg/Kg-dry	1		/18 1:30 PM	11/23/18 3:10 PM
Cobalt		17.9	0.5		mg/Kg-dry	1		/18 1:30 PM	11/23/18 3:10 PM
Lead Lithium		27.8	2.0 1.0		mg/Kg-dry	1		/18 1:30 PM /18 1:30 PM	11/23/18 3:10 PM 11/23/18 3:10 PM
Molybdenum		16.0 1.8	2.0	J	mg/Kg-dry mg/Kg-dry	1 1		/18 1:30 PM	11/23/18 3:10 PM
Selenium		2.5	2.0	J	mg/Kg-dry	1		/18 1:30 PM	11/23/18 3:10 PM
Thallium		< 10.0	10.0		mg/Kg-dry	1		/18 1:30 PM	11/23/18 3:10 PM
SPLP METALS	S FLUID #1		Analyst:	GX			SM 3	3112 B	EPA 7470
Mercury		< 0.0001	0.0001	J	mg/L	1	11/19	/18 11:32 AM	11/20/18 11:26 AM
SPLP METALS	S FLUID #1		Analyst:	мх	s		EPA	200.2	EPA 200.7
Antimony		0.05	0.05	U	mg/L	1	11/19	/18 11:25 AM	11/20/18 5:42 PM
Arsenic		0.010	0.010	U	mg/L	1	11/19	/18 11:25 AM	11/20/18 5:42 PM
Barium		0.086	0.005		mg/L	1	11/19	/18 11:25 AM	11/20/18 5:42 PM
Beryllium		0.0005	0.0005	U	mg/L	1	11/19	/18 11:25 AM	11/20/18 5:42 PM
Cadmium		0.0010	0.0010	U	mg/L	1	11/19	/18 11:25 AM	11/20/18 5:42 PM
Chromium		0.0050	0.0050	U	mg/L	1	11/19	/18 11:25 AM	11/20/18 5:42 PM
Cobalt		0.0020	0.0020	U	mg/L	1			11/20/18 5:42 PM
Lead		0.010	0.010	U	mg/L	1			11/20/18 5:42 PM
Lithium		0.005	0.005	U	mg/L	1			11/20/18 5:42 PM
Molybdenum		0.010	0.010	U	mg/L	1			11/20/18 5:42 PM
Selenium Thallium		0.010 0.010	0.010 0.010	U U	mg/L mg/L	1 1			11/20/18 5:42 PM 11/20/18 5:42 PM
GAMMA SPEC	TROSCOPY	0.010	Analyst:		-		, .0		EPA 901.1
		0 741/ 0 0200	•			1			
Radium-226 Radium-228		0.74+/-0.0398 0.81+/-0.0682	0.071		pCi/g pCi/g	1			11/23/18 7:41 PM
Radium-228		0.01+/-0.0082	0.088		pCi/g	1			11/23/18 7:41 PM

Geochemical Testing					Date: 12-Dec-18				
CLIENT:	LIENT: GENON - CONEMAUGH STATION CCR			Clier	Client Sample ID: LD-5 0-4				
Lab Order:	G1811869								
Project:	Conemaugh CCR	IV SPLP		Sam	pled By:	APTIM			
Lab ID:	G1811869-005			Colle	ection Date:	11/14/2018	11:55:00 A		
Matrix:	SOLID			Rece	eived Date:	11/15/2018	6:58:38 AM		
Analyses		Result	QL (Units	DF Dat	e Prepared	Date Analyzed		
GAMMA SPEC NOTES: QL is equal to			Analyst: A	м			EPA 901.1		
Result include	s the uncertainty which	is calculated at the	e 95% confider	ce level (1.96	6-sigma).				
The reported v	alue for Ra-226 is the a	verage of its daug	hter's Pb-214	and Bi-214 ad	tivity due to the	possibility of U	-235 interference.		
Ra-228 and A	c-228 are assumed to b	e in secular equilib	rium. The res	ults for Ra-22	8 are inferred fr	om Ac-228.			
SPLP RADIOL		ERS	Analyst: S	UB			EPA 903.1 MOD		
Radium 226		0.379+-0.577	1.0	pCi/L	1		12/06/18 10:00 PM		
SPLP RADIOL	OGICAL PARAMET	ERS	Analyst: S	UB			EPA 904.0 MOD		
Radium 228		0.528+-0.438	0.9	pCi/L	1		12/05/18 12:10 PM		
SPLP FLUID #	1		Analyst: A	LD			EPA 1312		
Final pH Metals		3.83		S.U.	1		11/17/18 1:00 PM		
SPLP FLUID #	3		Analyst: M	AG			EPA 1312		
Final pH Non Me									

Geochemical Testing					Date: 12-Dec-18					
CLIENT:	GENON - CO	NEMAUGH STAT	FION CCR		Client	Samp	le ID:	LD-6 0-4		
Lab Order: Project: Lab ID: Matrix:	G1811869 Conemaugh CC G1811869-007 SOLID	augh CCR IV SPLP 869-007			Sample Collect Receiv	tion D	ate:	APTIM 11/14/2018 11/15/2018	12:10:00 P 6:58:38 AM	
Analyses		Result	QL	Q	Units	DF	Date	Prepared	Date Analyzed	
TOTAL METAL	_S		Analyst:	RL	L				EPA 7473	
Mercury		0.052	0.010		mg/Kg-dry	1			11/20/18 2:36 PM	
SPLP INORGA	NICS		Analyst:	мв	G		EPA	300.0	EPA 300.0	
Fluoride		0.09	0.05	J	mg/L	1		/18 11:45 AM		
TOTAL METAL	S		Analyst:	мγ	-		ED A	3050	EPA 6010	
Antimony	_0	< 10.0	Analyst. 10.0		o mg/Kg-dry	1		/18 1:30 PM	11/23/18 3:15 PM	
Arsenic		< 10.0 18.5	2.0		mg/Kg-dry	1		/18 1:30 PM	11/23/18 3:15 PM	
Barium		149	2.0 1.0		mg/Kg-dry	1		/18 1:30 PM	11/23/18 3:15 PM	
Beryllium		1.25	0.10		mg/Kg-dry	1		/18 1:30 PM	11/23/18 3:15 PM	
Cadmium		< 5.0	5.0		mg/Kg-dry	1		/18 1:30 PM	11/23/18 3:15 PM	
Chromium		29.2	5.0		mg/Kg-dry	1		/18 1:30 PM	11/23/18 3:15 PM	
Cobalt		18.6	0.5		mg/Kg-dry	1		/18 1:30 PM	11/23/18 3:15 PM	
Lead		26.8	2.0		mg/Kg-dry	1	11/20	/18 1:30 PM	11/23/18 3:15 PM	
Lithium		15.6	1.0		mg/Kg-dry	1	11/20	/18 1:30 PM	11/23/18 3:15 PM	
Molybdenum		1.4	2.0	J	mg/Kg-dry	1	11/20	/18 1:30 PM	11/23/18 3:15 PM	
Selenium		2.2	2.0		mg/Kg-dry	1	11/20	/18 1:30 PM	11/23/18 3:15 PM	
Thallium		< 10.0	10.0		mg/Kg-dry	1	11/20	/18 1:30 PM	11/23/18 3:15 PM	
SPLP METALS	S FLUID #1		Analyst:	GX	I		SM 3	3112 B	EPA 7470	
Mercury		< 0.0001	0.0001	J	mg/L	1	11/19	/18 11:32 AM	11/20/18 11:28 AM	
SPLP METALS	S FLUID #1		Analyst:	МХ	s		EPA	200.2	EPA 200.7	
Antimony		0.05	0.05	U	mg/L	1			11/20/18 5:46 PM	
Arsenic		0.010	0.010	U	mg/L	1			11/20/18 5:46 PM	
Barium		0.086	0.005		mg/L	1	11/19	/18 11:25 AM	11/20/18 5:46 PM	
Beryllium		0.0005	0.0005	U	mg/L	1			11/20/18 5:46 PM	
Cadmium		0.0010	0.0010	U	mg/L	1			11/20/18 5:46 PM	
Chromium		0.0050	0.0050	U	mg/L	1			11/20/18 5:46 PM	
Cobalt		0.0020	0.0020	U	mg/L	1			11/20/18 5:46 PM	
Lead		0.010	0.010	U	mg/L	1			11/20/18 5:46 PM	
Lithium		0.005	0.005	U	mg/L	1			11/20/18 5:46 PM	
Molybdenum		0.010	0.010	U	mg/L	1			11/20/18 5:46 PM 11/20/18 5:46 PM	
Selenium Thallium		0.010 0.010	0.010 0.010	U U	mg/L mg/L	1 1			11/20/18 5:46 PM 11/20/18 5:46 PM	
GAMMA SPEC	TROSCOPY	•	Analyst:		-				EPA 901.1	
Radium-226		1.14+/-0.0570	0.054		pCi/g	1			11/23/18 7:43 PM	
Radium-228		1.42+/-0.0895	0.034		pCi/g pCi/g	1			11/23/18 7:43 PM	
Naululli-220		1.427/-0.0090	0.055		poing	I			11/23/10 1.43 FIV	

Geochemical Testing					Date: 12-Dec-18				
CLIENT:	LIENT: GENON - CONEMAUGH STATION CC			Clier	nt Sample ID:	LD-6 0-4			
Lab Order:	G1811869								
Project:	Conemaugh CCR	IV SPLP		Sam	pled By:	APTIM			
Lab ID:	G1811869-007			Colle	ection Date:	11/14/2018	12:10:00 P		
Matrix:	SOLID			Rece	ived Date:	11/15/2018	6:58:38 AM		
Analyses		Result	QL Q	Units	DF Date	e Prepared	Date Analyzed		
GAMMA SPECTROSCOPY			Analyst: A l	N			EPA 901.1		
NOTES: QL is equal to	the MDA								
Result includes	s the uncertainty which is	s calculated at the	e 95% confiden	ce level (1.96	δ-sigma).				
The reported v	alue for Ra-226 is the a	verage of its daug	hter's Pb-214 a	nd Bi-214 ad	tivity due to the	possibility of U	-235 interference.		
Ra-228 and Ad	-228 are assumed to be	in secular equilib	orium. The resu	ilts for Ra-22	8 are inferred fro	om Ac-228.			
SPLP RADIOL	OGICAL PARAMETE	RS	Analyst: S I	JB					
Radium 226		0.206+-0.386					EPA 903.1 MOD		
SPLP RADIOLOGICAL PARAMETERS			0.8	pCi/L	1		EPA 903.1 MOD 12/07/18 12:08 PM		
SPLP RADIOL	OGICAL PARAMETE		0.8 Analyst: S I	I	1				
	OGICAL PARAMETE			I	1		12/07/18 12:08 PM		
SPLP RADIOL Radium 228 SPLP FLUID #		RS	Analyst: SI	J B pCi/L			12/07/18 12:08 PM EPA 904.0 MOD		
Radium 228		RS	Analyst: Si 0.9	J B pCi/L			12/07/18 12:08 PM EPA 904.0 MOD 12/05/18 3:36 PM		
Radium 228	1	E RS 0.262+-0.421	Analyst: Si 0.9	pCi/L pCi/L D S.U.	1		12/07/18 12:08 PM EPA 904.0 MOD 12/05/18 3:36 PM EPA 1312		

814/443-1671 814/445-6666 FAX: 814/445-6729

Wednesday, December 12, 2018

John Shimshock GENON - CONEMAUGH STATION CCR CONEMAUGH STATION PO BOX K NEW FLORENCE, PA 15944

RE: Conemaugh CCR IV SPLP

Order No.: G1811870

Dear John Shimshock:

Geochemical Testing received 2 sample(s) on 11/15/2018 for the analyses presented in the following report.

There were no problems with the analyses and all QC data met NELAC, EPA, and laboratory specifications except where noted in the Case Narrative or Laboratory Results.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Timot W Bey trus

Timothy W. Bergstresser Director of Technical Services

Leslie A. Nemeth Project Manager

Geochemical Testing

CLIENT:GENON - CONEMAUGH STATION CCRProject:Conemaugh CCR IV SPLPLab Order:G1811870

CASE NARRATIVE

No problems were encountered during analysis of this workorder, except if noted in this report.

SAMPLE RECEIPT CHECKLIST

	Response
COC is present	Yes
COC is filled out in ink and legible	Yes
COC relinquished, signature, date, and time	Yes
Samples arrived within hold time	Yes
Containers properly preserved for the requested testing	Yes
Sample containers have legible labels	Yes
Sample preservation verified	Yes
Appropriate sample containers are used	Yes
Sample container(s) received at proper temperature	Yes
Zero headspace where required	Yes
Sufficient volume for all requested analyses	Yes

Comments on the above checklist: None

The radiological analysis (Radium 226 by EPA 903.1; Radium 228 by EPA 904.0) was subcontracted to Pace Analytical (PADEP 65-00282). A copy of the subcontractor's laboratory report is enclosed with this Analytical Report.

Legend:	ND - Not Detected	S - Spike Recovery outside accepted recovery limits
	J - Indicates an estimated value.	R - RPD outside accepted recovery limits
	U - The analyte was not detected at or above the listed	E - Value above quantitation range
	concentration, which is below the laboratory quantitation limit.	** - Value exceeds Action Limit
	B - Analyte detected in the associated Method Blank	H - Method Hold Time Exceeded
	Q - Qualifier QL -Quantitation Limit DF - Dilution Factor	I.D. 56-00306 PA DEP

MCL - Contaminant Limit

TOTAL METALS Analyst: RLL EPA 7473 Mercury 0.046 0.010 mg/Kg-dry 1 11/20/18 2:36 Pl SPLP INORGANICS Analyst: MBG EPA 300.0 EPA 300.0 EPA 300.0 Fluoride 0.0917 0.0500 J mg/L 1 11/16/18 11:45 AM 11/16/18 6:28 Pl TOTAL METALS Analyst: MXS EPA 3050 EPA 6010 Antimony < 10.0 10.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 Pl Arsenic 12.8 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 Pl Barium 99.0 1.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 Pl Cadmium < 5.0 5.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 Pl Chromium 30.1 5.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 Pl <th>Geochemic</th> <th>al Testing</th> <th></th> <th></th> <th colspan="6">Date: 12-Dec-18</th>	Geochemic	al Testing			Date: 12-Dec-18					
Project: Consmagh CCR IV SPLP Sampled By: APTIM Lab ID: G1811870-001 Collection Date: I1/14/2018 I2:30:00 P Matrix: SOLID Result QL Q Units DF Date Prepared Date Analyze TOTAL METALS Analyst: RLL EPA 300.0 EPA 400.0 Analyst: Marceine 11/16/18 11/16/18 11/16/18 11/12/18 338 PD SPLP INORGANICS Analyst: MXS EPA 3050 EPA 400.0 11/20/18 130.00 11/20/18 130.00 11/20/18 130.00 11/20/18 130.00 11/21/18 338 PD Arsenic 12.8 2.0 mg/Kg-dry 1 11/20/18 130.00 11/23/18 338 PD Gadmium 0.50 mg/Kg-dry 1 11/20/18<	CLIENT:	GENON - CON	EMAUGH STAT	FION CCR		Client	Samp	le ID: LD-7 0-4		
TOTAL METALS Analyst: RLL EPA 7473 Mercury 0.046 0.010 mg/Kg-dry 1 11/20/18 23.6 Pl SPLP INORGANICS Analyst: MBG EPA 300.0 EPA 300.0 EPA 300.0 EPA 300.0 Fluoride 0.0917 0.0500 J mg/L 1 11/16/18 11/26/18 23.6 Pl TOTAL METALS Analyst: MXS EPA 300.0 EPA 300.0 EPA 300.0 Analyst: MXS EPA 3050 EPA 6010 Antimony <10.0 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 33.8 Pl Arsenic 1.2.8 2.0 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 33.8 Pl Cadmium 9.9.0 1.0 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 33.8 Pl Cobalt 13.0 0.5 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 33.8 Pl Cobalt 13.0 0.5 mg/Kg-dry 1 11/20/18 13.0 PM 11	Project: Lab ID:	Conemaugh CC G1811870-001	R IV SPLP			Collect	tion D	ate: 11/14/201		
Mercury 0.046 0.010 mg/Kg-dry 1 11/20/18 2.36 PI SPLP INORGANICS Analyst: MBG EPA 30.0 EPA 300.0 Pausure Fluoride 0.0917 0.0500 J mg/L 1 11/16/18 11/16/18 12.64 2.0 PA 30.0 EPA 300.0	Analyses		Result	QL	Q	Units	DF	Date Prepared	Date Analyzed	
SPLP INORGANICS Analyst: MBG EPA 300.0 EPA 300.0 Fluoride 0.0917 0.0500 J <mg l<="" td=""> 1 11/16/18 11/16/18 62.8 P. TOTAL METALS Analyst: MXS EPA 305.0 EPA 6010 Antimony < 10.0</mg>	TOTAL METAL	S		Analyst:	RLI	_			EPA 7473	
Fluoride 0.0917 0.050 J mg/L 1 1/16/18 11/16/18 628 PI TOTAL METALS Analyst: MXS EPA 3050 EPA 6010 Antimony < 10.0 10.0 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 33.8 PI Arsenic 12.8 2.0 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 33.8 PI Barium 99.0 1.0 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 33.8 PI Cadmium < 5.0 5.0 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 33.8 PI Cobalt 13.0 0.5 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 33.8 PI Cobalt 13.0 0.5 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 33.8 PI Lead 20.2 2.0 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 33.8 PI Molybdenum <2.0 2.0 mg/Kg-dry 1 11/20/18 13.0 PM	Mercury		0.046	0.010		mg/Kg-dry	1		11/20/18 2:36 PM	
Fluoride 0.0917 0.050 J mg/L 1 1/16/18 11/16/18 628 PI TOTAL METALS Analyst: MXS EPA 3050 EPA 6010 Antimony < 10.0 10.0 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 3.38 PI Arsenic 12.8 2.0 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 3.38 PI Barium 99.0 1.0 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 3.38 PI Cadmium < 5.0 5.0 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 3.38 PI Cobalt 13.0 0.5 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 3.38 PI Cobalt 13.0 0.5 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 3.38 PI Lead 20.2 2.0 mg/Kg-dry 1 11/20/18 13.0 PM 11/23/18 3.38 PI Molybdenum 2.0 2.0 mg/Kg-dry 1 11/20/18 13.0 PM <	SPLP INORGAN	NICS		Analvst:	мв	G		EPA 300.0	EPA 300.0	
TOTAL METALS Analyst: MXS EPA 3050 EPA 6010 Antimony < 10.0			0.0917	-			1			
Antimony < 10.0		-	0.0011			-	•			
Arsenic 12.8 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 P Barium 99.0 1.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 P Beryllium 0.94 0.10 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 P Cadmium <5.0	-	5			MX					
Barium 99.0 1.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 P Beryllium 0.94 0.10 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 P Cadmium < 5.0	•									
Beryllium 0.94 0.10 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 PI Cadmium < 5.0										
Cadmium < 5.0										
Chromium 30.1 5.0 mg/kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 PI Cobalt 13.0 0.5 mg/kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 PI Lead 20.2 2.0 mg/kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 PI Lithium 12.6 1.0 mg/kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 PI Molybdenum < 2.0	•									
Cobalt 13.0 0.5 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 PI Lead 20.2 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 PI Lithium 12.6 1.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 PI Molybdenum < 2.0										
Lead 20.2 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 PI Lithium 12.6 1.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 PI Molybdenum < 2.0										
Lithium 12.6 1.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 PI Molybdenum < 2.0										
Molybdenum < 2.0										
Selenium 2.6 2.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 PI Thallium <10.0										
Thallium < 10.0 mg/Kg-dry 1 11/20/18 1:30 PM 11/23/18 3:38 PM SPLP METALS FLUID #1 Analyst: GXI SM 3112 B EPA 7470 Mercury < 0.0001 0.0001 J mg/L 1 11/19/18 11:32 AM 11/20/18 11:30 A SPLP METALS FLUID #1 Analyst: MXS EPA 200.2 EPA 200.7 EPA 200.7 Antimony 0.050 0.050 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Arsenic 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Barium 0.047 0.005 mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Cadmium 0.0047 0.005 mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Cadmium 0.0050 0.0050 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Cobalt 0.0010 0.0010 U mg/L 1 11/	•									
Mercury < 0.001 J mg/L 1 11/19/18 11:32 AM 11/20/18 11:30 / SPLP METALS FLUID #1 Analyst: MXS EPA 200.2 EPA 200.7 Antimony 0.050 0.050 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Arsenic 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Barium 0.047 0.005 mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Beryllium 0.005 0.0005 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Cadmium 0.0010 0.0010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Cobalt 0.0020 0.0050 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Cobalt 0.0020 0.0020 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Lithium 0.010 <td>Thallium</td> <td></td> <td>< 10.0</td> <td>10.0</td> <td></td> <td></td> <td>1</td> <td>11/20/18 1:30 PM</td> <td>11/23/18 3:38 PM</td>	Thallium		< 10.0	10.0			1	11/20/18 1:30 PM	11/23/18 3:38 PM	
SPLP METALS FLUID #1 Analyst: MXS EPA 200.2 EPA 200.7 Antimony 0.050 0.050 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Arsenic 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Barium 0.047 0.005 mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Beryllium 0.005 0.0005 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Cadmium 0.0010 0.0010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Cadmium 0.0010 0.0010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Cobalt 0.0020 0.0020 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Lead 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Lithium	SPLP METALS	FLUID #1		Analyst:	GX	l		SM 3112 B	EPA 7470	
Antimony0.0500.050Umg/L111/19/1811:25 AM11/20/185:51 PArsenic0.0100.010Umg/L111/19/1811:25 AM11/20/185:51 PBarium0.0470.005mg/L111/19/1811:25 AM11/20/185:51 PBeryllium0.0050.0005Umg/L111/19/1811:25 AM11/20/185:51 PCadmium0.00100.0010Umg/L111/19/1811:25 AM11/20/185:51 PCadmium0.00100.0010Umg/L111/19/1811:25 AM11/20/185:51 PCobalt0.00200.0020Umg/L111/19/1811:25 AM11/20/185:51 PLead0.0100.010Umg/L111/19/1811:25 AM11/20/185:51 PLithium0.0200.0020Umg/L111/19/1811:25 AM11/20/185:51 PMolybdenum0.0100.010Umg/L111/19/1811:25 AM11/20/185:51 PSelenium0.0100.010Umg/L111/19/1811:25 AM11/20/185:51 PSelenium0.0100.010Umg/L111/19/1811:25 AM11/20/185:51 P	Mercury		< 0.0001	0.0001	J	mg/L	1	11/19/18 11:32 A	M 11/20/18 11:30 AM	
Arsenic0.0100.010Umg/L111/19/1811:25 AM11/20/185:51 PIBarium0.0470.005mg/L111/19/1811:25 AM11/20/185:51 PIBeryllium0.00050.0005Umg/L111/19/1811:25 AM11/20/185:51 PICadmium0.00100.0010Umg/L111/19/1811:25 AM11/20/185:51 PIChromium0.0050.005Umg/L111/19/1811:25 AM11/20/185:51 PICobalt0.00200.0020Umg/L111/19/1811:25 AM11/20/185:51 PILead0.0100.010Umg/L111/19/1811:25 AM11/20/185:51 PILithium0.0050.005Umg/L111/19/1811:25 AM11/20/185:51 PIMolybdenum0.0100.010Umg/L111/19/1811:25 AM11/20/185:51 PISelenium0.0100.010Umg/L111/19/1811:25 AM11/20/185:51 PI	SPLP METALS	FLUID #1		Analyst:	МХ	S		EPA 200.2	EPA 200.7	
Barium0.0470.005mg/L111/19/1811:25 AM11/20/185:51 PIBeryllium0.00050.0005Umg/L111/19/1811:25 AM11/20/185:51 PICadmium0.00100.0010Umg/L111/19/1811:25 AM11/20/185:51 PIChromium0.0050.005Umg/L111/19/1811:25 AM11/20/185:51 PICobalt0.00200.0020Umg/L111/19/1811:25 AM11/20/185:51 PILead0.0100.010Umg/L111/19/1811:25 AM11/20/185:51 PILithium0.0050.005Umg/L111/19/1811:25 AM11/20/185:51 PIMolybdenum0.0100.010Umg/L111/19/1811:25 AM11/20/185:51 PISelenium0.0100.010Umg/L111/19/1811:25 AM11/20/185:51 PI	Antimony		0.050	0.050	U	mg/L	1	11/19/18 11:25 A	M 11/20/18 5:51 PM	
Beryllium0.00050.0005Umg/L111/19/1811:25 AM11/20/185:51 PICadmium0.00100.0010Umg/L111/19/1811:25 AM11/20/185:51 PIChromium0.0050.005Umg/L111/19/1811:25 AM11/20/185:51 PICobalt0.00200.0020Umg/L111/19/1811:25 AM11/20/185:51 PILead0.0100.010Umg/L111/19/1811:25 AM11/20/185:51 PILithium0.0050.005Umg/L111/19/1811:25 AM11/20/185:51 PIMolybdenum0.0100.010Umg/L111/19/1811:25 AM11/20/185:51 PISelenium0.0100.010Umg/L111/19/1811:25 AM11/20/185:51 PI	Arsenic		0.010	0.010	U	mg/L	1	11/19/18 11:25 A	M 11/20/18 5:51 PM	
Cadmium 0.0010 0.0010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Chromium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Cobalt 0.0020 0.0020 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Lead 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Lithium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Lithium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Molybdenum 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Selenium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI	Barium		0.047	0.005		mg/L	1	11/19/18 11:25 A	M 11/20/18 5:51 PM	
Chromium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 Pi Cobalt 0.0020 0.0020 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 Pi Lead 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 Pi Lithium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 Pi Molybdenum 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 Pi Selenium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 Pi	Beryllium		0.0005	0.0005	U	mg/L	1	11/19/18 11:25 A	M 11/20/18 5:51 PM	
Cobalt 0.0020 0.0020 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Lead 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Lithium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Molybdenum 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Selenium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI	Cadmium				U	-	1	11/19/18 11:25 A	M 11/20/18 5:51 PM	
Lead 0.010 0.010 U mg/L 1 11/19/18 11/20/18 5:51 PI Lithium 0.005 0.005 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Molybdenum 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI Selenium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI						-				
Lithium0.0050.005Umg/L111/19/1811:25AM11/20/185:51PMolybdenum0.0100.010Umg/L111/19/1811:25AM11/20/185:51PSelenium0.0100.010Umg/L111/19/1811:25AM11/20/185:51P						-				
Molybdenum 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 Pi Selenium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 Pi						-				
Selenium 0.010 0.010 U mg/L 1 11/19/18 11:25 AM 11/20/18 5:51 PI						-				
ő	,					-				
						-				
GAMMA SPECTROSCOPY Analyst: AM EPA 901.1		TROSCOPY				5				
			0.57+/-0.0333	-		pCi/a	1		11/24/18 11:54 PM	
									11/24/18 11:54 PM	

Geochemi	cal Testing		Date: 12-Dec-18				
CLIENT:	GENON - CONEM	AUGH STAT	ION CCR	Clie	nt Sample ID:	LD-7 0-4	
Lab Order:	G1811870						
Project:	Conemaugh CCR I	V SPLP		Sam	pled By:	APTIM	
Lab ID:	G1811870-001			Coll	ection Date:	11/14/2018	12:30:00 P
Matrix:	SOLID			Rece	eived Date:	11/15/2018	7:21:44 AM
Analyses		Result	QL () Units	DF Date	e Prepared	Date Analyzed
GAMMA SPEC	TROSCOPY		Analyst: A	м			EPA 901.1
NOTES: QL is equal to	the MDA		-				
Result include	s the uncertainty which is	calculated at the	95% confider	ice level (1.9	6-sigma).		
The reported v	value for Ra-226 is the ave	erage of its daugh	iter's Pb-214	and Bi-214 ad	ctivity due to the	possibility of U	-235 interference.
Ra-228 and A	c-228 are assumed to be	in secular equilibr	ium. The res	ults for Ra-22	28 are inferred fro	om Ac-228.	
SPLP RADIOL	OGICAL PARAMETER	रऽ	Analyst: S	UB			EPA 903.1 MOD
Radium 226		0.205+-0.355	0.6	pCi/L	1		12/06/18 10:42 AM
SPLP RADIOL	OGICAL PARAMETER	RS	Analyst: S	UB			EPA 904.0 MOD
Radium 228		-0.237+-0.379	0.9	pCi/L	1		12/05/18 12:09 PM
SPLP FLUID #							12/00/10 12:00110
	:1		Analyst: A	LD			EPA 1312
Final pH Metals	1	3.60	Analyst: A	L D S.U.	1		
Final pH Metals SPLP FLUID #		3.60	Analyst: A Analyst: M	S.U.	1		EPA 1312

Geochemica	al Testing			Date: 12-Dec-18						
CLIENT:	GENON - CONI	EMAUGH STAT	FION CCR	_	Client	Sampl	le ID:	LD-8 0-4		
Lab Order: Project: Lab ID: Matrix:	ect:Conemaugh CCR IV SPLPID:G1811870-003				Sample Collect Receiv	tion D	ate:	APTIM 11/14/2018 11/15/2018	12:55:00 P 7:21:44 AM	
Analyses		Result	QL	Q	Units	DF	Date	e Prepared	Date Analyzed	
TOTAL METALS			Analyst:	RLI	_				EPA 7473	
Mercury		0.095	0.010		mg/Kg-dry	1			11/20/18 2:36 PM	
SPLP INORGAN	ICS		Analyst:	мв	G		EPA	300.0	EPA 300.0	
Fluoride		0.27	0.05		mg/L	1			11/16/18 6:45 PM	
		0.2.			-	•				
TOTAL METALS			Analyst:	MX				3050	EPA 6010	
Antimony		< 10.0	10.0		mg/Kg-dry	1)/18 1:30 PM	11/23/18 3:43 PM	
Arsenic		18.8	2.0		mg/Kg-dry	1)/18 1:30 PM	11/23/18 3:43 PM	
Barium		137	1.0		mg/Kg-dry	1)/18 1:30 PM	11/23/18 3:43 PM	
Beryllium		1.32	0.10		mg/Kg-dry	1		0/18 1:30 PM	11/23/18 3:43 PM	
Cadmium		< 5.0	5.0		mg/Kg-dry	1)/18 1:30 PM	11/23/18 3:43 PM	
Chromium		30.7	5.0		mg/Kg-dry	1)/18 1:30 PM	11/23/18 3:43 PM 11/23/18 3:43 PM	
Cobalt Lead		21.5 23.2	0.5 2.0		mg/Kg-dry mg/Kg-dry	1 1)/18 1:30 PM)/18 1:30 PM	11/23/18 3:43 PM	
Lithium		23.2 11.7	2.0 1.0		mg/Kg-dry	1)/18 1:30 PM	11/23/18 3:43 PM	
Molybdenum		< 2.0	2.0		mg/Kg-dry	1)/18 1:30 PM	11/23/18 3:43 PM	
Selenium		2.6	2.0		mg/Kg-dry	1)/18 1:30 PM	11/23/18 3:43 PM	
Thallium		< 10.0	10.0		mg/Kg-dry	1)/18 1:30 PM	11/23/18 3:43 PM	
SPLP METALS F	LUID #1		Analyst:	GX				3112 B	EPA 7470	
Mercury		< 0.0001	0.0001	J	mg/L	1)/18 11:32 AM		
SPLP METALS F	LUID #1		Analyst:	JEł	(EPA	200.2	EPA 200.7	
Antimony		0.05	0.05	U	mg/L	1	11/19	/18 12:05 PM	11/20/18 2:06 PM	
Arsenic		0.010	0.010	U	mg/L	1	11/19)/18 12:05 PM	11/20/18 2:06 PM	
Barium		0.062	0.005		mg/L	1	11/19)/18 12:05 PM	11/20/18 2:06 PM	
Beryllium		0.0005	0.0005	U	mg/L	1	11/19)/18 12:05 PM	11/20/18 2:06 PM	
Cadmium		0.0010	0.0010	U	mg/L	1	11/19	/18 12:05 PM	11/20/18 2:06 PM	
Chromium		0.005	0.005	U	mg/L	1	11/19)/18 12:05 PM	11/20/18 2:06 PM	
Cobalt		0.0020	0.0020	U	mg/L	1	11/19)/18 12:05 PM	11/20/18 2:06 PM	
Lead		0.010	0.010	U	mg/L	1	11/19	0/18 12:05 PM	11/20/18 2:06 PM	
Lithium		0.005	0.005	U	mg/L	1	11/19)/18 12:05 PM	11/20/18 2:06 PM	
Molybdenum		0.010	0.010	U	mg/L	1	11/19	0/18 12:05 PM	11/20/18 2:06 PM	
Selenium		0.010	0.010	U	mg/L	1			11/20/18 2:06 PM	
Thallium		0.010	0.010	U	mg/L	1	11/19	0/18 12:05 PM	11/20/18 2:06 PM	
GAMMA SPECTI	ROSCOPY		Analyst:	AM					EPA 901.1	
Radium-226		1.08+/-0.0552	0.059		pCi/g	1			11/25/18 12:08 AM	
Radium-228		1.53+/-0.0971	0.040		pCi/g	1			11/25/18 12:08 AM	

Geochemi	cal Testing		Date: 12-Dec-18				
CLIENT:	GENON - CONE	MAUGH STAT	TION CCR	Clier	nt Sample ID:	: LD-8 0-4	
Lab Order:	G1811870						
Project:	Conemaugh CCR	IV SPLP		Sam	pled By:	APTIM	
Lab ID:	G1811870-003			Colle	ection Date:	11/14/2018	12:55:00 P
Matrix:	SOLID			Rece	eived Date:	11/15/2018	7:21:44 AM
Analyses		Result	QL (Units	DF Dat	e Prepared	Date Analyzed
GAMMA SPEC NOTES: QL is equal to			Analyst: A	М			EPA 901.1
Result include	s the uncertainty which i	s calculated at the	95% confider	ce level (1.96	6-sigma).		
The reported v	alue for Ra-226 is the a	verage of its daug	hter's Pb-214	and Bi-214 ad	tivity due to the	possibility of U	-235 interference.
Ra-228 and A	c-228 are assumed to be	e in secular equilib	rium. The res	ults for Ra-22	8 are inferred fr	om Ac-228.	
SPLP RADIOL	OGICAL PARAMETE	ERS	Analyst: S	UB			EPA 903.1 MOD
Radium 226		0.792+-0.627	0.9	pCi/L	1		12/07/18 12:08 PM
SPLP RADIOL	OGICAL PARAMETE	ERS	Analyst: S	UB			EPA 904.0 MOD
Radium 228		0.427+-0.397	0.8	pCi/L	1		12/05/18 3:36 PM
SPLP FLUID #	1		Analyst: A	LD			EPA 1312
Final pH Metals		5.14		S.U.	1		11/18/18 11:00 AM
SPLP FLUID #	3		Analyst: M	AG			EPA 1312
Final pH Non Me							

CHAIN OF CUSTODY

Geochemical Testing • 20 Billing Client: GENON Address: CONEMAIIGH	Con e-ma	tact (Company	n: APTIN	Phone: (4)	2) 380 - 42-1	17.
2ity: <u>NON ABRONCE</u> State: PA NO#: 61811860	à anna a s	pled by: Pai	h Andrison and Evan Schledel	Fax: () State Samp	led: 7-74	
ample Matrix: GW Ground Water SW Surface ample Type: G Grab C Component		WW Wastewater R Raw/DW	SO Soil SL Sludge S Special/DW O Other	PO/Quote#:	Hazardous PCBs	;
Sample Location/ Lab Description Numbe **NOTE: IF multiple analytes from	Sample Date	Time Sample (Military) Type	Analyses Require	ested Pre	Remarks/ servatives, etc	Number o Container
**NOTE: IF multiple analytes from B-9 0-4	50 11/13/18	1200 G	SEE BOTTLE	ESS LISTED ON ATTACH	D FIELD LOG d: Y / N	
<u>B-10 0-4 -</u>	SO 1/13/18	1202 6		Field Filtere Field Filtere		
B-10 4-8	SO 11/13/18 SO 11/13/18	1205 G 1207 G		Field Filtere		р.
UD-1 0-4 001	SO 11/13/18	1830 G		Field Filtered	t Y/N	3
UD-1 1-8	SO 11/13/18 SC 11/13/19	1335 G		Field Filtered		3
10-2 4-8	SO 11/13/19 SO 11/13/18	1345 G 1350 G		Field Filtered		
te Deficiencies Here:		j				
Relinguished by (Company & Signature		e (Military) F	Received by (Company & Si		Date Time (4-(1-193	
MPLES MUST BE PRESERVED	ON ICE.		nt on receipt:Yes orNo	cooler Temp (°C		

CHAIN OF CUSTODY

Geochemical Tes	ting • 2005 No	orth C	enter Aven	ue · Sc	merse	et PA 15501 • (814) 443-167	71 • Fax (814)	Form F-5002 445-6729	., 12.16
Billing Client: GENON Address: CONEMP City: NEW FLORENCE WO#: 6181860	Hugh	»: <i> 5</i> °	Conta e-mai	act (Com il: path pled by:	ipany) icia. Pa	: APTIM andn'son Ophm.com th Andrson	Phone: (4/2) 7 Fax: () State Sampled: PO/Quote#:		2
Sample Matrix: GW Ground Wa Sample Type: G Grab	ater SW Surface Wa		Potable Water istribution/DW	WW Waste R Raw/DW	water	SO Soil SL Sludge nHZ Not S Special/DW O Other	t Hazardous / HZ Hazar	dous PCBs	
Sample Location/ Description	Lab Number	Sample Matrix	Date	Time (Military)	Sample Type	**Analyses Requested	Preserv	narks/ atives, etc	Number of Containers
UD-2 A-1	Co 3	1.00	1 1	5.4		N list separately on one line UNLESS LIST	Field Filtered: Y /		
u0-3 4-8	(4)	50 50	11/13/18	1405	G	SEE BOTTLES	Field Filtered: Y /	N	3
UD-4 0-4	04	SO	11/13/18	1420	6		Field Filtered: Y /	N	3
UD-4 4-8		50	11/13/18	1425	6		Field Filtered: Y /	N	3
UD-5 0-4	005	50	11/13/18	1500	6		Field Filtered: Y /	N	3
10-5 \$\$4-8		50	11/13/18	1505	6		Field Filtered: Y / I	N	3
UD-6 0-4	006	SO	11/13/18	1510	6		Field Filtered: Y / I	٧	3
40-6 4-8	-	SO	11/13/18	1520	6	-	Field Filtered: Y / I	1	3
Note Deficiencies Here:			1 1		1				
Relinquished by (Company APTIM Patruia M (10	ne (Military)	Ċ	Received by (Company & Signatur		te Time 18 193	(Military) 9
SAMPLES MUST BE PF	RESERVED ON	I ICE.				ent on receipt:Yes orNo	Cooler Temp (°C) or		

CHAIN OF CUSTODY

Geochemic	al Testing • 2005 N	orth C	enter Aver	nue • So	merse	et PA 15501 • (814) 443-167	71 • Fax (814) 445-6729)
Billing Client: <u>GE</u> Address: <u>ONE</u> City: <u>NEW FORM</u> WO#:	MAUGH MAUGH NCE State: PA Zi G1811867	p:	Con e-ma Sam Proje	tact (Com ail: pled by: ect:	Pany) Pan	TI ANDRISON HND	Phone: (4/2) 380-42 Fax: () State Sampled: PA PO/Quote#: PO/Quote#:	
Sample Matrix:GW GiSample Type:G Grat	round Water SW Surface Wa b C Composite	_	Potable Water istribution/DW	WW Waste R Raw/DW	water	SO Soil SL Sludge nHZ Not S Special/DW O Other	t Hazardous / HZ Hazardous PC	Bs
Sample Location Description **NOTE: If	Number	Sample Matrix	Date	Time (Military)	Sample Type		Remarks/ Preservatives, etc	Number of Containers
UD-7 0-4	001	50	11/14/18	0930	6	Set Bottles	Field Filtered: Y / N	3
UD-7 4-8	-002		1	0935	6	HOLD	Field Filtered: Y / N	3
UN-8 0-4	603			0950	6	SEE BOTTLES	Field Filtered: Y / N	3
UD-8 4-8	-004			0955	6	HOLD	Field Filtered: Y / N	3
10-1 04	COS			1005	6	SEEBOTTLES	Field Filtered: Y / N	3
10-1 48	-006		2	1015	6	HOLD	Field Filtered: Y / N	3
10-2 0-4	607			1055	6	SEE BOTTLES	Field Filtered: Y / N	3
10-2 4-8	_ 008	V	V	1100	6	HOLD	Field Filtered: Y / N	3
Note Deficiencies Here								
Relinquished by (Conference of the second se	ompany & Signature)	1	Date Ti 4 18	me (Military)		Received by (Company & Signatur Don Paul		ne (Military)
SAMPLES MUST	BE PRESERVED OI	VICE.		l		A	Cooler Temp (°C) on receipt: Client Support (2nd Review):	4

CHAIN OF CUSTODY

Geoc	nemical Test	ing • 2005 N	orth C	enter Aven	ue • So	merse	et PA 15501 • (814) 443-16	71 • Fax (814) 44	5-6729	12.16
Billing Client					act (Com	-		Phone: (4/2) 380		12
Address:	CONEMAUE	at o		e-ma				Fax: ()	401	
City: New	FLORENCE	State: A Zi	o:	Sam	oled by:	P	ATTI ANDRISON AND	State Sampled:	DA	
WO#:		6181186	9	Proje	ct:		EVAN SIMEGE	PO/Quote#:	1.1.	
Sample Matrix:	GW Ground Wat	ter SW Surface Wa	ter PW	Potable Water	WW Waste	water		ot Hazardous / HZ Hazardou	s PCBs	
Sample Type:	G Grab	C Composite	DD	istribution/DW	R Raw/DW		S Special/DW O Other			
Sample L Descr	iption	Lab Number	Sample Matrix	Date	Time (Military)	Sample Type	**Analyses Requested	Remar Preservativ	ion oto	Number of Containers
**/	NOTE: IF multiple		ttle, OR i	f multiple bottles	for one ana	yte, THE	N list separately on one line UNLESS LIS		LOG	
LD-3	0-4	001	50	11/14/18	1115	6	SEE BOTTLES	Field Filtered: Y / N		3
10-3	4-8	- 002	1		1120		HOLD	Field Filtered: Y / N		3
LD-4	0-4	a3			1140		SET BOTTLES	Field Filtered: Y / N		3
LD-4	4-8	- 004			1145		HOLD	Field Filtered: Y / N		3
LD-5	0-4	005			1155		SOF BOTTLES	Field Filtered: Y / N		3
10-5	4-8	- 006			1200		HOLD	Field Filtered: Y / N		3
10-6	0-4	007			1210		SEE BOTTLES	Field Filtered: Y / N		3
LD-6	4-B	- 068	V	V	1215	V	HOLD	Field Filtered: Y / N		3
Note Deficiencie	es Here:									
Relinquished	d by (Company	& Signature)	,D	ate Tin	ne (Military)		Received by (Company & Signatur	ire): Date	Time ((Military)
Faturan	nGjindle	APTIM	11/1-	1 /18]2	100		Intal	11-15-18		
SAMPLES M	UST BE PR	ESERVED ON	I ICE.		ļ	ce prese Samp	ent on receipt:Yes orNo	Cooler Temp (°C) on re Client Support (2nd Rev		

CHAIN OF CUSTODY

Geoc	hemical Tes	ting • 2005 N	lorth Co	enter Aven	ue • Sc	merse	et PA 15501 • (814) 443-16	671 •	Fax (814) 445-6	5729	., 12.16
Billing Clien					and the second second	-	: APTIM	1	ne: (412)380-		17.
Address: (ONEMAUG	H D		e-ma		-		Fax:	()	70	12
City: NEW F	TORENLE	State: A Zi	p:	Sam	oled by:	PAF	T ANDRISON AND	-	Sampled:		
WO#:	2	6181	The second second	Proje		1	EVAN SOMEGEL		uote#:		
Sample Matrix:	GW Ground Wa				WW Waste	wator		-		-	
Sample Type:	G Grab	C Composite		istribution/DW	R Raw/DW	water	SO Soil SL Sludge nHZ N S Special/DW O Other	ot Hazaro	dous / HZ Hazardous	PCBs	
Desc	Location/ ription	Lab Number	Sample Matrix	Date	Time (Military)	Sample Type	**Analyses Requested		Remarks/ Preservatives		Number of Containers
	NOTE: IF multiple	analytes from one b	ottle, OR i	f multiple bottles	for one ana	lyte, THE	I IN list separately on one line UNLESS LIS	STED ON	ATTACHED FIELD LO	G	
LD-7	0-4	OCI	50	11/14/18	1230	6	SET BOTTLES		Field Filtered: Y / N		3
LD-7	4-8	-002	50		1240	1	HOLD		Field Filtered: Y / N		3
LD-8	0-4	an	50		1255		See Bornes		Field Filtered: Y / N		3
40-8	4-8	-	50	V	-		PMP HOLD NOSAM	RES	Field Filtered: Y / N		0
							1 MERSIS		Field Filtered: Y / N		
									Field Filtered: Y / N		<u> </u>
									Field Filtered: Y / N	-	
								-	Field Filtered: Y / N		-
Note Deficienci	ies Here:										
Relinquishe	d by (Company	y & Signature)	D	ate Tin	ne (Military)		Received by (Company & Signatu	ire):	Date	Time ((Military)
fatriira M	Garble	APTIM	11/14	/18	1400		Jon flue		11-14-18	7:2	
SAMPLES N	NUST BE PR	RESERVED O	N ICE.		1		ent on receipt: _/_Yes orNo		Temp (°C) on receip Support (2nd Review		

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

December 06, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

RE: Project: G1811860 Pace Project No.: 30272445

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 21, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carino a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: G1811860 Pace Project No.: 30272445

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: G1811860 Page Project No : 30272445

Pace	Project r	NO.: 3	30272445

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30272445001	G1811860-001	Water	11/15/18 09:16	11/21/18 09:30
30272445002	G1811860-003	Water	11/15/18 09:16	11/21/18 09:30
30272445003	G1811860-005	Water	11/15/18 09:16	11/21/18 09:30

SAMPLE ANALYTE COUNT

 Project:
 G1811860

 Pace Project No.:
 30272445

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272445001	G1811860-001	EPA 903.1	MK1	1
		EPA 904.0	JLW	1
30272445002	G1811860-003	EPA 903.1	MK1	1
		EPA 904.0	JLW	1
30272445003	G1811860-005	EPA 903.1	MK1	1
		EPA 904.0	JLW	1

PROJECT NARRATIVE

Project: G1811860 Pace Project No.: 30272445

Method:	EPA 903.1
Description:	903.1 Radium 226
Client:	Geochemical Testing
Date:	December 06, 2018

General Information:

3 samples were analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G1811860 Pace Project No.: 30272445

Method:	EPA 904.0
Description:	904.0 Radium 228
Client:	Geochemical Testing
Date:	December 06, 2018

General Information:

3 samples were analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:	G1811860								
Pace Project No.:	30272445								
Sample: G1811860 PWS:	0-001	Lab ID: 30272 Site ID:	2445001	Collected: Sample Ty	11/15/18 09:16 /pe:	Received:	11/21/18 09:30	Matrix: Water	
Comments: • Sam	nple date on Ch	ain of Custody is SPLP	extraction	n date, no ex	traction time liste	d.			
Parame	eters	Method	Ac	t ± Unc (MD	C) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		EPA 903.1		6 ± 0.382 (0 T:91%	.539)	pCi/L	12/06/18 10:42	2 13982-63-3	
Radium-228		EPA 904.0		9 ± 0.331 (% T:90%	0.802)	pCi/L	12/05/18 12:09) 15262-20-1	
Sample: G1811860 PWS:	0-003	Lab ID: 30272 Site ID:	2445002	Collected: Sample Ty	11/15/18 09:16 /pe:	Received:	11/21/18 09:30	Matrix: Water	
Comments: • Sam	nple date on Ch	ain of Custody is SPLP	extractior	n date, no ex	traction time liste	d.			
Parame	eters	Method	Ac	t ± Unc (MD	C) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		EPA 903.1		± 0.410 (0 T:95%	.611)	pCi/L	12/06/18 10:42	2 13982-63-3	
Radium-228		EPA 904.0) ± 0.460 (0 % T:82%	.999)	pCi/L	12/05/18 12:09	9 15262-20-1	
Sample: G1811860 PWS:	0-005	Lab ID: 30272 Site ID:	2445003	Collected: Sample Ty	11/15/18 09:16 /pe:	Received:	11/21/18 09:30	Matrix: Water	
Comments: • Sam	nple date on Ch	ain of Custody is SPLP	extraction	n date, no ex	traction time liste	d.			
Parame	eters	Method	Ac	t ± Unc (MD	C) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		EPA 903.1		± 0.527 (0	.748)	pCi/L	12/06/18 10:42	2 13982-63-3	
Radium-228		EPA 904.0	0.502	2 ± 0.418 (0 % T:85%).836)	pCi/L	12/05/18 12:09	9 15262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	G1811860								
Pace Project No.:	30272445								
QC Batch:	321860	Analysis Method	EPA 904.0						
QC Batch Method:	EPA 904.0	Analysis Descrip	tion: 904.0 Radiu	m 228					
Associated Lab Sa	Associated Lab Samples: 30272445001, 30272445002, 30272445003								
METHOD BLANK:	1569350	Matrix: Wa	ter						
Associated Lab Sa	mples: 3027244	5001, 30272445002, 30272445003							
Para	meter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers	_			
Radium-228		0.236 ± 0.358 (0.774) C:81% T:77%	pCi/L	12/05/18 12:08		-			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	G1811860							
Pace Project No.:	30272445							
QC Batch:	321859	Ana	alysis Method:	EPA 903.1				
QC Batch Method:	EPA 903.1	Ana	alysis Description:	903.1 Radiu	ım-226			
Associated Lab Sa	Associated Lab Samples: 30272445001, 30272445002, 30272445003							
METHOD BLANK:	1569347		Matrix: Water					
Associated Lab Sa	mples: 3027244	5001, 30272445002, 302724	445003					
Para	meter	Act ± Unc (MDC)	Carr Trac	Units	Analyzed	Qualifiers		
Radium-226		0.234 ± 0.459 (0.839) C:I		pCi/L	12/06/18 09:57		=	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: G1811860 Pace Project No.: 30272445

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Shuttle/Cooler ID#:	CHA			IN OF CUSTODY	Ge	Geochemical Testing	esting	
Fear Fao Geochemical Testing • 2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729	North Center	Avenue • St	omerset PA	15501 • (814) 443-	1671 •	Fax (814) 445-	Form F-5002, 04.13 6729	
Billing Client: Geochemical Testing		Contact (Company):		Leslie Nemeth	Phone:	e: (814) 443-1671	71	
Address: 2005 North Center Avenue		e-mail: <u>Inem</u> e	Inemeth@geo-ces.com	com	Fax:	Fax: (814) 445-6729		
City: Somerset state: PA Z	Zip: 15501	Sampled by:	Client		Prese	Preservatives by S	Sampler G	GT
WO#:		Project:			PO/QI	N K	-સ્પિત	
Sample Matrix: GW Ground Water SW Surface Water PW Potable Water WW Watewater	Water PW Potable Water	Water WW Waste		SL Sludge	Z Not Hazard	nHZ Not Hazardous / HZ Hazardous	PCBs	
				S Special/UW 0 Other 2000 C	ontainers su	oplied by:	nt 🗌 GILab	
Sample Location/ Lab Description Number	Sample SPLP E Matrix Date	'Ext Time	Sample Tvne	***Analyses Requested	р	Remarks/ Droconteituon	Number of Containers	er of ners
IF multiple analy	e bottle, OR if multiple	bottles for one an	alyte, THEN list :	ieparately on one line UNLESS	LISTED ON	ATTACHED FIELD LO	3	
G1811860-001	nHZ / HZ 11/15/201	18 9:16		SPLP Radium 226, 228		Field Filtered: Y / N HNO3	~~~	
	ZH / ZHu					Field Filtered; Y / N		
G1811860-003	инz / нz 11/15/201	18 9:16 [°]	, 	SPLP Radium 226, 228		Field Filtered: Y / N HNO3	2	0 2 2
	ZH / ZHU					Field Filtered; Y / N		
G1811860-005	nHZ / HZ 11/15/201	18 9:16	<u></u>	SPLP Radium 226, 228		Field Filtered: Y / N HNO3	~~~	60 M
	nHZ / HZ		- #U '			Field Filtered: Y / N		<u> </u>
	ZH / ZHu					ieid Filtered: Y / N		1
	ZH / ZHu		30/27/2445	30272445		ieid Filtered: Y / N		1
Note Deficiencies Here: 10 Day Rush Please	lease - If Possible	e						1
Relinquished by (Company & Signature)	Date	Time (Military)		Received by (Company & Sigr	Signature):	Date	Time (Military)	N)
Leslie Nemeth	11/20/2018	8:00:00	Clani	varan PA	ŕ	21/12/11	0690	
						-		
SAMPLES MUST BE PRESERVED ON ICE.	ON ICE.		lce present on receipt: Sample Receiving (present on receipt:Yes or /No Sample Receiving (1st Review):		Cooler Temp (°C) on receipt: NH Client Support (2nd Review):	ipt: N?A	1
					I			

.

Pittsburgh Lab Sample Condit	ion l	Jpoi	n Re	ceipt	
Face Analytical Client Name:	G	lo	Úh	em	Project##- <u>3027244</u>
Courier: \Box Fed EX \square UPS \square USPS \square Client Tracking #: $(75349, 067, 03473, 059, 059, 059, 059, 059, 059, 059, 059$	• 🗗 • 93	iomme SU 7	ercial I	Pace Other	Label MS LIMS Login MS
Custody Seal on Cooler/Box Present:	Ω.			s intact: 🗌 yes	
Thermometer Used NA	Туре	of Ice	: Wet	Blue Vone	
Cooler Temperature Observed Temp		° C	Corr	ection Factor:	°C Final Temp:°C
Temp should be above freezing to 6°C					Date and Initials of person examining
				pH paper Lot# 10D2981	contents: 11 7 SH & TUP
Comments:	Yes	No No	N/A	1000-101	
Chain of Custody Present:	\vdash]	<u> </u>	1	
Chain of Custody Filled Out:	\vdash	<u> </u>		2.	
Chain of Custody Relinquished:	\vdash	<u> </u>	<u> </u>	3.	
Sampler Name & Signature on COC:	<u> </u>	\vdash		4.	
Sample Labels match COC:			1	-1	samples is 11.16.14
-Includes date/time/ID Matrix:	рЛ		1	no tri	ne on any sam, de
Samples Arrived within Hold Time:	\vdash		<u> </u>	6.	
Short Hold Time Analysis (<72hr remaining):		\mid	1	7	
Rush Turn Around Time Requested:			<u> </u>	8.	
Sufficient Volume:	\triangleleft	1		9.	
Correct Containers Used:	\leq]		10.	
-Pace Containers Used:		/	1		
Containers Intact:				11.	
Orthophosphate field filtered				12.	
Hex Cr Aqueous Compliance/NPDES sample field filtered				13.	
Organic Samples checked for dechlorination:				14.	
Filtered volume received for Dissolved tests			\triangleright	15.	
All containers have been checked for preservation.				16	 ,
All containers needing preservation are found to be in compliance with EPA recommendation.				16. PHLZ	
exceptions: VOA, coliform, TOC, O&G, Phenolics				Initial when MB	Date/time of preservation
exceptions: VOA, contorn, TOC, Odd, Friendida				Lot # of added	
	1			preservative	
Headspace in VOA Vials (>6mm):	 			17	
Trip Blank Present:				18.	
Trip Blank Custody Seals Present			<u> </u>	teillet usher	
Rad Aqueous Samples Screened > 0.5 mrem/hr				completed: 000	Date: 112518
Client Notification/ Resolution:					
Person Contacted:			DateЛ	îme:	Contacted By:
Comments/ Resolution:					l
				· · · · · · · · · · · · · · · · · · ·	
					<u> </u>
·					
A check in this box indicates that addit	ional i	inforn	nation	has been stored in	n ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

J:\QAQC\Master\Document Management\Sample Mgt\Sample Condition Upon Receipt Pittsburgh (C056-7 16Feb2018)

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

December 17, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

RE: Project: G1811860 Pace Project No.: 30272707

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 27, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carino a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: G1811860 Pace Project No.: 30272707

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project:	G1811860
Pace Project No .:	30272707

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30272707001	G1811860-002	Water	11/15/18 09:16	11/27/18 13:40
30272707002	G1811860-004	Water	11/15/18 09:16	11/27/18 13:40

SAMPLE ANALYTE COUNT

 Project:
 G1811860

 Pace Project No.:
 30272707

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272707001	G1811860-002	EPA 903.1	MK1	1
		EPA 904.0	VAL	1
30272707002	G1811860-004	EPA 903.1	MK1	1
		EPA 904.0	VAL	1

PROJECT NARRATIVE

Project: G1811860 Pace Project No.: 30272707

Method:	EPA 903.1
Description:	903.1 Radium 226
Client:	Geochemical Testing
Date:	December 17, 2018

General Information:

2 samples were analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G1811860 Pace Project No.: 30272707

Method:	EPA 904.0
Description:	904.0 Radium 228
Client:	Geochemical Testing
Date:	December 17, 2018

General Information:

2 samples were analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:	G1811860						
Pace Project No.:	30272707						
Sample: G181186	60-002	Lab ID: 30272	707001 Collected: 11/15/18 09:16	Received:	11/27/18 13:40 I	Matrix: Water	
PWS:		Site ID:	Sample Type:				
Comments: • Sar	mple collection	dates and times were no	t present on the sample containers.				
Param	eters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		EPA 903.1	0.503 ± 0.523 (0.778) C:NA T:84%	pCi/L	12/14/18 22:03	3 13982-63-3	
Radium-228		EPA 904.0	0.244 ± 0.301 (0.636) C:77% T:84%	pCi/L	12/14/18 14:12	2 15262-20-1	
Sample: G181186	60-004	Lab ID: 30272	707002 Collected: 11/15/18 09:16	Received:	11/27/18 13:40	Matrix: Water	
PWS:		Site ID:	Sample Type:				
Comments: • Sar	mple collection	dates and times were no	t present on the sample containers.				
Param	eters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		EPA 903.1	0.148 ± 0.409 (0.794) C:NA T:90%	pCi/L	12/14/18 22:03	3 13982-63-3	
Radium-228		EPA 904.0	-0.0576 ± 0.299 (0.705) C:83% T:86%	pCi/L	12/14/18 14:12	2 15262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	G1811860						
Pace Project No.:	30272707						
QC Batch:	322728		Analysis Method:	EPA 904.0			
QC Batch Method:	EPA 904.0		Analysis Description:	904.0 Radiu	m 228		
Associated Lab Samples: 30272707001, 30272707002							
METHOD BLANK: 1572965 Matrix: Water							
Associated Lab Samples: 30272707001, 30272707002							
Parar	meter	Act ± Unc	(MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-228		-0.260 ± 0.319 (0.	788) C:82% T:79%	pCi/L	12/14/18 14:11		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	G1811860						
Pace Project No.:	30272707						
QC Batch:	322685		Analysis Method:	EPA 903.1			
QC Batch Method:	EPA 903.1		Analysis Description:	903.1 Radiu	m-226		
Associated Lab Samples: 30272707001, 30272707002							
METHOD BLANK:	1572868		Matrix: Water				
Associated Lab Samples: 30272707001, 30272707002							
Parar	meter	Act ± Unc	: (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-226		$\overline{0.0834 \pm 0.490}$ (1.00) C:NA T:88%	pCi/L	12/14/18 21:48		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: G1811860 Pace Project No.: 30272707

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Shuttle/Cooler ID#:		σ	JAIN		ರ	HAIN OF CUSTODY	Geo	Geochemical Testing	bu
Geochemical Testing		orth Cer	iter Aven	ue • So	merse	• 2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729	-1671 • Fa	Fom F-5002, 04.13 ax (814) 445-6729	02, 04.13
Billing Client: Geochen	Geochemical Testing		Cont	Contact (Company):	pany):	Leslie Nemeth	Phone:	Phone: (814) 443-1671	
Address: 2005 North Center Avenue	inter Avenue		e-mail:		th@geo	Inemeth@geo-ces.com	Fax: (8	(814) 445-6729	
City: Somerset	State: PA Zip:	155	01 Sam	Sampled by:	Client		Preserv	Preservatives by Sampler	ler_GT
			Project:	ict:			PO/Quc	PO/Quote#: PDUR - 4994	Å
Sample Matrix: GW Ground Wa	GW Ground Water SW Surface Water PW Potable Water WW Wastewater	er PW Pc	itable Water	ww Waste	No.	Je	Z Not Hazardou	azardo	3s
Sample Type: G Grab	C Composite	D Distr	ibution/DW	D Distribution/DW R Raw/DW		S Special/DW O Other C	Containers Supplied by:	ied by: Client	GT Lab
Sample Location/ Description	Lab Number	Sample F Matrix	Extraction Date	Time (Military)	Sample Type	**Analyses Requested		Remarks/ Preservatives, etc	Number of Containers
**NOTE: IF multiple	16 00	125	nultiple bottle	s for one ana	ilyte, THEI	multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG	NO GISTED ON A	ITACHED FIELD LOG	
G1811860-002		~	11/15/2018	9:16	U	SPLP Radium 226, 228	<u>H</u>	Field Filtered: Y / N HNO3	200 Í
		N					Fie	Field Filtered: Y / N	
G1811860-004			11/15/2018	9:16	<u></u> 0	SPLP Radium 226, 228		Field Filtered: Y / N HNO3	≥002
		Ň					Ľ,	Field Filtered: Y / N	
6131360-066- 36		THZ / HZ	11/15/2018	9:)¢	45			Field Filtered: Y / N <i>}}J,V,O₃</i>	ď
		ZH / ZHu				WO#:30272707	2707	ald Filtered: Y / N	
		ZH / ZHu							
		ZH / ZHu				30272707			
Note Deficiencies Here:	10 Day Rush Please PA	ise PA							
Relinquished by (Company & Signature)	y & Signature)			Time (Military)		Received by (Company & Signature):	nature):	Date	Time (Miltary)
Leslie Nemeth		11/21/2018	/2018	8:00:00	Ň	en Mandan			1340
								RN11-38-11	
SAMPLES MUST BE PRESERVED ON ICE	RESERVED OI	N ICE.			ice prese Samp	ice present on receipt:Yes orNo Sample Receiving (1st Review):		Cooler Temp (°C) on receipt: <u>/</u> Client Support (2nd Review):	1 T

.

Pittsburgh Lab Sample Condi	tion	Upo	n Re	eceipt
Face Analytical Client Name:		(<u>20(</u>	<u>Schem</u> Project# <u>302727</u> 0
Courier: Fed Ex UPS USPS Clien			ercial	Deace Other Label & Label & Label & Label & Lims Login & Lims Lo
Custody Seal on Cooler/Box Present: yes			Seal	s intact: yes no
Thermometer Used N/A	Туре	of Ice	: We	t Blue None
Cooler Temperature Observed Temp				rection Factor: - °C Final Temp: - °C
Temp should be above freezing to 6°C				
				pH paper Lot# Date and Initials of person examining contents: BLM 11-27-18
Comments:	Yes	No	N/A	10 D 2781 contents: <u>13 L/M 11- 27-18</u>
Chain of Custody Present:		4	_	1.
Chain of Custody Filled Out:		<u></u>		2.
Chain of Custody Relinquished:				3.
Sampler Name & Signature on COC:			4	4.
Sample Labels match COC:		/	<u> </u>	5. No date of time on samples.
-Includes date/time/ID Matrix:	<u> </u>	<u>"</u>		
Samples Arrived within Hold Time:				6.
Short Hold Time Analysis (<72hr remaining):				7.
Rush Turn Around Time Requested:				8.
Sufficient Volume:				9.
Correct Containers Used:	\square			10.
-Pace Containers Used:				
Containers Intact:				11.
Orthophosphate field filtered			1	12.
Hex Cr Aqueous Compliance/NPDES sample field filtered				13.
Organic Samples checked for dechlorination:	1		17,	14.
Filtered volume received for Dissolved tests				15.
All containers have been checked for preservation.				16
All containers needing preservation are found to be in compliance with EPA recommendation.	\square			Phia
exceptions; VOA, coliform, TOC, O&G, Phenolics				Initial when BLM Date/time of preservation
				Lot # of added
				preservative
leadspace in VOA Vials (>6mm):			/	17.
Trip Blank Present:			\square	18.
Trip Blank Custody Seals Present		/	/.	Initial when News News News News
Rad Aqueous Samples Screened > 0.5 mrem/hr				completed: BLM Date: 11-28-18
Client Notification/ Resolution:				· · · · · · · · · · · · · · · · · · ·
Person Contacted:			Date/T	îme:Contacted By:
Comments/ Resolution:				
			de 1971 11.	
				·
				an a

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

J:\QAQC\Master\Document Management\Sample Mgt\Sample Condition Upon Receipt Pittsburgh (C056-7 16Feb2018)

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

December 11, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

RE: Project: G1811860 Pace Project No.: 30272858

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 29, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carino a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: G1811860 Pace Project No.: 30272858

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

30272858001	G1811860-006	Water	11/15/18 00:01	11/29/18 10:15
Lab ID	Sample ID	Matrix	Date Collected	Date Received
Pace Project No	.: 30272858			
Project:	G1811860			

SAMPLE ANALYTE COUNT

 Project:
 G1811860

 Pace Project No.:
 30272858

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272858001	G1811860-006	EPA 903.1	MK1	1
		EPA 904.0	VAL	1

PROJECT NARRATIVE

Project: G1811860 Pace Project No.: 30272858

Method:	EPA 903.1
Description:	903.1 Radium 226
Client:	Geochemical Testing
Date:	December 11, 2018

General Information:

1 sample was analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G1811860 Pace Project No.: 30272858

Method:	EPA 904.0
Description:	904.0 Radium 228
Client:	Geochemical Testing
Date:	December 11, 2018

General Information:

1 sample was analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: G1811860

Pace Project N	No.: 30272858
----------------	---------------

Sample: G1811860-006 PWS:	Lab ID: 302728 Site ID:	358001 Collected: 11/15/18 00:01 Sample Type:	Received:	11/29/18 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.737 ± 0.668 (0.984) C:NA T:96%	pCi/L	12/10/18 13:33	3 13982-63-3	
Radium-228	EPA 904.0	0.320 ± 0.300 (0.607) C:77% T:84%	pCi/L	12/10/18 13:12	2 15262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	G1811860					
Pace Project No.:	30272858					
QC Batch:	322748		Analysis Method:	EPA 904.0		
QC Batch Method:	EPA 904.0		Analysis Description:	904.0 Radiu	ım 228	
Associated Lab Sar	mples: 3027285	8001				
METHOD BLANK:	1573038		Matrix: Water			
Associated Lab Sar	mples: 3027285	8001				
Parai	meter	Act ± Unc	(MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-228		-0.00649 ± 0.285	(0.668) C:75% T:88%	pCi/L	12/10/18 13:10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	G1811860				
Pace Project No.:	30272858				
QC Batch:	322747	Analysis Metho	od: EPA 903.1		
QC Batch Method:	EPA 903.1	Analysis Descr	ription: 903.1 Radiu	ım-226	
Associated Lab Sar	mples: 30272858	8001			
METHOD BLANK:	1573037	Matrix: W	Vater		
Associated Lab Sar	mples: 30272858	8001			
Parar	meter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-226		0.380 ± 0.528 (0.882) C:NA T:87%	pCi/L	12/10/18 13:07	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: G1811860 Pace Project No.: 30272858

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Shuttle/Cooler ID#:	E	AIN OF	AIN OF CUSTODY	Geochemical Testing	
Geochemical Testing •	2005 North Center		Fom F-85 Avenue ・ Somerset PA 15501 ・ (814) 443-1671 ・ Fax (814) 445-6729	Fom F-5002, 04.13 571 • Fax (814) 445-6729	
Billing Client: Geochemical Testing	Testing	Contact (Company):	any): Leslie Nemeth	Phone: (814) 443-1671	11
051	Avenue	e-mail: <u>Inemeth</u>	Inemeth@geo-ces.com	Fax: (814) 445-6729	
City: Somerset State:	e: PA Zip: 15501	U Q.	Client	Preservatives bySampler_GT	F
WO#:		Project:		PO/Quote#: P30 15 - 908	
Sample Matrix: GW Ground Water SV	GW Ground Water SW Surface Water PW Potable	Water WW Wastewater	SO Soil SL Sludge	nHZ Not Hazardous / HZ Hazardous PCBs	100,000 7 00,000 7 00,000 7 00,000 7 00,000
	C Composite Distribution/DW	m/DW R Raw/DW	S Special/DW O Other	Containers Supplied by: Client GT Lab	
Sample Location/ Description N	Lab Sample SPLI Number Matrix Da	SPLP Ext Time S Date (Military)	Sample **Analyses Requested Type	Remarks/ Number of Preservatives, etc containers	r of lers
**NOTE: IF multiple analyte	es from one bottle, OR if multip	le bottles for one analy	**NOTE: IF multiple analytes from one bottle; OR if multiple bottles for one analyte; THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG	STED ON ATTACHED FIELD LOG	
G1811860-006	nHZ / HZ WW 11/15/2018	018	SPLP Radium 226, 228	Field Fittered: Y / N HNO3	<u> </u>
	N			Field Filtered: Y / N))
	ZH / ZHu		M0#:30272858	358	
	NHZ / HZ			2	
	ZH / ZHu			Z	I
	DHZ / HZ			Field Filtered: Y / N	1
	ZH / ZHu			Field Filtered: Y / N	I
	ZH / ZHu			Field Filtered: Y / N	T
Note Deficiencies Here: 10 Day	10 Day Rush Please PA				ſ
Relinquished by (Company & Signature)	ignature) Date	Time (Military)	Received by (Company & Signature):	ure): Date Drime (Millary)	8
Leslie Nemeth	11/27/201	8:00:00	the is the pr	CE 11-29-18 1015	
SAMPLES MUST BE PRESERVED ON ICE	ERVED ON ICE.	¥	ce present on receipt:Yes orNo	Cooler Temp (°C) on receipt:	-
			Sample Receiving (1st Review):	Client Support (2nd Review):	

Pittsburgh Lab Sample Condit	tion I	Jpor	n Re	ceipt
Face Analytical Client Name:	G	e0(<u>In</u>	UN Project # # 30272 8
Courier: Fed Ex UPS USPS Client Tracking #: 12 544 607 03 4(e)	25	85(rcial • •	Deace Other LabelET
Custody Seal on Cooler/Box Present: Uyes		10	Seal	s intact: yes no
Thermometer Used <u>NA</u>	Туре	of ice:	We	
Cooler Temperature Observed Temp		°C	Corr	ection Factor: C Final Temp: C
Temp should be above freezing to 6°C				pH paper Lot# Date and initials of person examining
Comments:	Yes	No	N/A	contents: ET 11-29-18
Chain of Custody Present:		1		1.
Chain of Custody Filled Out:		1		2.
Chain of Custody Relinquished:		1		3.
Sampler Name & Signature on COC:	ſ		1	4.
Sample Labels match COC:		ſ		5.
-Includes date/time/ID Matrix:	Ŵ	T	1	1
Samples Arrived within Hold Time:		ſ	Ĩ	6.
Samples Arrived waarring had hine.	Ť	\square		7.
Rush Turn Around Time Requested:			-	8.
Sufficient Volume:				9.
Correct Containers Used:				10.
-Pace Containers Used:	<u> </u>			
Containers Intact:	\bigtriangledown			11.
Orthophosphate field filtered	f			12.
Hex Cr Aqueous Compliance/NPDES sample field filtered	1			13.
Organic Samples checked for dechlorination:	1		and the second s	14.
Filtered volume received for Dissolved tests				15.
All containers have been checked for preservation.			-	16. DHLZ
All containers needing preservation are found to be in compliance with EPA recommendation.		×		PHL
exceptions: VOA, coliform, TOC, O&G, Phenolics				Initial when ET Date/time of preservation
	,	1		preservative
Headspace in VOA Vials (>6mm):			6	17
Trip Blank Present:		\leq		18.
Trip Blank Custody Seals Present]		
Rad Aqueous Samples Screened > 0.5 mrem/hr		\square		completed: ET Date: 11-29-18
Client Notification/ Resolution:				
Person Contacted:			Date∕1	ime:Contacted By:
Comments/ Resolution:				
·				

□ A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e., out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

J:\QAQC\Master\Document Management\Sample Mgt\Sample Condition Upon Receipt Pittsburgh (C056-7 16Feb2018)

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

December 07, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

RE: Project: G1811867 Pace Project No.: 30272447

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 21, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carino a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: G1811867 Pace Project No.: 30272447

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project:	G1811867
Pace Project No .:	30272447

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30272447001	G1811867-001	Water	11/15/18 09:16	11/21/18 09:30
30272447002	G1811867-005	Water	11/15/18 09:16	11/21/18 09:30

SAMPLE ANALYTE COUNT

 Project:
 G1811867

 Pace Project No.:
 30272447

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272447001	G1811867-001	EPA 903.1	MK1	1
		EPA 904.0	JLW	1
30272447002	G1811867-005	EPA 903.1	MK1	1
		EPA 904.0	JLW	1

PROJECT NARRATIVE

Project: G1811867 Pace Project No.: 30272447

Method:	EPA 903.1
Description:	903.1 Radium 226
Client:	Geochemical Testing
Date:	December 07, 2018

General Information:

2 samples were analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G1811867 Pace Project No.: 30272447

Method:	EPA 904.0
Description:	904.0 Radium 228
Client:	Geochemical Testing
Date:	December 07, 2018

General Information:

2 samples were analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:	G1811867								
Pace Project No.: Sample: G181186 PWS:	30272447 7-001	Lab ID: 30272 Site ID:	447001	Collected Sample	1: 11/15/18 09:16 Type:	Received:	11/21/18 09:30	Matrix: Water	
Comments: • Sam	ple date on Ch	ain of Custody is SPLP	extraction	•		d.			
Parame	eters	Method	Act	t ± Unc (M	DC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		EPA 903.1		± 0.301 T:90%	(0.179)	pCi/L	12/06/18 21:43	3 13982-63-3	
Radium-228		EPA 904.0	0.844	± 0.439 % T:91%	(0.782)	pCi/L	12/05/18 12:09	9 15262-20-1	
Sample: G181186	7-005	Lab ID: 30272 Site ID:	447002	Collected Sample	d: 11/15/18 09:16	Received:	11/21/18 09:30	Matrix: Water	
-	ple date on Ch	ain of Custody is SPLP	extraction		••	d.			
Parame	•	Method		-	DC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		EPA 903.1		± 0.364	(0.513)	pCi/L	12/06/18 22:00	13982-63-3	
Radium-228		EPA 904.0	0.487	T:90% ± 0.402 % T:82%	(0.803)	pCi/L	12/05/18 12:09	9 15262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	G1811867					
Pace Project No.:	30272447					
QC Batch:	321860		Analysis Method:	EPA 904.0		
QC Batch Method:	EPA 904.0		Analysis Description:	904.0 Radiu	ım 228	
Associated Lab Sar	mples: 3027244	7001, 30272447002	2			
METHOD BLANK:	1569350		Matrix: Water			
Associated Lab Sar	mples: 3027244	7001, 30272447002	2			
Para	meter	Act ± Unc	: (MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-228		0.236 ± 0.358 (0	.774) C:81% T:77%	pCi/L	12/05/18 12:08	
	meter					Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	G1811867					
Pace Project No.:	30272447					
QC Batch:	321861		Analysis Method:	EPA 903.1		
QC Batch Method:	EPA 903.1		Analysis Description:	903.1 Radiu	ım-226	
Associated Lab Sar	mples: 3027244	7001, 30272447002				
METHOD BLANK:	1569351		Matrix: Water			
Associated Lab Sar	mples: 3027244	7001, 30272447002				
Para	meter	Act ± Unc ((MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-226		0.278 ± 0.387 (0.6	646) C:NA T:93%	pCi/L	12/06/18 21:43	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: G1811867 Pace Project No.: 30272447

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Shuttle/Cooler ID#:		O	CHAI		S	JAIN OF CUSTODY	Ge	Geochemical Testing	ing	
			-					Form F-5002, 04.	002, 04.13	ור
Geochemical Testing • 2005 North Cen	ting • 2005 N	orth O	enter Avenue	nue • Sc	omerse	Somerset PA 15501 • (814) 443-1671		 Fax (814) 445-6729 		
Billing Client: Geocher	Geochemical Testing		Con	Contact (Company):	npany):	Leslie Nemeth	Phone	Phone: (814) 443-1671		
Address: 2005 North Center Avenue	enter Avenue		e-mail:		eth@gec	Inemeth@geo-ces.com	Fax: ((814) 445-6729		
City: Somerset	State: PA Zip:	p: 15501		Sampled by:	Client		Preser	Preservatives bySampler	ler_GT	
WO#:			Project:	ect:			PO/Qu	PO/Quote#: Toy org 4996	0	
10000	GW Ground Water SW Surface Water PW Potable Water WW Wastewater	ter PW	Potable Water	WW Waste	- 1920 1920	SL Soil SL Sludge hHZ N	ot Hazardo	nHZ Not Hazardous / HZ Hazardous PCBs	Bs	
Sample Type: G Grab	C Composite	ā	D Distribution/DW	R Raw/DW		al/DW O Other	Containers Supplied by:	plied by: Client	GT Lab	
Sample Location/	Lab	Sample	S		Sample	**Analvses Reguested		Remarks/	Number of	×
Description	Number	Matrix	Date	(Military)	Type Tur	cription Number Matrix Date (Military) Type	OTED OM	Preservatives, etc	Container	e S
					םואובי וועב	N IN SEPARALAN ON ONE INE ONFESS ON				
G1811867-001			11/15/2018	9:16	o	SPLP Radium 226, 228	<u> </u>	HNO3	2	É
		ZH / ZHu						Field Filtered: Y / N		r T
		nHZ / HZ				SPLP Radium 226, 228		Field Filtered: Y / N		2
G1811867-005			11/15/2018	9:16	υ			HNO3	2	<u>_</u>
		74 / 740					<u> </u>	Field Filtered: Y / N		
		ZH / ZHU			3	MU#:3UZ/244/		Filtered: Y / N	-	<u> </u>
		0H7 / H7						Eilterad- V / N		-
						80272447 30272447				
		2H / ZHU				•		Filtered: Y / N		
		nHZ / HZ						Field Filtered: Y / N		1
Note Deficiencies Here:	10 Day Rush Please		- If Possible						-	1
Relinquished by (Company & Signature)	y & Signature)		Date	Time (Military)		Received by (Company & Signature):	ure):	Date Tim	Time (Military)	1
Leslie Nemeth		11/2	11/20/2018	8:00:00	J	my own phu		0 x1172/11	0930	
					$\left \right\rangle$					r r
				-						-
SAMPLES MUST BE PRESERVED ON ICE.	RESERVED OI	N ICH			Ice prese	lce present on receipt. Yes or \overline{V} No	Cooler		NA	1
					Samp	Sample Receiving (1st Review):	Client S	Client Support (2nd Review):		

2 2 2

B

Pittsburgh Lab Sample Condi	tion l	Jpoi	n Re	ceipt	
Pace Analytical Client Name:	6	<u>lo</u>	Ur	em	Projec ##<u>302724</u>4
Courier: Fed Ex DUPS USPS Client Tracking #: 17 544 067 03473	$ \begin{array}{c} & \Box \\ \varphi & Q \\ \varphi & Q \\ \end{array} $	iomme SY 7	ercial	Pace Other	Label JB LIMS Login JAS
Custody Seal on Cooler/Box Present: yes	Zn	_		s intact: 🗌 yes	
Thermometer Used NA	Type	of Ice	: Wei	Blue Vone	~
Cooler Temperature Observed Temp		°C	Corr	ection Factor:	•C Final Temp: •C
Temp should be above freezing to 6°C	·····	-			
				pH paper Lot#	Date and initials of person examining contents: 1117.010
Comments:	Yes	No	N/A	1002981	1112/10 00
Chain of Custody Present:				1.	
Chain of Custody Filled Out:				2.	
Chain of Custody Relinquished:	arphi		<u> </u>	3.	
Sampler Name & Signature on COC:	1			4.	<u>v</u>
Sample Labels match COC:	L			5. Aalla	samples is 11,16.18/
-Includes date/time/ID Matrix:	W	Γ	····	noth	nea Shindles
Samples Arrived within Hold Time:				6.	(*
Short Hold Time Analysis (<72hr remaining):				7.	
Rush Turn Around Time Requested:				8.	
Sufficient Volume:				9.	
Correct Containers Used:				10.	
-Pace Containers Used:					
Containers Intact:				11.	
Orthophosphate field filtered				12.	
Hex Cr Aqueous Compliance/NPDES sample field filtered				13.	
Organic Samples checked for dechlorination:				14.	
Filtered volume received for Dissolved tests				15.	
All containers have been checked for preservation.			<u> </u>	16.	7
All containers needing preservation are found to be in compliance with EPA recommendation.				16. PHU	
				Initial when	Date/time of
exceptions: VOA, coliform, TOC, O&G, Phenolics				completed VV	preservation
				preservative	
leadspace in VOA Vials (>6mm):				17.	
rip Blank Present:		\leq	_	18.	
rip Blank Custody Seals Present					
Rad Aqueous Samples Screened > 0.5 mrem/hr		\land		initial when MB	Date: 11/25/18
Client Notification/ Resolution:	J4		t	- · · · · · · · · · · · · · · · · · · ·	
Person Contacted:			Date/T	ime:	Contacted By:
Comments/ Resolution:					·
····					
			<u> </u>		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

J:\QAQC\Master\Document Management\Sample Mgt\Sample Condition Upon Receipt Pittsburgh (C056-7 16Feb2018)

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

December 10, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

RE: Project: G1811867 Pace Project No.: 30272705

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 27, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carino a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: G1811867 Pace Project No.: 30272705

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: Pace Project No	G1811867 .: 30272705			
Lab ID	Sample ID	Matrix	Date Collected	Date Received
30272705001	G1811867-003	Water	11/15/18 09:16	11/27/18 13:40
30272705002	G1811867-007	Water	11/15/18 09:16	11/27/18 13:40

SAMPLE ANALYTE COUNT

 Project:
 G1811867

 Pace Project No.:
 30272705

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272705001	G1811867-003	EPA 903.1	KAC	1
		EPA 904.0	VAL	1
30272705002	G1811867-007	EPA 903.1	KAC	1
		EPA 904.0	VAL	1

PROJECT NARRATIVE

Project: G1811867 Pace Project No.: 30272705

Method:	EPA 903.1
Description:	903.1 Radium 226
Client:	Geochemical Testing
Date:	December 10, 2018

General Information:

2 samples were analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G1811867 Pace Project No.: 30272705

Method:	EPA 904.0
Description:	904.0 Radium 228
Client:	Geochemical Testing
Date:	December 10, 2018

General Information:

2 samples were analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:	G1811867							
Pace Project No.:	30272705							
Sample: G1811867	7-003	Lab ID: 302727	705001 Collect	ed: 11/15/18 09:16	Received:	11/27/18 13:40	Matrix: Water	
PWS:		Site ID:	Sample	е Туре:				
Comments: • Sam	nple collection of	dates and times were not	present on the sa	ample containers.				
Parame	eters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		EPA 903.1	0.0821 ± 0.58 C:NA T:84%	1 (1.16)	pCi/L	12/07/18 12:08	3 13982-63-3	
Radium-228		EPA 904.0	-0.217 ± 0.347 C:73% T:79%	· · ·	pCi/L	12/05/18 15:36	6 15262-20-1	
Sample: G181186	7-007	Lab ID: 302727 Site ID:		ed: 11/15/18 09:16 e Type:	Received:	11/27/18 13:40	Matrix: Water	
-	ple collection of	dates and times were not	•					
Parame	eters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		EPA 903.1	0.477 ± 0.498 C:NA T:68%	(0.702)	pCi/L	12/07/18 12:08	3 13982-63-3	
Radium-228		EPA 904.0	0.301 ± 0.570 C:70% T:57%	· · ·	pCi/L	12/05/18 15:36	6 15262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	G1811867						
Pace Project No.:	30272705						
QC Batch:	322128		Analysis Method:	EPA 903.1			
QC Batch Method:	EPA 903.1		Analysis Description:	903.1 Radiu	m-226		
Associated Lab Sar	mples: 3027270500	01, 30272705002					
METHOD BLANK:	1570359		Matrix: Water				
Associated Lab Sar	mples: 302727050	01, 30272705002					
Parar	meter	Act ± Unc ((MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-226	0	.279 ± 0.434 (0.7	(52) C:NA T:94%	pCi/L	12/07/18 12:08		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	G1811867					
Pace Project No.:	30272705					
QC Batch:	322129		Analysis Method:	EPA 904.0		
QC Batch Method:	EPA 904.0		Analysis Description:	904.0 Radiu	ım 228	
Associated Lab Sar	mples: 3027270	5001, 30272705002				
METHOD BLANK:	1570360		Matrix: Water			
Associated Lab Sa	mples: 3027270	5001, 30272705002				
Para	meter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-228		0.115 ± 0.366 (0.8)	25) C:74% T:77%	pCi/L	12/05/18 15:35	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: G1811867 Pace Project No.: 30272705

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Shuttle/Cooler ID#:		U T U	AIN		5	CHAIN OF CUSTODY	Geo	Geochemical Testing	ting
Geochemical Testing • 2005 North C	ting • 2005 No	orth Centel	Avenu	e • So	merse	enter Avenue ◆ Somerset PA 15501 ◆ (814) 443-1671 ◆ Fax (814) 445-6729	671 • F	^{Form F-5002} Fax (814) 445-6729	5002, 04.13 9
Billing Client: Geochen	Geochemical Testing		Conta	Contact (Company):	pany):	Leslie Nemeth	Phone	Phone: (814) 443-1671	
Address: 2005 North Center Avenue	enter Avenue		e-mail:		th@geo	Inemeth@geo-ces.com	Fax: ((814) 445-6729	
City: Somerset	State: PA Zip:	: 15501	Sampl	Sampled by:	Client		Presei	Preservatives bySampler	pler_GT
WO#:			Project:	t:			PO/QU	PO/Quote#:`₽∂∂t% ~'	-4998
Sample Matrix: GW Ground Wa	GW Ground Water SW Surface Water PW	ter PW Potabl	e Water	Potable Water WW Wastewater	1000	SO Soil SL Sludge HZ	Not Hazardo	nHZ Not Hazardous / HZ Hazardous	PCBS
	C Composite	D Distribution/DW R Raw/DW		Raw/DW		s Special/DW O Other Co	Containers Supplied by:	plied by: Client	GTLab
Sample Location/ Description	Lab Number	Sample Extr Matrix D	Extraction Date	Time (Military)	Sample Type	**Analyses Requested		Remarks/ Preservatives, etc	Number of Containers
**NOTE: IF multiple	**NOTE: IF multiple analytes from one bottle, OR		ole bottles	for one ana	lyte, THEI	if multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG	ISTED ON	ATTACHED FIELD LOG	
G1811867-003		пНZ / НZ WW 11/15/2018		91:6	ڻ ن	SPLP Radium 226, 228		Field Filtered: Y / N HNO3	2 <i>0</i> 0
		Ņ						Field Filtered: Y / N	
C1811867_007		nHZ / HZ W/W 11/15/2018		9-16 6	Ċ	SPLP Radium 226, 228		Field Filtered; Y / N HNO3	2 00 S
		Ņ						Field Fittered: Y / N	
		ZH / ZHu				MO#: 30272705		Field Fittered: Y / N	
		2H / ZHu) } !		
		TH / HZ				30272705			
		ZH / ZHu							
Note Deficiencies Here:	10 Day Rush Please PA	ase PA							
Relinquished by (Company & Signature)	y & Signature)	Date	Tim	Time (Military)		Received by (Company & Signature):	ature):	Date	Time (Military)
Leslie Nemeth		11/21/2018		8:00:00	Bert	er Mannan		11-27-18	1340
									-
SAMPLES MUST BE PRESERVED ON ICE	RESERVED O	N ICE.			lce pres Samp	lce present on receipt:Yes orNo Sample Receiving (1st Review):	Cooler Client	Cooler Temp (°C) on receipt: Client Support (2nd Review):	MM

Pittsburgh Lab Sample Condi	uon	Jbol	n Ke	ceipt	
Face Analytical Client Name:		(200	ochem	Project # · 3027270
			ercial	Pace Other	Label <u>BM</u> LIMS Login DM
Tracking #: 12 544 007 03 4748					
Custody Seal on Cooler/Box Present: yes Thermometer Used	[Д́г Туре			s intact: yes L Blue None]no
Cooler Temperature Observed Temp	A	°C	Corr	ection Factor:	°C Final Temp:°C
Temp should be above freezing to 6°C				1.1.1.1.1.1.1.1.1.1.1	Data and billing of payment exemining
				pH paper Lot#	Date and initials of person examining contents: BLM 11-27-18
Comments:	Yes	No	N/A	10 0 2981	
Chain of Custody Present:			<u> </u>	1.	-
Chain of Custody Filled Out:			1	2.	
Chain of Custody Relinquished:			·	3.	
Sampler Name & Signature on COC:			<u> </u>	4.	
Sample Labels match COC:				5. No date or	time on samples
-Includes date/time/ID Matrix:	$-\omega$	Γ			
Samples Arrived within Hold Time:	/			6.	
Short Hold Time Analysis (<72hr remaining):			1	7.	
Rush Turn Around Time Requested:		\square		8.	
Sufficient Volume:	1			9.	
Correct Containers Used:	17	[10.	
-Pace Containers Used:					
Containers Intact:				11.	
Orthophosphate field filtered	1		1	12.	
Hex Cr Aqueous Compliance/NPDES sample field filtered				13.	
Organic Samples checked for dechlorination:			1	14.	
			\square	15.	
Filtered volume received for Dissolved tests All containers have been checked for preservation.				16.	
All containers needing preservation are found to be in compliance with EPA recommendation.	7			" Phla	
	<u> </u>		<u>د</u> .	Initial when RI M	Date/time of
exceptions: VOA, coliform, TOC, O&G, Phenolics				completed EU/*	preservation
	<u> </u>			preservative	
-leadspace in VOA Vials (>6mm):			/	17.	
Trip Blank Present:			1	18.	
Trip Blank Custody Seals Present			/		
Rad Aqueous Samples Screened > 0.5 mrem/hr				initial when BLM	Date: 11-28-18
Client Notification/ Resolution:					
Person Contacted:			Date/1	ime:	Contacted By:
Comments/ Resolution:					·
			······································	-	
				A-10.	
	.				

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

J:\QAQC\Master\Document Management\Sample Mgt\Sample Condition Upon Receipt Pittsburgh (C056-7 16Feb2018)

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

December 07, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

RE: Project: G1811869 Pace Project No.: 30272448

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 21, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carino a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: G1811869 Pace Project No.: 30272448

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: Pace Project No	G1811869 .: 30272448			
Lab ID	Sample ID	Matrix	Date Collected	Date Received
30272448001	G1811869-001	Water	11/15/18 09:16	11/21/18 09:30
30272448002	G1811869-005	Water	11/15/18 09:16	11/21/18 09:30

SAMPLE ANALYTE COUNT

 Project:
 G1811869

 Pace Project No.:
 30272448

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272448001	G1811869-001	EPA 903.1	MK1	1
		EPA 904.0	JLW	1
30272448002	G1811869-005	EPA 903.1	MK1	1
		EPA 904.0	JLW	1

PROJECT NARRATIVE

Project: G1811869 Pace Project No.: 30272448

Method:	EPA 903.1
Description:	903.1 Radium 226
Client:	Geochemical Testing
Date:	December 07, 2018

General Information:

2 samples were analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G1811869 Pace Project No.: 30272448

Method:	EPA 904.0
Description:	904.0 Radium 228
Client:	Geochemical Testing
Date:	December 07, 2018

General Information:

2 samples were analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:	G1811869								
Pace Project No.:	30272448								
Sample: G1811869 PWS:	9-001	Lab ID: 30272 Site ID:		Collected Sample	I: 11/15/18 09:16 Type:	Received:	11/21/18 09:30	Matrix: Water	
Comments: • Sam	ple date on Cha	ain of Custody is SPLP	extraction d	date, no e	extraction time liste	d.			
Parame	eters	Method	Act ±	± Unc (M	DC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		EPA 903.1	0.155 ± C:NA T	0.353 (:84%	(0.209)	pCi/L	12/06/18 22:00	13982-63-3	
Radium-228		EPA 904.0	0.360 ± C:74%	: 0.353 (T:84%	(0.721)	pCi/L	12/05/18 12:09	9 15262-20-1	
Sample: G1811869	9-005	Lab ID: 30272		Collected Sample	l: 11/15/18 09:16	Received:	11/21/18 09:30	Matrix: Water	
-	ple date on Cha	ain of Custody is SPLP				d.			
Parame		Method		-	DC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226		EPA 903.1	0.379 ± C:NA T	0.577 (91%	(0.993)	pCi/L	12/06/18 22:00	13982-63-3	
Radium-228		EPA 904.0	0.528 ± C:77%	0.438	(0.883)	pCi/L	12/05/18 12:10	0 15262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

Pace Project No.: 30272448	
QC Batch: 321860 Analysis Method: EPA 904.0	
QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228	
Associated Lab Samples: 30272448001, 30272448002	
METHOD BLANK: 1569350 Matrix: Water	
Associated Lab Samples: 30272448001, 30272448002	
Parameter Act ± Unc (MDC) Carr Trac Units Analyzed	Qualifiers
Radium-228 0.236 ± 0.358 (0.774) C:81% T:77% pCi/L 12/05/18 12:08	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	G1811869					
Pace Project No.:	30272448					
QC Batch:	321861		Analysis Method:	EPA 903.1		
QC Batch Method:	EPA 903.1		Analysis Description:	903.1 Radiu	m-226	
Associated Lab Sar	mples: 3027244	8001, 30272448002				
METHOD BLANK:	1569351		Matrix: Water			
Associated Lab Sar	mples: 3027244	8001, 30272448002				
Parar	meter	Act ± Unc	(MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-226		0.278 ± 0.387 (0.6	646) C:NA T:93%	pCi/L	12/06/18 21:43	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: G1811869 Pace Project No.: 30272448

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Shuttle/Cooler ID#:		CHA	IN OF	B	CHAIN OF CUSTODY	Ge	Geochemical Testing	sting
							Fom	Form F-5002, 04.13
Geochemical Testing		h Center A	venue • S	omerse	2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729	-1671 •	Fax (814) 445-672	29
Billing Client: Geochemical Testing	cal Testing	Ŭ	Contact (Company):	npany):	Leslie Nemeth	Phon	Phone: (814) 443-1671	
Address: 2005 North Center Avenue	er Avenue	<u> </u>	e-mail: <u>Inem</u>	ieth@geo	Inemeth@geo-ces.com	Fax:	Fax: (814) 445-6729	
City: Somerset st	State: PA Zip:	15501 St	Sampled by:	Client		Prese	Preservatives bySan	Sampler_GT
WO#:		<u>P</u>	Project:			PO/Q	PO/Quote#: P2015 -	-75996
Sample Matrix: GW Ground Water	GW Ground Water SW Surface Water PW	1 2000	Potable Water WW Wastewater	335	SO Soil SL Studge IH	Z Not Hazard	nHZ Not Hazardous / HZ Hazardous	PCBS
Sample Type: G Grab	C Composite	D Distribution/DW	W R Raw/DW		S Special/DW O Other (Containers Supplied by:	pplied by: Client	GTLab
Sample Location/ Description	Lab Sa Number M	Sample SPLP Ext Matrix Date	Ext Time (Military)	Sample Type	**Analyses Requested	pő	Remarks/ Preservatives. etc	Number of Containers
***NOTE: IF multiple analytes from one bottle, OR	alytes from one bottle		ottles for one ar	nalyte, THEI	f multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG	S LISTED ON	ATTACHED FIELD LOG	
G1811869-001	Hu		9:16	ڻ ن	SPLP Radium 226, 228		Field Filtered: Y / N HNO3	2
	He	ZH / ZHu					Field Filtered: Y / N	
G1811869-005	Τυ	nHZ / HZ 11/15/2018	9:16	٥	SPLP Radium 226, 228		Field Filtered: Y / N HNO3	2
	Ή	ZH / HZ					Field Fittered: Y / N	
	Ŧ	nHZ / HZ	3 : 		MU#: 3UZ/Z448		Field Fittered: Y / N	
	Ηu	THZ / HZ	=== 				Field Filtered: Y / N	
	Æ	ZH / ZHu	} 				Field Filtered: Y / N	
	Ξ	ZH / ZHu					Field Filtered: Y / N	
Note Deficiencies Here: 10	10 Day Rush Please	- If Possible		-				
Relinquished by (Company & Signature)	& Signature)	Date	Time (Miltary)	ł	Received by (Company & Sig	Signature):	Date	Time (Military)
Leslie Nemeth		11/20/2018	8:00:00	1	HA withthe	UC.	11/2/18	<u> </u>
SAMPLES MUST BE PRESERVED ON ICE	ESERVED ON	ICE.		loe prese Samp	lce present on receipt:Yes orNo Sample Receiving (1st Review):		Cooler Temp (°C) on receipt: Client Support (2nd Review).	NA

Pittsburgh Lab Sample Condi	tion l	Jpor	n Re		
, Face Analytical Client Name:	G	<i>lo</i>	Uh	em	Project # 30272448
Courier: ロ Fed Ex DUPS ロUSPS ロClient Tracking #: (そ 544 067 03473)	i ⊡ • 4	Semme	rcial	Pace Other	Label DW LIMS Login DW
Custody Seal on Cooler/Box Present: Uses	Д п Туре			intact: Uyes Z Blue	no
Cooler Temperature Observed Temp		- °C	Corr	ection Factor:	°C Final Temp: °C
Temp should be above freezing to 6°C				pH paper Lot#	Date and Initials of person examining
Comments:	Yes	No	N/A	10D2981	$\frac{1}{2} \frac{1}{2} \frac{1}$
Chain of Custody Present:	\square	1		1.	
Chain of Custody Filled Out:		·		2.	
Chain of Custody Relinguished:				3.	
Sampler Name & Signature on COC:	T		1	4.	
Sample Labels match COC:				5. date un	Samples is 11.16.18 2 on Samples
-Includes date/time/ID Matrix:	$\overline{\sim}$	Т	_	notin	e on Samples
Samples Arrived within Hold Time:	\searrow			6.	· · · · · · · · · · · · · · · · · · ·
Short Hold Time Analysis (<72hr remaining):			İ	7.	
Rush Turn Around Time Requested:		\sim		8.	
Sufficient Volume:	\square			9.	
Correct Containers Used:	\leq			10.	
-Pace Containers Used:					
Containers Intact:	/			11.	
Orthophosphate field filtered			\leq	12.	
Hex Cr Aqueous Compliance/NPDES sample field filtered				13.	
Organic Samples checked for dechlorination:	ļ			14.	
Filtered volume received for Dissolved tests All containers have been checked for preservation.				15. 16. PH <i>L</i>	7,
All containers needing preservation are found to be in compliance with EPA recommendation.					······································
exceptions: VOA, coliform, TOC, O&G, Phenolics				Initial when completed Lot # of added preservative	Date/time of preservation
				17.	
Headspace in VOA Vials (>6mm):			·	18.	
Trip Blank Present:	f		1	10.	
Trip Blank Custody Seals Present Rad Aqueous Samples Screened > 0.5 mrem/hr				Initial when Completed:	Date: 11125118
Client Notification/ Resolution:				_	
Person Contacted:			Date/1	ime:	Contacted B <u>y:</u>
Comments/ Resolution:				•	
	<u></u>				
			<u></u>	·····	
A check in this box indicates that addit	ional i	nform	ation	has been stored in e	reports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

J:\QAQC\Master\Document Management\Sample Mgf\Sample Condition Upon Receipt Pittsburgh (C056-7 16Feb2018)

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

December 06, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

RE: Project: G1811870 Pace Project No.: 30272446

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 21, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carino a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: G1811870 Pace Project No.: 30272446

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

30272446001	G1811870-001	Water	11/15/18 09:16	11/21/18 09:30
Lab ID	Sample ID	Matrix	Date Collected	Date Received
Pace Project No	o.: 30272446			
Project:	G1811870			

SAMPLE ANALYTE COUNT

 Project:
 G1811870

 Pace Project No.:
 30272446

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272446001	G1811870-001	EPA 903.1	MK1	1
		EPA 904.0	JLW	1

PROJECT NARRATIVE

Project: G1811870 Pace Project No.: 30272446

Method:	EPA 903.1
Description:	903.1 Radium 226
Client:	Geochemical Testing
Date:	December 06, 2018

General Information:

1 sample was analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G1811870 Pace Project No.: 30272446

Method:	EPA 904.0
Description:	904.0 Radium 228
Client:	Geochemical Testing
Date:	December 06, 2018

General Information:

1 sample was analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:	G1811870								
Pace Project No .:	30272446								
Sample: G181187 PWS: Comments: • San		Lab ID: 3027 Site ID: of Custody is SPLF		Sample Ty			11/21/18 09:30	Matrix: Water	
Parame	eters	Method	Ac	t ± Unc (MD	C) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	E	PA 903.1		± 0.355 (0 T:92%	.634)	pCi/L	12/06/18 10:42	2 13982-63-3	
Radium-228	E	PA 904.0		7 ± 0.379 (0 % T:83%	0.933)	pCi/L	12/05/18 12:09	9 15262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	G1811870				
Pace Project No.:	30272446				
QC Batch:	321860	Analysis Method:	EPA 904.0		
QC Batch Method:	EPA 904.0	Analysis Description:	904.0 Radiu	ım 228	
Associated Lab Sa	mples: 3027244	6001			
METHOD BLANK:	1569350	Matrix: Water			
Associated Lab Sa	mples: 3027244	6001			
Para	meter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-228		0.236 ± 0.358 (0.774) C:81% T:77%	pCi/L	12/05/18 12:08	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	G1811870				
Pace Project No.:	30272446				
QC Batch:	321859	Analysis Method:	EPA 903.1		
QC Batch Method:	EPA 903.1	Analysis Description:	903.1 Radiu	m-226	
Associated Lab Sar	mples: 30272446	6001			
METHOD BLANK:	1569347	Matrix: Water			
Associated Lab Sat	mples: 30272446	6001			
Para	meter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-226		0.234 ± 0.459 (0.839) C:NA T:91%	pCi/L	12/06/18 09:57	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: G1811870 Pace Project No.: 30272446

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Shuttle/Cooler ID#:		CHA			AIN OF CUSTODY	Geochemical Testing	sting	p
Geochemical Testing	a • 2005 North Center	100 C	venue •	Somerse	Avenue • Somerset PA 15501 • (814) 443-1671	Fom F-502 371 • Eax (814) 445-6729		
Billing Client: Geochemical Testing			Contact (Company):	ompany):	: Leslie Nemeth	i i č		
Address: 2005 North Center Avenue	er Avenue	Ð	e-mail: <u>Ine</u>	meth@geo	Υ Υ	Fax: (814) 445-6729		
City: Somerset St	State: PA Zip:	15501 S	Sampled by:	/: Client		Preservatives by Sampler	Ipler_GT	
WO#:		<u>a</u>	Project:			PO/Quote#: 72201 - 29910	<u>4996</u>	
	GW Ground Water SW Surface Water PW Potable	PW Potable M	Water WW Wastewater		SO Soli SL Sludge nHZ N	nHZ Not Hazardous / HZ Hazardous	PCBS	
Sample Type: G Grab	C Composite	D Distribution/DW	DW R Raw/DW	M		ent	GTLab	
Sample Location/	Lab San	Sample SPLP Ext	Ext Time	e Sample	**Analvses Requested	Remarks/	Number of	
Uescription Uescription	Number Ma alytes from one bottle	OR if multiple	Militar offies for one.	y) Type analyte, THE	Description Number Matrix Date (Military) Type Preservatives, e Preservatives, e "NOTE IF multiple analytes from one bottle. OR if multiple bottles for one analyte THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG"	Preservatives, etc	100000	
G1811870-001	ZHU	/ HZ 11/15/2018	8 9:16	. 9	SPLP Radium 226, 228	Field Filtered: Y / N HNO3		Č
	ZHu	THZ / HZ		,		Field Flittered: Y / N	4	5
	ZH / ZHU	ZH /			JO#: 30272446	Field Filtered: Y / N		
	nHZ / HZ	ZH /				Field Filtered: Y / N		
	Ч	ZH / ZHu		3027244		Field Filtered: Y / N		
	2H / ZHu	ZH /				Field Fittered: Y / N		
	2H / 2Hu	/ HZ				Field Fittered: Y / N		
	ZH / ZHU	ZH /				Field Filtered: Y / N		
Note Deficiencies Here: 10	10 Day Rush Please	- If Possible						
Relinquished by (Company & Signature)	signature)	Date	Time (Military)		Received by (Company & Signature)	Date	Time (Military)	
Leslie Nemeth		11/20/2018	8:00:00	Å	of A Bun B	11/2/11/2	0630	
				\rightarrow				
SAMPLES MUST BE PRESERVED ON ICE	SERVED ON IC	Ш		lce prese Samr	lce present on receipt:Yes orNo	Cooler Temp (°C) on receipt: 104	NA NA	_
					ne receiving (1st review).			

Pittsburgh Lab Sample Condi	tion	Upo	n Re	eceipt	
Face Analytical Client Name:	G	20	Ú	um 1	^{Project} # <u># 302724</u> 46
Courier: 다 Fed Ex 기니아 다 USPS 다 lien Tracking #: <u>1 군 544 067 03473</u>	t □ ∳ Ŷ	Comm SY 7	ercial 7	Dace Other	Label CTVB
Custody Seal on Cooler/Box Present:	Ø			s intact: 🗌 yes 💋	no
Thermometer Used NA	7 Туре	ofice	: We	t Blue None	
Cooler Temperature Observed Temp		- • c	Cori	ection Factor:	• C Final Temp: • C
Temp should be above freezing to 6°C		-			
				pH paper Lot#	Date and Initials of person examining contents: 11 7 (71.0
Comments:	Yes	No	N/A	1002981	
Chain of Custody Present:	\vdash			1.	
Chain of Custody Filled Out:	\vdash	1		2.	
Chain of Custody Relinquished:	\vdash			3.	
Sampler Name & Signature on COC:			_	4.	
Sample Labels match COC:				5. dateon S	amples is 11.16.18/ msamples
-Includes date/time/ID Matrix:	<u>_~</u>	<u> </u>	.	notineo	n Shipes
Samples Arrived within Hold Time:	\vdash		<u> </u>	6.	
Short Hold Time Analysis (<72hr remaining):	_		<u> </u>	7.	
Rush Turn Around Time Requested:	<u> </u>	\mid	1	8.	
Sufficient Volume:	$ \mid$		<u> </u>	9.	
Correct Containers Used:		L	<u> </u>	10.	
-Pace Containers Used:	<u> </u>	\checkmark			
Containers Intact:	\vdash			11.	
Orthophosphate field filtered	<u> </u>			12.	
Hex Cr Aqueous Compliance/NPDES sample field filtered	ļ			13.	
Organic Samples checked for dechlorination:				14.	
Filtered volume received for Dissolved tests All containers have been checked for preservation.			\vdash	15.	
All containers needing preservation are found to be in compliance with EPA recommendation.				pHLZ	
exceptions: VOA, coliform, TOC, O&G, Phenolics				completed ()V5	Date/lime of preservation
				Lot # of added preservative	
Headspace in VOA Vials (>6mm):				17.	
Trip Blank Present:				18.	
Trip Blank Custody Seals Present			/		×
Rad Aqueous Samples Screened > 0.5 mrem/hr		\land		completed:	late: 11/25/18
Client Notification/ Resolution:					
Person Contacted:			DateЛ	'ime:	Contacted By:
Comments/ Resolution:				· · · · · · · ·	
				• • • • • • • • • • • • • • • • • • • •	
					<u></u>
A check in this box indicates that additi	ional i	nform	ation	has been stored in er	eports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

J:\QAQC\Master\Document Management\Sample MgflSample Condition Upon Receipt Pittsburgh (C056-7 16Feb2018)

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

December 10, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

RE: Project: G1811870 Pace Project No.: 30272661

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 27, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carino a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: G1811870 Pace Project No.: 30272661

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

30272661001	G1811870-003	Water	11/15/18 09:16	11/27/18 13:40
Lab ID	Sample ID	Matrix	Date Collected	Date Received
Pace Project No	.: 30272661			
Project:	G1811870			

SAMPLE ANALYTE COUNT

 Project:
 G1811870

 Pace Project No.:
 30272661

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272661001	G1811870-003	EPA 903.1	KAC	1
		EPA 904.0	VAL	1

PROJECT NARRATIVE

Project: G1811870 Pace Project No.: 30272661

Method:	EPA 903.1
Description:	903.1 Radium 226
Client:	Geochemical Testing
Date:	December 10, 2018

General Information:

1 sample was analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

 Project:
 G1811870

 Pace Project No.:
 30272661

Method:	EPA 904.0
Description:	904.0 Radium 228
Client:	Geochemical Testing
Date:	December 10, 2018

General Information:

1 sample was analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: G1811870 Pace Project No.: 30272661 Sample: G1811870-003 Lab ID: 30272661001 Collected: 11/15/18 09:16 Received: 11/27/18 13:40 Matrix: Water PWS: Site ID: Sample Type: Comments: • Sample collection dates and times were not present on the sample containers. Method Act ± Unc (MDC) Carr Trac Units CAS No. Parameters Analyzed Qual EPA 903.1 0.792 ± 0.627 (0.852) Radium-226 pCi/L 12/07/18 12:08 13982-63-3 C:NA T:85% 0.427 ± 0.397 (0.808) EPA 904.0 Radium-228 pCi/L 12/05/18 15:36 15262-20-1 C:75% T:82%

QUALITY CONTROL - RADIOCHEMISTRY

Project:	G1811870									
Pace Project No.:	30272661									
QC Batch:	322128	Analysis Method:	EPA 903.1							
QC Batch Method:	EPA 903.1	Analysis Description:	Analysis Description: 903.1 Radium-226							
Associated Lab Samples: 30272661001										
METHOD BLANK:	1570359	Matrix: Water								
Associated Lab Sa	mples: 3027266	31001								
Para	meter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers					
Radium-226		0.279 ± 0.434 (0.752) C:NA T:94%	pCi/L	12/07/18 12:08						

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	G1811870									
Pace Project No.:	30272661									
QC Batch:	322129	Analysis Method:	EPA 904.0							
QC Batch Method:	EPA 904.0	Analysis Description:	Analysis Description: 904.0 Radium 228							
Associated Lab Samples: 30272661001										
METHOD BLANK:	1570360	Matrix: Water								
Associated Lab Sa	mples: 3027266	1001								
Para	meter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers					
Radium-228			pCi/L	12/05/18 15:35						

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: G1811870 Pace Project No.: 30272661

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Shuttle/Cooler ID#:		CH	AIN	Ю	13	AIN OF CUSTODY	Gec	Geochemical Testing	sting	[
Geochemical Testing •	1 1 1 2 2 2 3 2	2005 North Center		s Sor	nerset	Ferr F-30 Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729	1671 • F	<u>ax (814) 445-67</u>	729 04.13	
Billing Client: Geochem	Geochemical Testing		Contact (Company):	t (Com	oany):	Leslie Nemeth	Phone	Phone: (814) 443-1671		
Address: 2005 North Center Avenue	nter Avenue		e-mail:		h@geo-	Inemeth@geo-ces.com	Fax: ((814) 445-6729		
City: Somerset	State: PA Zip:	: 15501	Sampled by:	sd by:	Client		Preser	Preservatives by <u>Sar</u>	SamplerGT	F
			Project:				PO/Qu	PO/Quote#: P2.01 AG99	FOGE	
Sample Matrix: GW Ground Wat Sample Type: G Grab	GW Ground Water SW Surface Water PW Potable Water WW Wastewater G Grab C Composite D Distribution/DW R Raw/DW	ter PW Potable	PW Potable Water WW Wastew D Distribution/DW R Raw/DW	W Wastew Raw/DW		Soil Scill SL Sludge nHZ	HZ Not Hazardous / HZ H Containers Supplied by:	lazardous	PCBs GT Lab	A
Sample Location/	Lab	Sample Extra	Extraction	Time		**Analyses Requested			Number of Containers	ir of
Uescription	Number analytes from one bo	ttle. OR if multip	uttiple bottles fo	(INIIIIaly)	vte, THEN	cription Number wainx Date (williary) 19pe	LISTED ON J	ATTACHED FIELD LOG		
		ZH / ZHU				SPLP Radium 226, 228		Field Filtered: Y / N HNO3		<u>S</u>
G1811870-003		VV VV 11/15/2018 nHZ / HZ		9:16	<u>ں</u>			Field Filtered: Y / N	<u>N</u>	Ť
		ZH / ZHu						Field Filtered: Y / N		
		ZH / ZHu			DY N	1092720E:#0M		Filtered: Y / N	-	
		- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1						Eliterad: V / N		Т
		74 / 740								
		ZH / ZHu			- 302 -	1007		Filtered: Y / N		
		ZH / ZHu						Field Fittered: Y / N		T
		ZH / ZHu						Field Filtered: Y / N		I
Note Deficiencies Here:	10 Day Rush Please PA	ise PA					1		-	
Relinquished by (Company & Signature)	/ & Signature)	Date	Time	Time (Military)		Received by (Company & Signature):	ature):	Date	Time (Military)	(<u>)</u>
Leslie Nemeth		11/21/201	8	8:00:00	Ŵ	An Mundan		81-20-11	1340	
SAMPLES MUST BE PRESERVED ON ICE.	RESERVED O	N ICE.			Ice prese	Ice present on receipt:Yes orNo	Cooler	Cooler Temp (°C) on receipt:	: <u>W/A</u>	1
					Sampl	Sample Receiving (1st Review):	Client {	Client Support (2nd Review);		

Pittsburgh Lab Sample Condi	ition	Upo	n Re	eceipt	
Face Analytical Client Name:		(, 50	schem i	Project # <u># * 30272</u> 6 (
Courier: Fed Ex 2005 DUSPS Clien			ercial	Pace Other	Label <u>ET</u> LIMS Login <u>ET</u>
Custody Seal on Cooler/Box Present: Uyes			Sea	ls intact: 🗌 yes 🗍	
Thermometer Used	Туре	of Ice		et Blue None	
Cooler Temperature Observed Temp	14	- °C	Cor	rection Factor:	°C Final Temp:°C
Temp should be above freezing to 6°C				pH paper Lot#	Date and Initials of person examining
Comments:	Yes	No	N//	10 0 2981	Date and Initials of person examining contents: <u>BUM 11-37-18</u>
Chain of Custody Present:		-		1.	-
Chain of Custody Filled Out:	1	1		2.	
Chain of Custody Relinquished:	17			3.	
Sampler Name & Signature on COC:		Ζ,		4.	
Sample Labels match COC:		\square		5. No date a	TTIME ON SAMPLE
-Includes date/time/ID Matrix:	w.	<u> </u>			
Samples Arrived within Hold Time:				6.	
Short Hold Time Analysis (<72hr remaining):		\square		7.	
Rush Turn Around Time Requested:				8.	
Sufficient Volume:	\square			9.	
Correct Containers Used:	\square			10.	
-Pace Containers Used:		\square			
Containers Intact:				11.	
Orthophosphate field filtered				12.	
lex Cr Aqueous Compliance/NPDES sample field filtered			\mathbb{Z}	13.	
Organic Samples checked for dechlorination:				14.	
iltered volume received for Dissolved tests	1		7	15.	
Il containers have been checked for preservation.				16.	
Il containers needing preservation are found to be in ompliance with EPA recommendation.				Phi	2
www.tianat.V/OA anliform TOC ORG Phonolics				61/1/	Date/lime of preservation
exceptions: VOA, coliform, TOC, O&G, Phenolics				Lot # of added	
	1 1		\frown	preservative	
leadspace in VOA Vials (>6mm):			4	17.	
rip Blank Present:			/	18.	
rip Blank Custody Seals Present ad Aqueous Samples Screened > 0.5 mrem/hr	.		/	Initial when	
au Aqueous Samples Screeneu > 0.5 menimi					Date: 11-27-18
lient Notification/ Resolution:					
Person Contacted:			Date/	Fime:	Contacted By:
Comments/ Resolution:					
				- 	
				· · ·	1

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

J:\QAQC\Master\Document Management\Sample Mgt\Sample Condition Upon Receipt Pittsburgh (C056-7 16Feb2018)

Surface Water Samples (WS-1 and WS-2)

814/443-1671 814/445-6666 FAX: 814/445-6729

Friday, December 21, 2018

John Shimshock GENON - CONEMAUGH STATION CCR CONEMAUGH STATION PO BOX K NEW FLORENCE, PA 15944

RE: Conemaugh CCR App IV

Order No.: G1811841

Dear John Shimshock:

Geochemical Testing received 2 sample(s) on 11/14/2018 for the analyses presented in the following report.

There were no problems with the analyses and all QC data met NELAC, EPA, and laboratory specifications except where noted in the Case Narrative or Laboratory Results.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Timot W Bey trus

Timothy W. Bergstresser Director of Technical Services

Leslie A. Nemeth Project Manager

Geochemical Testing

CLIENT:GENON - CONEMAUGH STATION CCRProject:Conemaugh CCR App IVLab Order:G1811841

CASE NARRATIVE

No problems were encountered during analysis of this workorder, except if noted in this report.

SAMPLE RECEIPT CHECKLIST

	Response
COC is present	Yes
COC is filled out in ink and legible	Yes
COC relinquished, signature, date, and time	Yes
Samples arrived within hold time	Yes
Containers properly preserved for the requested testing	Yes
Sample containers have legible labels	Yes
Sample preservation verified	Yes
Appropriate sample containers are used	Yes
Sample container(s) received at proper temperature	Yes
Zero headspace where required	Yes
Sufficient volume for all requested analyses	Yes

Comments on the above checklist: None

The radiological analysis (Radium 226 by EPA 903.1; Radium 228 by EPA 904.0) was subcontracted to Pace Analytical (PADEP 65-00282). A copy of the subcontractor's laboratory report is enclosed with this Analytical Report.

Legend:	ND - Not Detected	S - Spike Recovery outside accepted recovery limits
	J - Indicates an estimated value.	R - RPD outside accepted recovery limits
	U - The analyte was not detected at or above the listed	E - Value above quantitation range
	concentration, which is below the laboratory quantitation limit.	** - Value exceeds Action Limit
	B - Analyte detected in the associated Method Blank	H - Method Hold Time Exceeded
	Q - Qualifier QL -Quantitation Limit DF - Dilution Factor	I.D. 56-00306 PA DEP

MCL - Contaminant Limit

Laboratory Results

Ash Disposal Site

Geochemical Testing					Date: 21-Dec-18					
CLIENT:	GENON - CONEM	MAUGH STAT	TION CCR		Clien	t Sampl	e ID:	WS-1		
Lab Order:	G1811841								Ash Disposal Si	
Project:	Conemaugh CCR	App IV			Samp	oled By:		Aptim	*	
Lab ID:	G1811841-001				Colle	ction Da	ate:	11/14/2018	10:45:00 A	
Matrix:	AQUEOUS				Recei	ived Dat	te:	11/14/2018	5:15:27 PM	
Analyses		Result	QL	Q	Units	DF	Date	e Prepared	Date Analyzed	
INORGANIC N	ON-METALS		Analyst:	MB	G		EPA	300.0	EPA 300.0	
Fluoride		< 0.1	0.1		mg/L	1	11/15	/18 10:15 AM	11/15/18 8:43 PM	
INORGANIC M	ETALS		Analyst:	LXN	1		EPA	200.2	EPA 200.8	

INORGANIC NON-METALS		Analyst: N	IBG		EPA 300.0	EPA 300.0
Fluoride	< 0.1	0.1	mg/L	1	11/15/18 10:15 AM	11/15/18 8:43 PM
INORGANIC METALS		Analyst: L	ХМ		EPA 200.2	EPA 200.8
Antimony	< 0.001	0.001	mg/L	1	11/19/18 12:05 PM	11/20/18 10:58 AM
Arsenic	< 0.001	0.001	mg/L	1	11/19/18 12:05 PM	11/20/18 10:58 AM
Lead	< 0.001	0.001	mg/L	1	11/19/18 12:05 PM	11/20/18 10:58 AM
Selenium	< 0.001	0.001	mg/L	1	11/19/18 12:05 PM	11/20/18 10:58 AM
Thallium	< 0.0002	0.0002	mg/L	1	11/19/18 12:05 PM	11/20/18 10:58 AM
INORGANIC METALS		Analyst: G	XI		SM 3112 B	SM 3112 B
Mercury	< 0.0002	0.0002	mg/L	1	11/16/18 9:20 AM	11/16/18 1:48 PM
INORGANIC METALS		Analyst: J	EK		EPA 200.2	EPA 200.7
Barium	0.03	0.01	mg/L	1	11/19/18 12:05 PM	11/20/18 5:08 PM
Beryllium	< 0.001	0.001	mg/L	1	11/19/18 12:05 PM	11/20/18 5:08 PM
Cadmium	< 0.002	0.002	mg/L	1	11/19/18 12:05 PM	11/20/18 5:08 PM
Chromium	< 0.01	0.01	mg/L	1	11/19/18 12:05 PM	11/20/18 5:08 PM
Cobalt	< 0.005	0.005	mg/L	1	11/19/18 12:05 PM	11/20/18 5:08 PM
Lithium	< 0.01	0.01	mg/L	1	11/19/18 12:05 PM	11/20/18 5:08 PM
Molybdenum	< 0.02	0.02	mg/L	1	11/19/18 12:05 PM	11/20/18 5:08 PM
RADIOLOGICAL PARAMETERS		Analyst: S	UB			EPA 903.1
Radium 226	0.336+-0.350	0.494	pCi/L	1		12/11/18 8:59 PM
RADIOLOGICAL PARAMETERS		Analyst: S	UB			EPA 904.0
Radium 228	0.0474+-0.371	0.853	pCi/L	1		12/10/18 11:41 AM

Laboratory Results

Geochemical Testing					Date: 21-Dec-18						
CLIENT:	GENON - CONE	MAUGH STA	FION CCR	L	Clien	t Samp	le ID:	WS-2			
Lab Order:	G1811841					_			Ash Disposal Site		
Project:	Conemaugh CCR	App IV			Samp	oled By:		Aptim	*		
Lab ID:	G1811841-002				Colle	ction D	ate:	•	1:10:00 PM		
Matrix:	AQUEOUS				Recei	ived Da	te:	11/14/2018	5:15:27 PM		
Analyses		Result	QL	Q	Units	DF	Date	Prepared	Date Analyzed		
INORGANIC NO	N-METALS		Analyst:	MBG			EPA	300.0	EPA 300.0		
Fluoride		< 0.1	0.1	r	ng/L	1	11/15	'18 10:15 AM	11/15/18 9:01 PM		
INORGANIC ME	TALS		Analyst:	LXM			EPA	200.2	EPA 200.8		
Antimony		< 0.001	0.001	r	ng/L	1	11/19/	/18 12:05 PM	11/20/18 11:07 AM		
Arsenic		< 0.001	0.001	r	ng/L	1	11/19	18 12:05 PM	11/20/18 11:07 AM		
Lead		< 0.001	0.001	r	ng/L	1	11/19	18 12:05 PM	11/20/18 11:07 AM		
Selenium		< 0.001	0.001	r	ng/L	1	11/19	18 12:05 PM	11/20/18 11:07 AM		
Thallium		< 0.0002	0.0002	r	ng/L	1	11/19/	'18 12:05 PM	11/20/18 11:07 AM		
INORGANIC ME	TALS		Analyst:	GXI			SM 3	112 B	SM 3112 B		
Mercury		< 0.0002	0.0002	r	ng/L	1	11/16	18 9:20 AM	11/16/18 1:50 PM		
INORGANIC ME	TALS		Analyst:	JEK			EPA	200.2	EPA 200.7		
Barium		0.03	0.01	r	ng/L	1	11/19/	18 12:05 PM	11/20/18 5:12 PM		
Beryllium		< 0.001	0.001	r	ng/L	1	11/19	18 12:05 PM	11/20/18 5:12 PM		
Cadmium		< 0.002	0.002	r	ng/L	1	11/19	18 12:05 PM	11/20/18 5:12 PM		
Chromium		< 0.01	0.01	r	ng/L	1	11/19	'18 12:05 PM	11/20/18 5:12 PM		
Cobalt		< 0.005	0.005	r	ng/L	1	11/19/	'18 12:05 PM	11/20/18 5:12 PM		
Lithium		< 0.01	0.01	r	ng/L	1	11/19/	'18 12:05 PM	11/20/18 5:12 PM		
Molybdenum		< 0.02	0.02	r	ng/L	1	11/19/	'18 12:05 PM	11/20/18 5:12 PM		
RADIOLOGICAI	L PARAMETERS		Analyst:	SUB					EPA 903.1		
Radium 226		0.134+-0.306	0.493	þ	Ci/L	1			12/11/18 8:59 PM		
RADIOLOGICAI	L PARAMETERS		Analyst:	SUB					EPA 904.0		
Radium 228		0.662+-0.431	0.816	F	Ci/L	1			12/10/18 11:41 AM		

Shuttle/Cooler ID#:		0	CHAIN	JO Z	บี	AIN OF CUSTODY	Geochemical Testing	Testing
Geochemical Testing	•	Vorth Ce	2005 North Center Avenue		merse	Somerset PA 15501 • (814) 443-1671	^{Form F-5} 571 • Fax (814) 445-6729	Form F-5002, 12.16 6729
ient:	2		Cont	Contact (Company):	npany):	MITH	Phone: (12) 380	4272
ess:	VD		e-mail:		f		Fax: ()	
NBN	t	Zip:	Sam	Sampled by:	THAT	TI MUDRISON and	State Sampled:	A
S			Project:	ct:	B	MN SHLERE	PO/Quote#:	
			PW Potable Water	WW Wastewater		SO Soil SL Sludge nHZ No	nHZ Not Hazardous / HZ Hazardous	PCBs
Sample Type: G Grab	C Composite	D Di	D Distribution/DW	R Raw/DW		Π		2
Sample Location/ Description	Lab Number	Sample Matrix	Date	Time (Military)	Sample Type	**Analyses Requested	Remarks/	Number of Containers
**NOTE: IF multiple	analytes from one l	bottle, OR it	multiple bottles	s for one ana	lyte, THEI	**NOTE: IF multiple analytes from one bottle, OR if multiple bottles for one analyte, THEN list separately on one line UNLESS LISTED ON ATTACHED FIFI D I OG	TED ON ATTACHED FIELD I	alc
NS-1	100	SW	11/14/,8	1045	C	Set komes	Field Filtered: Y /	1
WS-2	690	SW	11/14/18	1310	9	SE BATTLES	Field Filtered: Y /N	4
							Field Filtered: Y / N	
							Field Filtered: Y / N	
							Field Filtered: Y / N	
							Field Filtered: Y / N	
							Field Filtered: Y / N	
							Field Filtered: Y / N	
Note Deficiencies Here:								
Relinquished by (Company &	/ & Signature)	ă	Date Tin	Time (Military)	Ľ	Received by (Company & Signature):	re): Date	Time (Military)
Jature II Galt	ALLAN B	11/10	4/18	400		And Janto	87/14/11	51.21
SAMPLES MUST BE PRESERVED ON ICE	RESERVED O	N ICE.			ce preser	Ice present on receipt: Ves or No	Coolor Tame (00)	
					Sample		Client Support (2nd Review):	pt: 5

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

December 12, 2018

Ms. Leslie Nemeth Geochemical Testing 2005 N. Center Avenue Somerset, PA 15501

RE: Project: G1811841 Pace Project No.: 30272256

Dear Ms. Nemeth:

Enclosed are the analytical results for sample(s) received by the laboratory on November 20, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carino a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: G1811841 Pace Project No.: 30272256

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Lab ID	Sample ID	Matrix
Pace Project No.:	30272256	
Project:	G1811841	

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30272256001	G1811841-001	Water	11/14/18 10:45	11/20/18 11:00
30272256002	G1811841-002	Water	11/14/18 13:10	11/20/18 11:00

SAMPLE ANALYTE COUNT

 Project:
 G1811841

 Pace Project No.:
 30272256

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30272256001	G1811841-001	EPA 903.1	MK1	1
		EPA 904.0	JLW	1
30272256002	G1811841-002	EPA 903.1	MK1	1
		EPA 904.0	JLW	1

PROJECT NARRATIVE

Project: G1811841 Pace Project No.: 30272256

Method:	EPA 903.1
Description:	903.1 Radium 226
Client:	Geochemical Testing
Date:	December 12, 2018

General Information:

2 samples were analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: G1811841 Pace Project No.: 30272256

Method:	EPA 904.0
Description:	904.0 Radium 228
Client:	Geochemical Testing
Date:	December 12, 2018

General Information:

2 samples were analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Qual

Qual

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: G1811841

Project: G1811 Pace Project No.: 30272					
Sample: G1811841-001 PWS:	Lab ID: 302722 Site ID:	256001 Collected: 11/14/18 10:45 Sample Type:	Received:	11/20/18 11:00 Ma	trix: Water
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.
Radium-226	EPA 903.1	0.336 ± 0.350 (0.494) C:NA T:91%	pCi/L	12/11/18 20:59	13982-63-3
Radium-228	EPA 904.0	0.0474 ± 0.371 (0.853) C:81% T:75%	pCi/L	12/10/18 11:41	15262-20-1
Sample: G1811841-002 PWS:	Lab ID: 302722 Site ID:	256002 Collected: 11/14/18 13:10 Sample Type:	Received:	11/20/18 11:00 Ma	trix: Water
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.
Radium-226	EPA 903.1	0.134 ± 0.306 (0.493) C:NA T:89%	pCi/L	12/11/18 20:59	13982-63-3
Radium-228	EPA 904.0	0.662 ± 0.431 (0.816) C:79% T:75%	pCi/L	12/10/18 11:41	15262-20-1

QUALITY CONTROL - RADIOCHEMISTRY

Project:	G1811841					
Pace Project No.:	30272256					
QC Batch:	321886		Analysis Method:	EPA 903.1		
QC Batch Method:	EPA 903.1		Analysis Description:	903.1 Radiu	m-226	
Associated Lab San	nples: 30272256	6001, 30272256002				
METHOD BLANK: 1569415 Matrix: Water			Matrix: Water			
Associated Lab San	nples: 30272256	6001, 30272256002				
Paran	neter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-226		0.298 ± 0.463 (0.8	02) C:NA T:85%	pCi/L	12/11/18 20:44	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	G1811841					
Pace Project No.:	30272256					
QC Batch:	321887		Analysis Method:	EPA 904.0		
QC Batch Method:	EPA 904.0		Analysis Description:	904.0 Radiu	m 228	
Associated Lab Sar	mples: 3027225	6001, 30272256002				
METHOD BLANK: 1569416 Matrix: Water						
Associated Lab Sar	mples: 3027225	6001, 30272256002				
Parar	meter	Act ± Unc ((MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-228		-0.220 ± 0.311 (0.	763) C:84% T:83%	pCi/L	12/10/18 11:40	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: G1811841 Pace Project No.: 30272256

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Shuttle/Cooler ID#:	5	IAIN	Ь С	BO	CHAIN OF CUSTODY	ð g	Geochemical Testing	sting	
Geochemical Testing • 200	05 North Cen	ter Aven	le • So	merset	دمستدين 2005 North Center Avenue • Somerset PA 15501 • (814) 443-1671 • Fax (814) 445-6729	3-1671 •	^{Fom} Fax (814) 445-67	гот F-5002, 04.13 6729	
Billing Client: Geochemical Testing	ŋg	Conta	Contact (Company):	pany):	Leslie Nemeth	Phone	Phone: (814) 443-1671		
Address: 2005 North Center Avenue	le	e-mail:		th@geo-	Inemeth@geo-ces.com	Fax:	Fax: (814) 445-6729		
City: Somerset State: PA	A Zip: 15501		Sampled by:	Client		Prese	Preservatives by Sa	SamplerGT	
WO#:		Project:	<u>.</u>			PO/QI		8990	
: GW Ground Water	Ice Water PW Pot	able Water	WW Wastev		Ð	HZ Not Hazard	lazardous	PCBs	
Sample Type: G Grab C Composite		D Distribution/DW	R Raw/DW	0	S Special/DW 0 Other	Containers Supplied by:	pplied by: Client	GTLab	
Sample Location/ Lab Description Number	Sample Sample	Date	Time (Militarv)	Sample Tvpe	**Analyses Requested	bei	Remarks/ Preservatives etc	Number of Containers	
IF multiple analy	one bottle, OR if m	ultiple bottles	for one ana	yte, THEN	bottles for one analyte. THEN list separately on one line UNLESS LISTED ON ATTACHED FIELD LOG	S LISTED ON	ATTACHED FIELD LOG		
G1811841-001	пн2 / HZ G 11/	11/14/2018	10:45	 	Radium 226, 228		Field Filtered: Y / N HNO3		24
	ZH / ZHU						Field Filtered: Y / N	<u> </u>	ŝ
G1811841-002		11/14/2018	1:10	U	Radium 226, 228		Field Fittered: Y / N HNO3	~	63
	ZH / ZHu						Field Filtered: Y / N		
	ZH / ZHu			H O	JO#: 30272256		Field Fittered: Y / N		
	ZH / ZHu		 				Field Fittered: Y / N		
	ZH / ZHu		- 	272256			Field Fittered: Y / N		
	ZH / ZHu						Field Filtered: Y / N		
Note Deficiencies Here: PA									
Relinquished by (Company & Signature)	re) Date		Time (Military)		Received by (Company & Signature)	diature):	Date	Time (Military)	
Leslie Nemeth	11/15/2018		8:00:00	14	3 EN MUNUM	Ŵ	81-08-11	1/06	
	-								
	-								
SAMPLES MUST BE PRESERVED ON ICE	ED ON ICE.			ice prese	loe present on receipt: Yes or /No		Cooler Temp (°C) on receipt.	N/A	
	ı			Iduar	oampie receiving (1st review).		Cilent support (∠na Kevlew);		

Pittsburgh Lab Sample Condit	ion l	Jpor	n Re	ceipt	
Face Analytical Client Name:		(5e	ochem	Project ## - <u>30272</u> 56
Courier: Fed Ex UPS USPS Client Tracking #: <u>12 544 007 03 485</u>				Pace Other	Label ET LIMS Login ET
Custody Seal on Cooler/Box Present:		10	Seals	s intact: 🗍 yes 🛛	no
Thermometer Used	Туре	of Ice	We	t Blue Kone	
Cooler Temperature Observed Temp N/	A	°C	Corr	ection Factor:	C Final Temp: C
Temp should be above freezing to 6°C					Date and Initials of person examining
				pH paper Lot# 10D2981	contents: <u>ACM 11-20-1</u> 8
Comments:	Yes	/ No	N/A	TUDATOT	
Chain of Custody Present:				1.	
Chain of Custody Filled Out:	4	<u> </u>		2.	
Chain of Custody Relinquished:				3.	
Sampler Name & Signature on COC:	<u> </u>	/	ļ	4.	
Sample Labels match COC:		<u> </u>	<u> </u>	5.	
-Includes date/time/ID Matrix:	<u> </u>	<u>)T</u>			
Samples Arrived within Hold Time:			<u> </u>	6.	
Short Hold Time Analysis (<72hr remaining):		Ζ,		7.	
Rush Turn Around Time Requested:			L	8.	
Sufficient Volume:			<u> </u>	9.	
Correct Containers Used:			ļ	10.	
-Pace Containers Used:					
Containers Intact:				11.	
Orthophosphate field filtered				12.	
Hex Cr Aqueous Compliance/NPDES sample field filtered				13.	
Organic Samples checked for dechlorination:				14	
Filtered volume received for Dissolved tests	[15.	
All containers have been checked for preservation.	\square			16.	- I
All containers needing preservation are found to be in compliance with EPA recommendation.	1			pho	'd
	ц <u> </u>			Initial when Q 1 M	Date/time of
exceptions: VOA, coliform, TOC, O&G, Phenolics					preservation
			/	Lot # of added preservative	
Headspace in VOA Vials (>6mm):	Γ		$\left[\right] $	17.	
Trip Blank Present:				18.	
Trip Blank Custody Seals Present			1		
Rad Aqueous Samples Screened > 0.5 mrem/hr		/		Initial when BUM completed:	Date: 11-20-18
Client Notification/ Resolution:					
Person Contacted:			Date/	Time:	Contacted By:
Comments/ Resolution:					
				· · · · · · · · · · · · · · · · · · ·	
					and the second
			1.0	- 1.07.0	
🗋 A check in this box indicates that addit	tional	inforr	natio	n has been stored ir	n ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

J:\QAQC\Master\Document Management\Sample Mgt\Sample Condition Upon Receipt Pittsburgh (C056-7 16Feb2018)